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ABSTRACT
We present the analysis of a total of 177 h of high-quality optical time-series photometry of

the helium atmosphere pulsating white dwarf (DBV) EC 20058−5234. The bulk of the obser-

vations (135 h) were obtained during a WET campaign (XCOV15) in 1997 July that featured

coordinated observing from four southern observatory sites over an 8-d period. The remaining

data (42 h) were obtained in 2004 June at Mt John Observatory in NZ over a one-week observ-

ing period. This work significantly extends the discovery observations of this low-amplitude

(few per cent) pulsator by increasing the number of detected frequencies from 8 to 18, and

employs a simulation procedure to confirm the reality of these frequencies to a high level of sig-

nificance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of

unique pulsation mode properties using any clearly discernable trends. However, we have used

a global modelling procedure employing genetic algorithm techniques to identify the n, � val-

ues of eight pulsation modes, and thereby obtain asteroseismic measurements of several model

parameters, including the stellar mass (0.55 M�) and Teff (∼28 200 K). These values are con-

sistent with those derived from published spectral fitting: Teff ∼ 28 400 K and log g ∼ 7.86. We

also present persuasive evidence from apparent rotational mode splitting for two of the modes

that indicates this compact object is a relatively rapid rotator with a period of 2 h. In direct anal-

ogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable

low-amplitude pulsation behaviour of EC 20058 is entirely consistent with its inferred effective

�E-mail: denis.sullivan@vuw.ac.nz

†Visiting astronomer, Mt John University Observatory, operated by the

Department of Physics & Astronomy, University of Canterbury.
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temperature, which indicates it is close to the blue edge of the DBV instability strip. Arguably,

our most significant result from this work is the clear demonstration that EC 20058 is a very

stable pulsator with several dominant pulsation modes that can be monitored for their long-term

stability.

Key words: techniques: photometric – stars: individual: EC 20058-5234 – stars: interiors –

stars: oscillations – white dwarfs.

1 I N T RO D U C T I O N

Nearly 99 per cent of all stars are predicted to end their lives as

slowly cooling white dwarfs; their study, among other things, pro-

vides an important perspective on the active lives of all the pro-

genitor objects. In particular, if we can determine their internal

chemical compositions, we have access to key data concerning the

products of the nuclear reactions that power stars in the previous

evolutionary stages. In common with other astronomical objects,

we are largely limited to studying the atmospheres of white dwarfs

as this is where the photons we detect are created. Thus, detailed

spectroscopic observations allow us to measure effective temper-

atures, surface gravity values (and therefore stellar masses), and

atmospheric chemical compositions. From these studies over many

years we know that the great majority of white dwarfs divide into two

classes (e.g. McCook & Sion 1999). The DA class have hydrogen

atmospheres, and the DB class have pure helium atmospheres (no

detectable sign of hydrogen and other elements). The DAs account

for about 86 per cent of all white dwarfs, while the DBs dominate the

rest.

In both of these classes there are objects that provide further infor-

mation that is subtly encoded in stellar flux variations. These are the

pulsators. The cooler hydrogen atmosphere pulsators (DAV class)

were discovered serendipitously in the late 1960s (Landolt 1968),

while their hotter helium atmosphere cousins were detected fol-

lowing theoretical predictions and a targeted search (Winget 1981;

Winget et al. 1982).

The use of pulsating stars to infer some of their intrinsic properties

is called stellar seismology or simply asteroseismology. Asteroseis-

mology uses the detected pulsation modes of a star to constrain

computer models and thereby measure stellar properties, includ-

ing otherwise hidden interior physical quantities. This endeavour

has been a very productive exercise (e.g. Winget 1998) for white

dwarfs, in part due to the relative simplicity of the white dwarf

structure, but also due to the potentially rich pulsation mode spec-

trum that results from the nonradial spheroidal (g-mode) pulsation

mechanism. All observed white dwarf pulsations are attributed to

buoyancy-driven g modes, as the observed periods (70–1500 s) are

inconsistent with the predicted periods of pressure (acoustic) waves

in the extremely dense white dwarf material: such pulsations would

have periods several orders of magnitude smaller, and have never

been observed in spite of a number of searches (Robinson 1984;

Kawaler et al. 1994; Silvotti et al. 2007).

The more the pulsation modes are identified, the more success-

ful is the white dwarf asteroseismology: in effect, each detected

pulsation mode adds another constraint to the modelling process.

Given that the DA objects form a substantial majority of all white

dwarfs, it is natural that the DAVs dominate the known objects for

these compact pulsators. In fact, following a recent large increase in

the detected number of faint white dwarfs (Kleinman et al. 2004),

and follow-up programmes to detect more pulsators in these new

objects (Mukadam et al. 2004; Kepler et al. 2005a; Castanheira et al.

2006; Mullally et al. 2006), the number of hydrogen atmosphere

pulsators has mushroomed to more than 140.

The helium atmosphere DBV pulsators are far fewer: in 2007

there are 17 known objects in this class (Beauchamp et al. 1999;

Handler 2001; Nitta et al. 2005, 2007). The southern object

EC 20058−5234 (QU Tel, henceforth simply EC 20058) was the

eighth DBV to be discovered. It has a B magnitude of approxi-

mately 15 and was discovered by the Edinburgh-Cape (EC) faint

blue object survey (Stobie et al. 1997). Koen et al. (1995) first re-

ported a study of its properties: they spectroscopically established

its DB classification and also demonstrated its variability using the

techniques of time-series photometry. Their 20 h of photometry

over a four month period in 1994 revealed a total of eight pulsation

frequencies and showed that the object was a low-amplitude DBV

variable that appeared to be quite stable; this is in complete contrast

(on both counts) to the class prototype, GD 358. In fact GD 358 is a

large amplitude variable which also exhibits considerable changes

in its observed pulsation spectrum over various time-scales ranging

from days to years (Kepler et al. 2003).

The Fourier analysis of the discovery data set suggested the pres-

ence of low level frequencies below the chosen significance level,

so one of us (DOD) proposed a Whole Earth Telescope (WET)

campaign (Nather et al. 1990) to probe for coherent periodicities at

lower amplitudes than those detected by Koen et al.. Consequently,

a WET run was scheduled for dark time in 1997 July, corresponding

to the optimal observing season for the target. Following the WET

run, regular single-site monitoring has been carried out at primarly

Mt John Observatory (NZ).

2 O B S E RVAT I O N S

2.1 WET 1997 photometry

Observing time covering a period of 9 d on four southern tele-

scopes was obtained in 1997 July in order to monitor EC 20058.

Time-series aperture photometry was carried out using photometers

equipped with blue sensitive photomultiplier tubes and no filters in

the light beam at all four observing sites. Consequently, the resulting

‘white light’ passbands employed in the observations had effective

wavelengths similar to that of Johnson B, but with a significantly

wider passband.

