525 research outputs found

    Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234

    Get PDF
    We present the analysis of a total of 177h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC 20058-5234. The bulk of the observations (135h) were obtained during a WET campaign (XCOV15) in July 1997 that featured coordinated observing from 4 southern observatory sites over an 8-day period. The remaining data (42h) were obtained in June 2004 at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few percent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n, l values of 8 pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC 20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte

    A spectral and spatial analysis of eta Carinae's diffuse X-ray emission using CHANDRA

    Full text link
    The luminous unstable star (star system) eta Carinae is surrounded by an optically bright bipolar nebula, the Homunculus and a fainter but much larger nebula, the so-called outer ejecta. As images from the EINSTEIN and ROSAT satellites have shown, the outer ejecta is also visible in soft X-rays, while the central source is present in the harder X-ray bands. With our CHANDRA observations we show that the morphology and properties of the X-ray nebula are the result of shocks from fast clumps in the outer ejecta moving into a pre-existing denser circumstellar medium. An additional contribution to the soft X-ray flux results from mutual interactions of clumps within the ejecta. Spectra extracted from the CHANDRA data yield gas temperatures kT of 0.6-0.76 keV. The implied pre-shock velocities of 670-760 km/s are within the scatter of the velocities we measure for the majority of the clumps in the corresponding regions. Significant nitrogen enhancements over solar abundances are needed for acceptable fits in all parts of the outer ejecta, consistent with CNO processed material and non-uniform enhancement. The presence of a diffuse spot of hard X-ray emission at the S condensation shows some contribution of the highest velocity clumps and further underlines the multicomponent, non-equilibrium nature of the X-ray nebula. The detection of an X-ray ``bridge'' between the northern and southern part of the X-ray nebula and an X-ray shadow at the position of the NN bow can be attributed to a large expanding disk, which would appear as an extension of the equatorial disk. No soft emission is seen from the Homunculus, or from the NN bow or the ``strings''.Comment: 15 pages, 10 figures, accepted by A&A; paper including images with full resolution available at http://www.astro.ruhr-uni-bochum.de/kweis/publications.htm

    The Galactic Centre Source IRS 13E: a Post-LBV Wolf-Rayet Colliding Wind Binary?

    Get PDF
    IRS 13E is an infrared, mm and X-ray source in the Galactic Centre. We present the first Chandra X-ray spectrum for IRS 13E and show that it is consistent with a luminous and highly absorbed X-ray binary system. Since the X-ray luminosity is too large for a solitary star, our interpretation is that of an early-type long-period binary with strong colliding winds emission. This naturally explains the observed X-ray spectrum and count rate as well as its lack of significant short term variability. Due to the short lifetime of any nebula 0.2 pc from the putative central super-massive black-hole, we argue that the primary of IRS 13E has exited the LBV phase in the last few thousand years

    NGC 1624-2: A slowly rotating, X-ray luminous Of?cp star with an extraordinarily strong magnetic field

    Get PDF
    This paper presents a first observational investigation of the faint Of?cp star NGC 1624-2, yielding important new constraints on its spectral and physical characteristics, rotation, magnetic field strength, X-ray emission and magnetospheric properties. Modeling the spectrum and spectral energy distribution, we conclude that NGC 1624-2 is a main sequence star of mass M {\simeq} 30 M{\odot}, and infer an effective temperature of 35 {\pm} 2 kK and log g = 4.0 {\pm} 0.2. Based on an extensive time series of optical spectral observations we report significant variability of a large number of spectral lines, and infer a unique period of 157.99 {\pm} 0.94 d which we interpret as the rotational period of the star. We report the detection of a very strong - 5.35 {\pm} 0.5 kG - longitudinal magnetic field , coupled with probable Zeeman splitting of Stokes I profiles of metal lines confirming a surface field modulus of 14 {\pm} 1 kG, consistent with a surface dipole of polar strength >~ 20 kG. This is the largest magnetic field ever detected in an O-type star, and the first report of Zeeman splitting of Stokes I profiles in such an object. We also report the detection of reversed Stokes V profiles associated with weak, high-excitation emission lines of O iii, which we propose may form in the close magnetosphere of the star. We analyze archival Chandra ACIS-I X-ray data, inferring a very hard spectrum with an X-ray efficiency log Lx/Lbol = -6.4, a factor of 4 larger than the canonical value for O-type stars and comparable to that of the young magnetic O-type star {\theta}1 Ori C and other Of?p stars. Finally, we examine the probable magnetospheric properties of the star, reporting in particular very strong magnetic confinement of the stellar wind, with {\eta}* {\simeq} 1.5 {\times} 10^4, and a very large Alfven radius, RAlf = 11.4 R*.Comment: 17 pages, MNRAS accepted and in pres