All photometers used 10-s integration times and operated with

essentially 100 per cent duty cycles, given the nature of the pho-

ton counting systems employed. The 1.0-m telescope at the South

African Astronomical Observatory (SAAO) used a single-channel

photometer in combination with autoguiding; both the 1.0-m tele-

scope at Mt John University Observatory (MJUO) in New Zealand

and the 1.6-m Itajuba telescope in Brazil were equipped with two-

channel photometers; and a three-channel photometer (Kleinman,

Nather & Phillips 1996) was used in combination with the CTIO

1.5-m telescope in Chile. A journal of all the observations is pro-

vided in Table 1.
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WET observations of EC 20058 139

Table 1. Journal of observations of time-series photometry of

EC 20058−5234 obtained during the Whole Earth Telescope (WET)

extended coverage campaign (XCOV15) in 1997 July. Column 2 provides

the observatory and telescope for each run, which are: CTIO = Cerro

Tololo Interamerican Observatory, La Serena, Chile (observer: A. Nitta);

MJUO = Mount John University Observatory, Lake Tekapo, New Zealand

(observer: D. J. Sullivan); OPD = Observatorio Pico dos Dias, Itajubá,

Brazil (observer A. Kanaan) and SAAO = South African Astronomical

Observatory, Sutherland, South Africa (observers: D. Kilkenny, F. van

Wyk). Columns 3 and 4 provide the UT starting date and time for each run,

column 5 gives the total number of 10-s integrations in each run, column 6

gives the run length in hours, while the last column is the Barycentric Julian

start Date (BJD− = BJD − 245 0000, see text) for each run corresponding

to the UT start times. Note that the two OPD runs marked with an asterisk

in column 1 (ra411 and ra413) were not used in the final analysis due to an

unexplained timing error (see text).

Run name Telescope Date UT N �T BJD−
(1997) start (h) start

dmk057 SAAO 1.0 m July 2 20:05:27 2745 7.63 632.342 7230

dmk060 SAAO 1.0 m July 3 19:50:34 2762 7.67 633.332 4031

ra404 OPD 1.6 m July 4 2:28:00 448 1.24 633.608 4026

jl0497q1 MJUO 1.0 m July 4 7:30:00 402 1.12 633.818 1279

jl0497q2 MJUO 1.0 m July 4 8:57:30 2687 7.46 633.878 8927

jl0497q3 MJUO 1.0 m July 4 16:56:00 591 1.64 634.211 1891

dmk061 SAAO 1.0 m July 4 20:16:08 384 1.07 634.350 1725

dmk062 SAAO 1.0 m July 4 22:07:39 1202 3.34 634.427 6157

dmk063 SAAO 1.0 m July 5 1:42:07 436 1.21 634.576 5529

dmk064 SAAO 1.0 m July 5 3:00:50 352 0.98 634.631 2180

ra407 SAAO 1.0 m July 5 5:33:10 996 2.77 634.737 0064

jl0597q1 MJUO 1.0 m July 5 7:26:30 1394 3.87 634.815 7112

jl0597q2 MJUO 1.0 m July 5 11:39:00 1112 3.09 634.991 0607

jl0597q3 MJUO 1.0 m July 5 14:57:00 684 1.90 634.128 5624

jl0597q4 MJUO 1.0 m July 5 17:04:20 402 1.12 634.216 9895

jl0597q5 MJUO 1.0 m July 5 18:18:00 160 0.44 634.268 1475

dmk066 SAAO 1.0 m July 5 19:57:00 2834 7.87 635.336 8984

an-0067 CTIO 1.5 m July 6 2:43:00 2579 7.16 635.618 8463

jl0697q1 MJUO 1.0 m July 6 7:31:50 3148 8.74 635.819 4274

jl0697q2 MJUO 1.0 m July 6 16:50:40 656 1.82 636.207 5105

dmk069 SAAO 1.0 m July 6 19:28:06 2994 8.32 636.316 8405

ra410 OPD 1.6 m July 7 0:28:40 1913 5.31 636.525 5696

jl0797q1 MJUO 1.0 m July 7 7:16:30 2211 6.14 636.808 7902

jl0797q2 MJUO 1.0 m July 7 13:46:00 782 2.17 636.079 2790

jl0797q3 MJUO 1.0 m July 7 16:08:00 809 2.25 636.177 8911

dmk071 SAAO 1.0 m July 7 19:25:06 2956 8.21 637.314 7674

ra411 (∗) OPD 1.6 m July 8 4:24:20 1181 3.28 637.689 2385

jl0897q1 MJUO 1.0 m July 8 11:03:50 291 0.81 637.966 6716

fvw094 SAAO 1.0 m July 8 20:44:00 312 0.87 638.369 5685

fvw095 SAAO 1.0 m July 8 23:31:50 1567 4.35 638.486 1204

ra413 (∗) OPD 1.6 m July 9 1:35:20 1389 3.86 638.571 8849

fvw097 SAAO 1.0 m July 9 19:09:00 3033 8.43 639.303 6033

fvw099 SAAO 1.0 m July 10 19:09:10 3045 8.46 640.303 7252

Good weather at both SAAO and Mt John, combined with poor

conditions at CTIO, meant that the bulk of the observations were

obtained at just two observatories. However, in spite of the par-

ticipation of only four telescope sites overall, the WET campaign

achieved an observing duty cycle of 64 per cent for the whole

8.3 d observing period, and a duty cycle of 89 per cent for the

central 4.4 d when all telescopes contributed. The WET campaign

complete coverage can be gleaned from Fig. 1, where the reduced

photometry has been graphed in successive 24-h segments.

2.2 Mt John 2004 photometry

Since the 1997 WET campaign, EC 20058 has been regularly mon-

itored from Mt John during its extended southern observing season

by one of us (D. J. Sullivan), and some preliminary reports on this

work have already appeared (Sullivan & Sullivan 2000; Sullivan

2003). Quality time-series photometry obtained in 2004 June pro-

vided confirmation of a pulsation mode that is close to marginal in

the WET data set, so it is germane to include some analysis of these

data here.

The Mt John 1.0-m telescope in combination with a three-channel

photometer (Kleinman et al. 1996) using unfiltered ‘white light’

(and hence a passband similar to that mentioned previously) was

used to acquire time-series photometry of EC 20058 in 2004 June.

This photometer includes the functionality of the one used at CTIO

in the 1997 WET run, which enables the observer to monitor three

regions of the sky using nominally identical miniature blue sensitive

(Hamamatsu R647−04) photomultiplier tubes. But, it also incorpo-

rates a very useful improvement (e.g. Sullivan 2000). In addition to

continuously monitoring the target star, a comparison star and sky

background, the comparison star can also function as a continuous

guide star. This is achieved by using a dichroic filter in the compar-

ison star’s optical train so that the red component of its spectrum

is transmitted to a small CCD and the remaining blue component

is reflected to the photomultiplier tube. Continuous remote guiding

or autoguiding is then possible using only the capabilities of the

photometer.

All of the 2004 Mt John photometry was obtained using the three

channel photometer operated in autoguiding mode. A good run of

clear weather in June led to a 24 per cent duty cycle out of a total

observing period of 7.2 d. The results of this work are summarized

in Table 2.

3 DATA R E D U C T I O N

We wish to identify periodicities in the light curve that result from

stellar pulsation. The first stage in this process is to convert the time-

series data to a form that emphasizes the intrinsic stellar intensity

changes: this requires the removal of a number of artefacts that result

from the observing process. These reductions steps are relatively

straight forward (e.g. Nather et al. 1990; Kepler 1993), but in the

interests of completeness, and also because we have employed a

novel smoothing procedure, we will briefly summarize our steps

here.

The EC 20058 field of view has two faint companions separated

from the target by 2 and 4 arcsec, respectively. For the aperture

photometry employed in the work presented here, it was impracti-

cal to attempt to separate the target stars from its two companions

(especially in indifferent seeing conditions), so all observers used

aperture sizes large enough to include all three stars and prevent any

errors introduced by imperfect tracking. It is relevant to note at this

point that the light curve pulsation amplitudes presented later have

not been corrected for this companion star contamination, which

has been estimated by Koen et al. (1995) to require multiplication

by a factor of ∼1.4.

For each light curve, the sky background (approaching

50 per cent in some cases) for each integration was estimated and

then subtracted point by point from the raw light curves. For both

the single-channel and two-channel photometers, sky measurements

were made by moving the telescope to a blank section of sky at the

beginning and end of each run, as well as several times per hour.

A sky background time-series curve was constructed for each light
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Figure 1. The reduced XCOV15 time-series photometry showing the data quality and the extended coverage provided by the multisite campaign. Each panel

represents a whole Julian Day with the actual day determined by adding 245 0000 to the number on the right-hand side of each panel. The vertical axes are

in units of millimodulation intensity (mmi) whereby 10 mmi corresponds to a 1 per cent flux variation from the local mean value. The (blue) values in each

panel centred around 0 h UT represent SAAO data, the (red) values centred around 12 h UT represent MJUO data, while the CTIO data (light blue) is centred

around 6 h UT in the fourth panel from the top and the OPD data (green) segments appear in panels 2, 3 and 5 in the vicinity of 6 h UT. Note that the two OPD

runs ra411 and ra413 have not been included in the plot, as they were not included in the final analysis (see discussion in the text). Also, see the online journal

article for a colour version of this figure.

Table 2. Journal of observations of time-series photometry of

EC 20058−5234 obtained at Mt John Observatory in 2004 June. Columns

3 and 6 give the UT and (modified) Barycentric Julian Date (BJD−) start

times for each run and columns 4 and 5 provide the number of useful 10-s

integrations and length of run in hours, respectively.

Run Date UT N �T BJD−
name (2004) start (h) start

ju0904q1 June 9 13:18:30 827 2.97 3166.059 4447

ju1004q2 June 10 12:15:30 2376 6.63 3167.015 7386

ju1104q2 June 11 9:43:10 399 1.15 3167.909 9916

ju1104q3 June 11 11:06:10 2718 7.57 3167.967 6330

ju1204q2 June 12 9:47:20 2010 5.61 3168.912 9289

ju1204q3 June 12 15:29:10 1228 3.43 3169.150 3234

ju1404q2 June 14 12:19:20 1929 6.13 3171.018 5725

ju1604q2 June 16 9:45:20 3067 8.54 3172.911 7024

curve by using either linear or cubic spline interpolation between

the measured sky points and then subtracting this computed curve

from the raw light curve.

For the three channel photometers (CTIO in the WET run and all

of the 2004 Mt John photometry), the relative channel sensitivities

were calibrated by measuring sky values for all three channels at the

beginning and end of each run. Appropriately adjusted sky values

were then subtracted point by point from the other two raw light

curves.

The effects of airmass changes were accounted for by fitting low-

order polynomials to the sky-corrected data, and then determining

fractional deviations of the data points from the fitted values. Al-

though the impact of airmass changes can be readily modelled using

a plane-parallel atmosphere approximation, it is just as effective to

use the polynomial fitting method.

Accounting for other light-curve artefacts such as the effect of

cloud is more problematical, but can be achieved for the two and

three channel photometer data by normalizing the sky-corrected

target data to the sky-corrected comparison data for those regions

affected by cloud. The effect of thin cirrus cloud on a moonless

night up to a reduction amount of about 30 per cent can normally

be corrected for. This applies in particular to data acquired with

the three channel photometers (such as that obtained at Mt John in

2004) since (i) all three channels employ identical blue-sensitive

photomultiplier tubes (Hamamatsu R647−04) and (ii) the dichroic

optical element in the comparison channel makes its passband ef-

fectively similar to that of the target channel (when viewing the hot

white dwarfs), irrespective of the spectral type of the comparison

star. However, the overriding criterion employed here is that if a

data segment appears irreparably cloud-contaminated then it is not

included in the combined data set. The data sets listed in Tables 1

and 2 adhere strictly to this criterion.

Any residual ‘long-period’ variations in each reduced light curve

segment (now expressed as fractional deviations from the local

mean) were removed using techniques incorporated in the program

TS3FIX,1 developed by one of us (D. J. Sullivan). This program al-

lows the user to fit cubic splines to the data by marking a displayed

plot with points at times and flux values selected by the user. The

flux fitting values can be determined either by using a local flux av-

erage value, or by direct visual selection. Cubic spline fits to these

points are then used to smooth the light curve over the entire data

segment time interval.

1 http://whitedwarf.org/ts3fix.
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WET observations of EC 20058 141

Undoubtedly, there is an increased component of subjectivity in

this procedure when compared with an alternative more objective

technique (such as high-pass filtering in the frequency domain);

the latter can be readily replicated by others. One might liken it to

‘chi-by-eye’ visual fitting of an elementary function to a data set

compared to use of a more objective fitting procedure, such as least

squares. Still, the power of an experienced observer viewing data

presented in suitable graphical form and making informed judge-

ments about the quality should not be underestimated; experience

has shown that these smoothing procedures are very useful in re-

moving light-curve artefacts that are clearly not related to the WD

pulsations of interest.

However, the procedure is obviously open to ‘abuse’ and conse-

quential loss (or gain) of signal. An important option, which acts as

a safeguard, allows the user to calculate Fourier transforms of both

the input and modified data and view a comparison plot in order

to monitor directly in the frequency domain the changes that are

made in the time domain. The procedures can be easily modified

or restarted if one is suspicious of the changes made to the light

curve. This program has proved to be very effective in eliminating

in the time domain obvious artefacts that are not related to white

dwarf pulsation, such as inadequate twilight sky correction, and un-

corrected transparency variations due to both airmass changes and

cloud.

The resulting corrected light curves are then, of course, blind to

periodic variations larger than a certain period limit, but it is prefer-

able to remove extraneous power in the time domain rather than

simply rely on signal orthogonality in the Fourier domain to differ-

entiate between the signals of interest and other artefacts. Also, given

that the white dwarf pulsations of interest are in the range of about

Figure 2. An amplitude periodogram (DFT) of the XCOV15 data set together with the DFT window (plot insert) using the same horizontal scale as the

main plots. The vertical axes employ the (linear) unit of mma in which 10 mma corresponds to a 1 per cent amplitude modulation of the light flux. This plot

makes clear that the EC 20058 is a multiperiodic low-amplitude pulsator as the two dominant modes have amplitudes less than 10 mma. Readily identifiable

periodicities (15 in all) are labelled and there is a suggestion of more real power above 6500 μHz other than the four labelled peaks f 13, f 14, f 17 and f18. Note

that f7 is readily identified either by comparing the structure in the DFT at frequencies just above the main f6 peak with the window function, or (better still)

by inspecting a suitably pre-whitened DFT (Fig. 3).

100 to 1000 s, then if one only makes careful use of the program’s

capabilities on longer data segments (at least an hour or more), then

there is a negligible chance of removing any real signal. Besides,

previous work (Breger et al. 1995, 1996) has demonstrated that

use of the continuous monitoring time-series photometry reported

here is inferior to the more traditional ‘three-star’ photometry when

studying longer period (∼ hour or more) variables, such as the δ

Scuti stars.

Finally, the observation start times for each observatory signifi-

cant data set were converted to the uniform Barycentric Julian Day

(BJD) time-scale, which corresponds to international time (TAI) in

units of days transformed to the centre of mass of the Solar system

(Standish 1998; Audoin & Guinot 2001).

It is relevant to note here that individual integration times within

each listed data segment were not transformed to the BJD time-

scale. This results in a maximum timing discrepancy of about a

second (1.2 s for the 7.57 h 2004 Mt John June 11 data), so this

omission will have a negligible impact on the Fourier analysis of the

10-s integration time-series data. However, these time-scale changes

are taken into account in software we have developed to search for

long-term period changes.