    Third Order Effect of Rotation on Stellar Oscillations of a β\beta-Cephei Star

    Full text link
    Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (1998) and revised by Karami (2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating β\beta-Cephei star with 12 MM_\odot. For an equatorial velocity of 90 kms1\rm km s^{-1}, it is found that the second- and third-order corrections for (l,m)=(5,4)(l,m)=(5,-4), for instance, are of order of 0.07% of the frequency for radial order n=3n=-3 and reaches up to 0.6% for n=20n=-20.Comment: 13 pages, 2 figures, 10 table

    O stars with weak winds: the Galactic case

    Full text link
    We study the stellar and wind properties of a sample of Galactic O dwarfs to track the conditions under which weak winds (i.e mass loss rates lower than ~ 1e-8 Msol/yr) appear. The sample is composed of low and high luminosity dwarfs including Vz stars and stars known to display qualitatively weak winds. Atmosphere models including non-LTE treatment, spherical expansion and line blanketing are computed with the code CMFGEN. Both UV and Ha lines are used to derive wind properties while optical H and He lines give the stellar parameters. Mass loss rates of all stars are found to be lower than expected from the hydrodynamical predictions of Vink et al. (2001). For stars with log L/Lsol > 5.2, the reduction is by less than a factor 5 and is mainly due to the inclusion of clumping in the models. For stars with log L/Lsol < 5.2 the reduction can be as high as a factor 100. The inclusion of X-ray emission in models with low density is crucial to derive accurate mass loss rates from UV lines. The modified wind momentum - luminosity relation shows a significant change of slope around this transition luminosity. Terminal velocities of low luminosity stars are also found to be low. The physical reason for such weak winds is still not clear although the finding of weak winds in Galactic stars excludes the role of a reduced metallicity. X-rays, through the change in the ionisation structure they imply, may be at the origin of a reduction of the radiative acceleration, leading to lower mass loss rates. A better understanding of the origin of X-rays is of crucial importance for the study of the physics of weak winds.Comment: 31 pages, 42 figures. A&A accepted. A version of the paper with full resolution figures is available at http://www.mpe.mpg.de/~martins/publications.htm

    The planetary system host HR\,8799: On its λ\lambda Bootis nature

    Full text link
    HR\,8799 is a λ\lambda Bootis, γ\gamma Doradus star hosting a planetary system and a debris disk with two rings. This makes this system a very interesting target for asteroseismic studies. This work is devoted to the determination of the internal metallicity of this star, linked with its λ\lambda Bootis nature (i.e., solar surface abundances of light elements, and subsolar surface abundances of heavy elements), taking advantage of its γ\gamma Doradus pulsations. This is the most accurate way to obtain this information, and this is the first time such a study is performed for a planetary-system-host star. We have used the equilibrium code CESAM and the non-adiabatic pulsational code GraCo. We have applied the Frequency Ratio Method (FRM) and the Time Dependent Convection theory (TDC) to estimate the mode identification, the Brunt-Va\"is\"al\"a frequency integral and the mode instability, making the selection of the possible models. When the non-seismological constraints (i.e its position in the HR diagram) are used, the solar abundance models are discarded. This result contradicts one of the main hypothesis for explaining the λ\lambda Bootis nature, namely the accretion/diffusion of gas by a star with solar abundance. Therefore, according to these results, a revision of this hypothesis is needed. The inclusion of accurate internal chemical mixing processes seems to be necessary to explain the peculiar abundances observed in the surface of stars with internal subsolar metallicities. The use of the asteroseismological constraints, like those provided by the FRM or the instability analysis, provides a very accurate determination of the physical characteristics of HR 8799. However, a dependence of the results on the inclination angle ii still remains. The determination of this angle, more accurate multicolour photometric observations, and high resolution spectroscopy can definitively fix the mass and metallicity of this star.Comment: 11 pages, 10 figures. Accepted for publication in MNRA

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure
    corecore