4 F O U R I E R A NA LY S I S

The standard way to identify the frequency structure in a reduced

light curve when the phase information is not required is to calculate

a power spectrum. This is presented for the WET data in Fig. 2 in the

form of an amplitude ‘periodogram’ covering the frequency range

from 100 to 10 100 μHz, and in which the vertical axes employ

the scale millimodulation amplitude (mma). We have employed an
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amplitude scale rather than a power scale (which is now common

practice) to represent signal ‘power’, as this facilitates a more direct

intuitive connection with actual sinusoidal variations in the light

curve and comparisons with least-squares fitting of sinusoidal func-

tions. Following the work of Scargle (1982), a number of authors

use the term ‘amplitude periodogram’ or simply ‘periodogram’ for

these plots. We will henceforth simply use the acronym DFT (for

discrete Fourier transform) to indicate this procedure.

The WET data cover a period of 8.3 d, which corresponds to a

frequency resolution of ∼1.4 μHz. The insert panel in Fig. 2 illus-

trates this resolution by plotting the DFT ‘window’ for the transform

using the same horizontal scale width as the main plot. This window

corresponds to the DFT of a synthetic noise-free sinusoid calculated

at the same times as all the light curve data: it directly illustrates the

frequency resolution and the impact of the spurious side lobes, or

‘aliases’, that result from turning the signal on and off during the

observing period. The central plot value has been shifted to zero

frequency for clarity. The near continuous WET data have minimal

alias interference, which is, of course, the primary reason for the ob-

servation strategy pursued by the WET collaboration. Note that in

the wider Fourier literature, the additional peaks in a DFT deriving

from a particular observing window are termed ‘spectral leakage’,

while the term ‘alias’ is reserved for effects near the Nyquist fre-

quency resulting from undersampled data. Since we are considering

frequencies in our well-sampled data much smaller than the Nyquist

frequency (50 000 μHz), following other authors, we will use the

term ‘alias’ for this phenomenon, as it more accurately describes

the additional forest of sometimes confusing peaks that occur, par-

ticularly for extended data sets with regular daily gaps (e.g. see the

right-hand panels in Figs 5 and 6, corresponding to the MJ04 data).

Direct visual inspection of the DFT in Fig. 2 allows one to readily

conclude that there are about 15 ‘real’ periodicities present in the

data. To this end, the 15 visually obvious frequencies, ranging from

∼2000 to 104 μHz, have been labelled f1 to f18 in order in the plot,

and also listed in Table 3. At this stage a somewhat conservative

(but arbitrary) threshhold has been used to decide that the peaks

f13 and f18, for example, are real and other smaller amplitude peaks

(such as f9 and others at higher frequencies) are uncertain. Note

that the vertical amplitude scales in the upper and lower panels of

Fig. 2 are different, and that the reality of f7 is clear from either a

careful comparison of the DFT in the region of f8 and the form of

the window function, or from the analysis presented below.

The EC 20058 light curve is dominated by the beating between

the two largest ∼8 mma pulsation modes at 281 and 257 s ( f6 and f8,

respectively). With these modes combining to produce a maximum

modulation of less than 2 per cent (∼17 mma) every 50 min, this

star is certainly not a large amplitude pulsator. However, as noted

previously, the actual intrinsic stellar flux amplitudes are approx-

imately 40 per cent larger due to the uncorrected companion star

contamination.

4.1 Light curve pre-whitening

A very useful procedure for separating peaks in the DFT corre-

sponding to real power from those peaks produced by window ef-

fects and/or noise is that of ‘pre-whitening’. In this procedure, one

or more selected frequencies are first removed from the light curve

by subtracting least-squares fitted sinusoids, and then a DFT of the

‘pre-whitened’ light curve is computed. This method is particularly

enlightening when one is attempting to identify small amplitude

periods that are mixed in with the alias peaks of a much larger am-

plitude periodicity. As pointed out by Scargle (1982), least-squares

Table 3. Detected frequencies in the DFTs for three EC 20058 data sets.

The amplitudes (in millimodulation units) for the 1997 XCOV15 WET run

are given in column 5, while the corresponding values for the 2004 Mt

John data and the SAAO 1994 discovery data are given in columns 6 and

4, respectively. The adopted combination frequencies are listed in the last

column and amplitude values below the relevant significant levels are given

in parentheses. Note that the amplitude values have not been adjusted to

account for the companion field star light contamination and the 1994 values

have been obtained from a subset of the Koen et al. (1995) data – four runs

in 1994 July.

Item Frequency Period Amplitude (mma) Combination

(μHz) (s) 1994 1997 2004 frequencies

f1 1852.6 539.8 2.0

f2 1903.5 525.4 1.9 1.5

f3 2852.4 350.6 (1.6) 1.4 1.3

f4 2998.7 333.5 2.2 3.0 2.6

f5 3489.0 286.6 1.7 1.3

f6 3559.0 281.0 8.8 8.5 7.6

f7 3640.1 274.7 1.0

f8 3893.2 256.9 8.0 8.4 7.4

a 3924.2 254.8 (0.5)

f9 4816.8 207.6 0.7

f10 4887.8 204.6 4.2 2.7 2.4

f11 4902.2 204.0 1.7 1.4 f 2 + f 4

f12 5128.6 195.0 3.5 2.5 1.8

b 5462.5 183.1 (0.5) f 2 + f 6

c 5745.8 174.0 (0.3) f 1 + f 8

f13 6557.6 152.5 0.6 f 4 + f 6

d 6745.6 148.2 (0.5) f 3 + f 8

e 7118.0 140.5 (0.5) 2f6
f14 7452.2 134.2 2.3 1.7 2.0 f 6 + f 8

f 7533.5 132.7 (0.4) f 7 + f 8

g 8127.3 123.0 (0.5) f 4 + f 12

h 8446.8 118.4 (0.5) f 6 + f 10

f15 8461.2 118.2 0.6 f 2 + f 4 + f 6

f16 8781.0 113.9 0.6 f 8 + f 10

f17 9021.7 110.8 1.6 0.9 (1.1) f 8 + f 12

f18 10 030.7 99.7 0.7 f 2 + f 4 + f 12

fitting of sinusoids in the time domain and computing DFTs are

essentially identical analytical procedures, so they both should in-

dependently lead to the same conclusions. Consequently, a careful

comparison of the window function with the DFT spectrum in the

vicinity of a peak should provide the same information as that re-

vealed by the pre-whitening procedure. However, uncertainties in

the plots sometimes dominate such comparisons, and therefore the

pre-whitening method is often more decisive, as some examples

below make clear.

Fig. 3 shows the WET DFT covering the same frequency range as

for Fig. 2, but with the light curve first pre-whitened by the 10 highest

amplitude frequencies: f 1–f 4, f 6, f 8, f 10–f 12 and f14. The y-axis scales

in this plot have been expanded, and the removed periodicities are

indicated by the downward arrows. The pre-whitening was carried

out by simultaneously fitting (via least squares) 10 sinusoids to the

data using periods obtained from the original DFT. If the periods are

kept fixed, linear least-squares fitting can be used, and in practice this

is adequate for the well-defined frequencies in the data (especially

if accompanied by a limited grid search).

An examination of the Fig. 3 DFT shows that there are two clearly

significant peaks ( f5 and f7) on either side of the main peak ( f6).

In addition, there are two peaks in the upper panel (a and f9) that

look as though they could be significant, a collection of nine peaks
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Figure 3. The DFT of the XCOV15 light curve after pre-whitening (see text) by the 10 periodicities with the highest amplitudes: these frequencies are indicated

by the downward (red) arrows. The vertical axes use the same units as in plot 2 and the horizontal dashed lines at 0.54 mma in the plots correspond to the 0.001

FAP detection threshhold established by the Monte Carlo data shuffling method discussed in the text. Using this value we can assert that there is real power

at ∼4800 μHz ( f9), but not at the frequency just below 4000 μHz marked ‘a’. The vertical (green) lines in the lower panel, annotated with the letters ‘b–h’,

correspond to the predicted positions of combination frequencies where there are indications of real power in the DFT (see Table 3). The detected frequencies

labelled f15 and f16 having amplitudes just above the significance threshhold also correspond to the predicted values of combination frequencies.

in the lower panel (labelled b–h, f 15, f 16), many of whom could be

significant, and one or two peaks at low frequencies that need to be

investigated. These latter peaks will be discussed in the next sec-

tion, but clearly we need a quantitative criterion for distinguishing

between real and noise peaks.

A detailed inspection of the pre-whitened DFT for the entire data

set listed in Table 1 in the vicinity of the dominant periods f6 and f8

revealed that there was a small but significant amount of power left in

the form of residual ‘window mounds’ for both frequencies. In other

words, the subtraction of the two periodicities from the light curve

had not removed all of the power at those frequencies. For a pulsating

white dwarf exhibiting very stable and highly coherent luminosity

variations, this can be caused by one or more data segments having

a timing error. By a process of trial and error, the ‘culprits’ were

determined to be the two OPD observation files ra411 and ra413

marked with an asterisk in Table 1. Upon deletion of these two files

from the overall light curve, the pre-whitened DFT produced the

results graphed in Fig. 3, and shown in more detail in Fig. 5 (left-

hand panels): no signatures of the subtracted frequencies remain.

This discovery illustrates the utility of the pre-whitening procedure,

as the ‘contribution’ from the two relatively small data segments

could easily have been overlooked otherwise. In order to be certain,

the timing discrepancies were investigated graphically by overlay-

ing a time-series plot of the two data segments with the predicted

light curve obtained from a least-squares fit of the two dominant

frequencies to the rest of the WET data. Both plots clearly revealed

the presence of a timing error.

Given the unlikely nature of the alternative hypothesis – the star

was behaving differently during these periods – subsequent analysis

removed these data from the combined WET light curve. No obvious

explanation for the timing error has been found.

4.2 DFT noise simulations

A useful quantitative criterion for differentiating between signal and

noise peaks in the DFT is the concept of the false alarm probability

(FAP) introduced by Scargle (1982), which makes the statistical

nature of the process explicit. Using this concept, one computes the

probability of a given peak in the DFT being due to noise for some

chosen threshhold. A high threshhold for false positives can be set

by ensuring that this probability is small, and only counting peaks

that are above this threshhold as real.

Although the FAP can be estimated theoretically on the basis

of some assumed model for the noise characteristics (e.g. Scargle

1982), it is preferable and more representative of the actual data

to determine it by a Monte Carlo simulation method. And, assisted

by the speed of modern computers, this is a practical proposition

for even large data sets. Such a simulation has been carried out

for the data sets discussed here using the program TSMRAN
2 devel-

oped by one of us (D. J. Sullivan). The results of this work for the

WET data set are that peaks with an amplitude of 0.54 mma have a

FAP value of 0.001, meaning that there is only one chance in 1000

that such a peak can be produced by a random noise ‘conspiracy’.

The corresponding value for the Mt John 2004 (MJ04) data set is

1.2 mma.

2 http://whitedwarf.org/tsmran.
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These threshholds are marked as horizontal dashed lines in ap-

propriate parts of Figs 3, 5 and 6 showing the pre-whitened DFTs

for both data sets.

Although the simulation procedure is conceptually straight for-

ward, there are several points that should be noted and a number of

organizational tools are required for a flexible implementation. So,

we briefly outline the TSMRAN methodology here.

The essential idea is to start with the reduced light curve that

has been pre-whitened by the ‘clearly real’ frequencies, randomly

rearrange the time order of the data points, compute a DFT of these

randomized data covering the frequency range of interest, and then

record both the maximum (Am) and the average (Aav) value of peak

heights in the DFT. Randomizing the time order of the data destroys

the coherency of any periodic signal remaining in the light curve

but preserves the uncorrelated noise characteristics of the data. The

highest peak in the DFT of a time-shuffled data set is then a one sam-

ple estimate of the maximum excursion that can occur due simply

to random noise effects. If this procedure is repeated a large number

of times (say 1000), and the highest peak in each DFT recorded,

then one can infer that the maximum value, Amax
m , in this ensemble

of highest peak values is a direct estimate of the DFT amplitude

threshhold for a FAP at the 1 in 1000 level.

It is instructive to plot a histogram of the recorded maximum

peaks (Am) for each DFT: 1000 member ensembles for both the

WET and MJ04 data are depicted in Fig. 4. There are two separate

such histograms (blue and green) for the WET data centred around

0.4 mma, and one for the MJ04 data centred around 0.9 mma. It

is clear that the less comprehensive MJ04 data exhibit larger Am

values, as one would expect.

The program TSMRAN also records the average peak height for

each randomized DFT, partly as a check on its operation, and as

one might expect there is little variation from DFT to DFT. The

histograms of these average peak height values have not been shown,

but four times the ensemble average (4〈Aav〉) for each data set has

been indicated in Fig. 4, as one sometimes sees a criterion similar to

this used in the literature to identify real power (e.g. Kepler 1993).

Note, however, that we are using here (the average of) the average

amplitude DFT values and not the square root of the average power

spectrum values.

Figure 4. Histograms showing the results of the Monte Carlo data shuffling exercises (see text) invoked to establish a false alarm probability detection threshhold

(0.001) for real power in the pre-whitened DFTs. The horizontal axis gives the magnitude of the maximum peak in each DFT of the randomized time-series

data and the vertical axis gives the number of occurrences per bin interval. The two histograms (blue and green) centred around 0.4 mma correspond to separate

1000 shuffling trials of the pre-whitened XCOV15 data and use a bin interval of 0.005 mma, while the histogram on the right-hand side employs a bin interval

of 0.01 and represents the same process applied to the 2004 multinight Mt John data. For each DFT of the randomized time-series, the maximum peak Am in

the range 1600–10 000 μHz was selected. The downward arrows mark the maximum peaks obtained in all 1000 trials (Amax
m ) and four times the average DFT

peak height (see text) for each ensemble of the DFTs (4〈Aav〉). See the online journal article for a colour version of this figure.

A few more comments about the algorithms employed in

TSMRAN are relevant. For the relatively large data sets considered

here (WET ∼ 45k and MJ04 ∼ 15k integrations, respectively) a

long-period random number generator is required: the routine ran2

from the numerical recipes suite (Press et al. 1992) was found to

be equal to the task. One also makes significant efficiency gains by

using a fast Fourier transform (FFT) algorithm to compute the DFTs

for suitable data sets; the routine realft from Press et al. accomplishes

this task in TSMRAN.

However, since FFT algorithms assume that the time-series data

correspond to equal contiguous sample intervals, some preliminary

organization of the data segments is required before a FFT can be

employed. Since all the observations reported in this paper cor-

respond to 10-s integrations it was possible to create an array of

integrations that satisfied this attribute (with adequate precision for

the intended purpose) without resorting to such (undesirable) proce-

dures as interpolation. All deleted integrations in each ‘significant’

data segment were restored using zero padding, and the shape of

the overall DFT window function was essentially preserved by sep-

arately randomizing the points in each segment before combining

them together in one overall time-series, all the while maintaining

the data gaps using zero padding. Last, the combined time-series is

extended to an integer power of two (as required by realft) using zero

padding, in order to maximize the efficiency of the FFT procedure.

A comment on the data time-scale is appropriate. Although the

above assumption of uniform contiguous integration intervals rep-

resents the original terrestrial TAI observation time-scale, offsets

are introduced after the transformations to the BJD time-scale. This

will have little impact on use of the FFT for the simulation exercise,

and negligible impact anyhow if the offsets are not very large. For

the record, the total offset change across the WET data is ∼7 s, and

for the MJ04 data it is ∼25 s.

Individual data segments corresponding to each run are read sep-

arately into TSMRAN using a list of file names in an input file provided

by the user. A glance at Fig. 1 (especially the colour version) shows

that there is some data segment overlap (e.g. the fourth panel from

the top: SAAO, CTIO and MJUO on July 6). These overlaps were

removed by deleting the minimum number of points in order to

allow contiguous data to be created.
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A version of the program exists which uses the much slower

(computationally inefficient) direct DFT algorithm. This then ob-

viates the need for much of the data organization code in TSMRAN,

which admittedly was a significant proportion of the programming

coding effort. This method is more general and can be invoked for

non-uniform time-series data sets, but it is significantly slower. In

contrast, the FFT method is extremely fast: on a ‘standard’ modern

laptop the one thousand 64k WET DFTs are computed in less than

a minute – effectively ‘on the fly’, one might say.

At this point it is relevant to emphasize that our simulations are

dealing with a random noise model only; other non-random sources

of ‘noise’ (e.g. periodic telescope drive error) need to be handled on

a case-by-case basis. In addition, we limited our region of interest

to frequencies above 1600 μHz, as (i) there are no obvious peaks in

the DFT in this region that stand out above the forest of other peaks

and (ii) we would need to consider a higher detection threshhold

due to the increasing impact of residual sky noise.

4.3 Detected frequencies

Referring to Figs 2, 3, 5 and 6, and Table 3, we have identified 18

definite frequencies ( f∗) in the WET data as being real, using the

adopted 0.001 FAP. The amplitudes for these frequencies are given

in column 5 of the table, while the amplitudes of other possible

frequency detections (a–h) are listed in the table within parentheses.

Two frequencies that merit further discussion are ‘a’ and f9; they

are depicted in more detail in the panels of Figs 5 and 6. These

frequencies are essentially outside the region where the issue of

linear combinations arises (see next section) and their amplitudes

are very close to the 0.54 mma significance threshhold. They only

first appear as interesting in the pre-whitened DFT of Fig. 3, and

Figure 5. Expanded amplitude DFTs of the frequency region near modes f6 and f8, comparing the 1997 XCOV15 data set (top left-hand panel) with the June

2004 (Mt John) data set (top right-hand panel). The panels at the bottom, using an expanded amplitude scale, depict the corresponding DFTs of each time-series

pre-whitened by the frequencies f6 and f8 (blue curves). The periodicities corresponding to f5 and f7 are clearly evident in the pre-whitened XCOV15 data

(bottom left-hand panel) but only f5 is evident in the Mt John data. There is a suggestion of power (marked ‘a’) in the XCOV15 data adjacent to f8 that is just

below the adopted detection threshhold (dashed line). Both bottom panels also include overlay plots (in red) of pre-whitened DFTs in which the remaining

periodicties have been removed. See the online journal article for a colour version of this figure.

the MJ04 data set provides additional information. This is depicted

in the right-hand panels of Figs 5 and 6 by graphing both the MJ04

DFTs and pre-whitened DFTs covering the same frequency ranges

as for the WET DFTs.

The XCOV15 case for f9 is clearly presented in the two left-hand

panels of Fig. 6. The top left-hand panel shows the DFT with this

frequency marked (along with f10 and f11), the lower left-hand panel

(blue curve) shows the DFT pre-whitened by f10 and f11 and power

at the f9 frequency above the 0.54 mma threshhold, and the dark

(red) curve shows the DFT further pre-whitened by the f9 frequency

in which the peak has disappeared.

The two right-hand panels in Fig. 6 present the MJ04 data case in

the same format as the left-hand panels. There is clearly evidence of

power in these data at the frequency corresponding to f9 which fol-

lows the shape of the window function and whose maximum peak

height is not far below the relevant 1.2 mma significance thresh-

hold. Also, the further pre-whitening procedure removes these peaks

from the DFT (red curve). Although the principal peak is below the

1.2 mma MJ04 data significance threshhold, so in isolation would

not be interpreted as a detection using our stated threshhold, it does

provide definite supporting evidence for the XCOV15 detection.

On the other hand, the case for (and against) ‘a’ is presented in

a similar manner in Fig. 5. In the lower left-hand panel, the blue

curve depicts the XCOV15 data pre-whitened by the two dominant

frequencies ( f6 and f8) and the expanded amplitude scale clearly

shows the reality of f5 and f7, and also a possibly real frequency

‘a’, tantalizingly just below the 0.54 mma significance level. The

dark (red) curve is a DFT further pre-whitened by these three fre-

quencies and emphasizes the point that the ‘a’ peak could represent

real power. However, the same procedure for the MJ04 data tells a

different story. The blue curve in the lower right-hand panel shows
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Figure 6. Expanded amplitude DFTs of the frequency region near modes f10 and f11, comparing the 1997 XCOV15 data set (top left-hand panel) with the

June 2004 (Mt John) data set (top right-hand panel). The panels at the bottom depict the corresponding DFTs (blue curves) of each time-series pre-whitened

by the frequencies f10 and f11. The horizontal dashed lines in the bottom panels represent the detection threshholds for significant power in the respective data

sets (see discussion in Section 4.3). The f9 frequency is above the detection threshhold in the WET data and, although it is below the Mt John data detection

threshhold, it does appear to make its presence felt. The red overlay plots in both bottom panels represent DFTs of each data set further pre-whitened by the f9
periodicity. See the online journal article for a colour version of this figure.

the MJ04 DFT pre-whitened by the dominant f6 and f8 periodicities

and there is no evidence of ‘a’.

It is interesting that there is also no evidence for f7 in the MJ04

data. However, there is without question power at this frequency

in the WET data so further confirmation is not required. It does

illustrate, though, that power in this quite stable pulsator at various

frequencies is still variable at a low level, the result of real physical

amplitude instabilities, or perhaps beating.

In view of the above, we have included f9 as a real detected peri-

odicity, but not included ‘a’ – we leave it in the summary table as a

bracketed ‘may be’.

4.4 Linear combination frequencies

Since the mechanism that converts mechanical movement of stel-

lar material to luminosity variations at the surface appears to be

non-linear, both harmonics and combinations of the basic mode fre-

quencies can be expected to appear in the light curve. At least, this

is the conclusion of many previous studies of the pulsating white

dwarfs – especially the large amplitude pulsators, such as DBV

GD 358 (Kepler et al. 2003).

The last column in Table 3 lists whether any of the detected fre-

quencies in the light curve can be identified as a linear combination

of other detected frequencies, as well as identifying whether possi-

ble linear combinations could account for ‘suspiciously’ large peaks

that are below the 0.54 mma detection threshhold; all these quanti-

ties are also indicated on the plot in Fig. 3.

So, all of the actual seven detected frequencies f11 and f 13–f 18 can

be explained as combination frequencies. This interpretation leaves

f12 as the highest frequency pulsation mode.

The two largest combination frequencies with amplitudes

∼1.7 mma merit further discussion. The frequency f14, being simply

the sum frequency of the two highest amplitude modes ( f6 and f8) is

obviously the first combination to look for, but f11 being considered

a combination of the lower amplitude modes f2 (1.9 mma) and f4 (3.0

mma) is perhaps surprising. Furthermore, these two modes appear

to combine separately with f6 and f12 to produce signal power at f15

and f18, respectively.

Whereas some of the higher frequency combinations would be

difficult to explain as direct mode frequencies using realistic white

dwarf models, this is not true for the frequency f11: it is not absolutely

certain that this frequency results from non-linear combination ef-

fects. However, given the frequency matches mentioned above, and

the likely difficulty of explaining the presence of the four closely

spaced frequencies f 9– f 12 in terms of low-order � pulsation modes

(see Fig. 7 and discussion next section), we adopt the conservative

approach and delete f11 from the list of inferred modes.

Column 5 in Table 3 lists the 11 frequencies (f 1–f 10 and f12) that

we consider represent pulsation modes from the work presented

here, while columns 4 and 6 in the same table list for comparison

all the frequencies detected in the work of Koen et al. (1995) and

independently in the MJ04 data set, respectively.

5 C O M PA R I S O N W I T H M O D E L S

Our aim here is to compare the 11 detected pulsation modes for

EC 20058 with predictions from white dwarf models in order to

tell us something about the star. There are two basic approaches

to this task. In the first instance we can look for relatively simple

systematic trends in the observed pulsation spectrum that depend on
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Figure 7. A pulsation mode diagnostic diagram showing the predicted pe-

riods of the pulsation modes as a function of effective temperature for a

range of 0.6 M� white dwarf models. The left-hand panel graphs all � = 1

modes (red solid lines) in the period range and only some of the � = 2 modes

(blue dash–dotted lines). The middle panel shows the detected modes for

EC 20058 and the right-hand panel shows the modes detected for GD 358

for comparison purposes. See text for more details and the online journal

article for a colour version of this figure.

stellar properties. There are, in fact, two of these: one is a sequence of

periods with approximately equal spacing (which is obviously best

viewed in period space), while the other is ‘mode-splitting’, which

is seen more clearly in frequency space. Secondly, we can adopt a

global fitting procedure which endeavours to match the predicted

modes to the data, such as that pioneered by Metcalfe, Nather &

Winget (2000).

We need two basic results from the relevant pulsation theory in

order to look for any systematic trends. The buoyancy-driven g-

mode pulsations in white dwarfs (e.g. Unno et al. 1989; Hansen,

Kawaler & Trimble 2004) can be characterized by three integer

quantum indices: n (or sometimes k), � and m. These indices specify

a unique eigenmode of oscillation in which n determines the radial

form of the eigenfunction and � and m specify the angular behaviour

via a spherical harmonic function Y�m(θ , φ). If spherical symmetry

holds (no rotation and/or magnetic field), then the mode periods,

�n�, are independent of the index m and in the limit of large n we

can write

�n� ≈ �0

n + ε√
�(� + 1)

=⇒ 〈���〉 ≈ �0√
�(� + 1)

.

The quantity �0 is inversely proportional to an integral of the Brunt–

Väisälä(or buoyancy) frequency over the star profile, and hence

decreases with increasing stellar mass (due to increasing local grav-

itational field strengths). Hence, �0 establishes a basic time-scale

for the period structure; ε can be neglected for our purposes.

Rotation of the star removes the m-degeneracy of the mode fre-

quencies, and to first order leads to mode frequencies that are a

function of all three quantum indices in the form

νn�m = νn� + m(1 − Cn�)�,

where νn� is the degenerate frequency, m takes the 2� + 1 integer

values between −� and +�, � is the rotation frequency of the star

and Cn� takes the approximate dimensionless form Cn� = 1/�(� +
1) for high radial overtone modes. The net effect of this is that all (n,

�) g-mode pulsations undergo a ‘Zeeman-like’ splitting due to the

rotation of the star which can theoretically be seen as 2�+1 closely

spaced frequencies (see Cox 1984, for a nice physical explanation).

A magnetic field also destroys the spherical symmetry and leads

to frequency splitting: in the case of a small magnetic field aligned

with the pulsation axis, � + 1 splitting occurs (Jones et al. 1989).

Whether any of these modes are sufficiently excited such that they

are detectable is another story.

5.1 Model calculations

In order to provide concrete examples, we have determined a range

of pulsation modes for a sequence of WD models with effective

temperatures between 30 000 and 20 000 K. The results of our cal-

culations are displayed in Fig. 7 (left-hand panel), along with the

detected mode periods for EC 20058 (middle panel) and the DBV

class prototype (GD 358, right-hand panel).

The WD models and the respective pulsation frequencies were

calculated using code that has itself evolved over the years, and is

described in a succession of PhD theses at the University of Texas,

Austin – see Metcalfe et al. (2000) for a brief description and ap-

propriate references. For our fiducial model, we chose a mass of

0.6 M�, a 50/50 C/O core and a fractional helium layer mass of

10−3. Six evolved WD models with effective temperatures at 2000-K

intervals between 30 000 and 20 000 K were computed, and the pul-

sation modes determined for each of these. The pulsation modes

for models of intermediate temperatures between these values were

estimated by fitting cubic splines to all the mode periods as a func-

tion of effective temperature and the results are plotted in Fig. 7: all

the � = 1 mode periods are represented by solid (red) lines in the

displayed period range, and a few of the shorter period � = 2 modes

are displayed using the (blue) dash–dotted lines. Since we are us-

ing these model calculations to aid the phenomenology discussion

below, the precise values of the model parameters are unimportant.

A very obvious feature of the pulsation period structure in the

WD models is that all mode periods increase with decreasing effec-

tive temperature (e.g. Bradley, Winget & Wood 1994), and therefore

increasing age. Over human time-scales this effect is very small, but

nevertheless the extremely high stability of many white dwarf pul-

sators means that this effect can be observed (e.g. Kepler et al.

2005b). We will discuss the prospects for EC 20058 in the last

section.

We have chosen to discuss only the lowest order � = 1 and 2

pulsation modes, as we make the usual assumption (Dziembowski

1977) that the effect of geometrical flux cancellation across the ob-

servable stellar disc should ensure that modes with larger � values,

if excited, contribute little to the observable flux changes. However,

at this point it is appropriate to sound a small note of caution by

mentioning that there is evidence of a pulsation mode in the DAV

pulsator PY Vul (G 185−32) that has an � value of at least 3 and
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possibly 4 (Thompson et al. 2004; Yeates et al. 2005). It is

worth noting, though, that this object exhibits an unusual pulsation

spectrum.

For the discussion in the next section we will focus on some

details of the 28 000-K model, since this is closest to the effective

temperature obtained for EC 20058 by Beauchamp et al. (1999),

but see also Sullivan et al. (2007). The pulsation modes in Fig. 7 for

this model exhibit a mean period spacing of 37.4 s and a range of

33.4–43.0 s for the � = 1 modes, and a mean value of 20.4 s with a

range of 16.6–23.5 s for the � = 2 modes.

Among other things, these model values demonstrate that the

pulsation theory summarized above does only predict approximately
constant period spacings for a sequence of modes with a given � and

varying n. Also, this theory predicts that the ratio of the ‘constant’

period spacings for sequences of � = 1 and 2 in the star should

equal
√

2(2 + 1)/
√

1(1 + 1) = 1.73. However, this ratio for the

mean period spacings in our computed model (covering the period

range in Fig. 7) is 37.4/20.4 = 1.83. This is close to the approximate

asymptotic theory value, but not identical, as we are in the low-n
regime.

5.2 Period and frequency phenomenology

It follows from the previous discussion that in the first instance we

should look for a sequence of observed periods with approximately

equal spacing in the pulsation spectrum of EC 20058. As is clear

from Fig. 7, such a pattern was detected in GD 358 (Winget et al.

1994; Kepler et al. 2003), and they were all readily interpreted as

having spherical degree � = 1 due to the fact they displayed clear

triplet (rotational) splitting. This conclusion was possible, in spite

of the complicated nature of the GD 358 pulsation behaviour.

No such simple pattern is immediately apparent in the EC 20058

spectrum. Nevertheless, we will attempt to identify any trends. If one

assumes that a number of modes in some sequence are not excited

above an observable threshhold, then one could consider some of

the pairs f 1– f 2(�P = 14.4 s), f 3– f 4 (17.1 s), f 6–f 8 (24.1 s) [or f 7– f 8

(17.8 s)] and f 9–f 12 (12.6 s) as visible members of such a sequence.

But even ignoring the close spacing between the pairs, the interpair

spacings do not match any assumed reasonable sequence. Only the

two pairs f 3– f 4 and f 7– f 8 show a similar period spacing with a mean

value of about 17.5 s. However, the period spacing between these

pairs is not even close to being an integral multiple of this mean

value. Even if it was, we would then face the task of interpreting

the small period spacing in terms of either a sequence of only � =
2 excited modes and/or an improbably large model mass ∼0.8 M�
(as period spacing decreases with model mass).

Another possibility is to temporarily put aside the question of

the model mass and consider the two pairs f 6– f 8 (24.1 s) and f 1– f 2

(14.4 s) as members of separate � = 1 and 2 sequences, respectively.

The period spacing ratio is then 24.1/14.4 = 1.67, and this is con-

sistent with both the predicted pulsation theory value (1.73) and the

actual model estimates given in the previous section. However, in

addition to concerns about the implied total model mass, it is hard to

argue convincingly that only two pairs of frequencies are clear ev-

idence of the predicted sequence. Also, we have not independently

established any � values for the modes, using for example rotational

splitting, as was successfully exploited for GD 358.

The most likely scenario is that we are seeing a combination of

� = 1 and 2 excited modes, coupled with possible rotational fre-

quency splitting. An inevitable conclusion is that the two modes

with the largest amplitude (f 6 ∼ 281 s and f 8 ∼ 257 s) correspond

to different � values, presumably � = 1 and 2 in some order.

We now investigate the possibility of rotational splitting of pul-

sation modes in the frequency spectrum. A qualitative inspection of

Figs 2 and 3 suggests that some of the modes f 5, f 7, f 9 and even the

‘not accepted’ frequency ‘a’ might be caused by rotational splitting.

Using the �f (μHz) values f 6 − f 5 = 70 μHz, f 7 − f 6 = 81 μHz,

a − f 8 = 31 μHz and f 10 − f 9 = 71 μHz, we find that the first and

fourth of these pairs lead to similar splitting values of ∼70 μHz.

If these phenomena are due to splitting, and the modes in question

(f 6 ∼ 281 s and f 10 ∼ 205 s) have � = 1, then the white dwarf is

rotating with a period of close to 2 h. We are of course assuming

that only one non-zero m component is excited to an observable

amplitude out of a possible two for each dipole mode. Note that this

interpretation also provides further support (if any is needed) for our

argument that real power is present at the frequency f9. A less likely

� = 2 interpretation for both modes would requires only one out of

four possible non-zero m value modes in each case to be excited,

and would predict a rotation period close to 4 h.

Given the deductions of other white dwarf rotation rates, a ∼2 h

period represents a rapidly rotating white dwarf. This rotation rate is

certainly not unphysical, so we tentatively put it forward as a possible

interpretation, although the evidence is hardly overwhelming. Note

that the pre-white dwarf PG 2131+066 has a measured rotation rate

of ∼5 h (Kawaler et al. 1995). Interestingly, the issue of measured

white dwarf rotation rates is somewhat controversial as large angular

momentum losses via some mechanism are required in order to make

these measured rates consistent with the known rotation rates of their

much larger progenitors.

Before proceeding to the global modelling analysis presented in

the next section, we will include the small (1 mma) satellite fre-

quency f7 in the mode splitting model that we adopt. A glance at

Fig. 5, or the schematic version in Fig. 8, reveals that f5 and f7 appear

to form an asymmetric pair either side of the large amplitude ‘par-

ent’ mode f6 (∼281 s) with separations of 70 and 81.3 s, respectively.

There are two ways to produce asymmetric splitting: second-order

rotation effects and the inclusion of a magnetic field.

Second-order rotation effects (e.g. Chlebowski 1978) have been

detected in the pulsation spectrum of the DAV pulsator L 19−2

(O’Donoghue & Warner 1982; Sullivan 1998). The dominant 192-s

mode for this pulsator exhibits two low-amplitude satellite modes

Figure 8. A schematic amplitude spectrum illustrating the proposed rota-

tional and magnetic mode splitting model.
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that are separated by ∼13 μHz from the main peak, and a rotational

splitting explanation yields a rotation period of ∼10 h, assuming an

�= 1 value for the mode. Furthermore, the frequency splitting shows

a 1 per cent asymmetry, which is consistent with a second-order

rotational effect. Even though EC 20058 is estimated to rotate five

times faster and the second-order effect depends on the square of

the rotation frequency, this is not enough to explain the asymmetry

displayed in Fig. 8.

The combined effect of rotation and a magnetic field will also

produce asymmetrical splitting. Thus, if the frequency separations

adjacent to the f6 (281-s) mode are divided into a ∼75 μHz sym-

metrical rotational splitting and a magnetic field frequency shift

(increase) of ∼5 μHz, then this would explain the observed triplet.

A magnetic field of ∼3 kG and the 2 h rotation period would ac-

complish this (Winget et al. 1994, appendix). As suggested in Fig. 8,

evidence of a similar triplet structure around the f10 mode would add

considerable weight to this proposal, but as there is no evidence of

power at f 10 + ∼81 μHz, we simply adopt these implied constraints

in preparation for the global modelling presented below.

5.3 Model period fitting

Starting with a list of detected pulsation modes and then endeavour-

ing to deduce the parameters of a specific stellar model that repro-

duces these modes is a classic example of an inversion problem in

physics. These tasks are notoriously difficult and are plagued by the

lack of unique solutions. However, the apparent relative simplicity

of a white dwarf means that a realistic model can be specified by

only a few parameters and the potential richness of the g-mode pul-

sation spectrum provides the possibility of many revealed modes,

and hence many constraints to restrict the inversion process.

Following a WET run on the object GD 358 (Winget et al.

1994) that yielded 154 h of near continuous time-series photometry,

Bradley & Winget (1994) were able to use the detected pulsation

modes to identify a preferred model for this star. They were aided

in this task by the fact that the 11 detected normal modes clearly

formed a sequence of increasing radial order (n) that were consistent

with an � = 1 assignment, due to the evidence of a triplet structure

for each mode. Their asteroseismic analysis enabled a determination

of such model parameters as: total mass, surface helium layer mass

and effective temperature. Luminosity and a bolometric correction

were also estimated, which then led to an asteroseismic distance

determination.

A further advance in these modelling procedures has been made

more recently by the use of a genetic algorithm to efficiently explore

the multidimensional parameter space in a global search for the op-

timum model or models that fit the pulsation data (Metcalfe et al.

2000). Metcalfe (2003) (and references therein) reports an analy-

sis of GD 358 data that is sensitive to the presumed white dwarf’s
12C/16O core composition, and thereby yields an indirect measure-

ment of the 12C(α, γ )16O reaction cross-section at astrophysically

relevant energies (as the C/O core composition is determined by

the competition between this reaction and the C-forming triple α

reaction). Furthermore, Metcalfe et al. (2005) have successfully ex-

ploited the global optimization method to analyse pulsation data

obtained from dual-site observations (and previous work) of an-

other DBV star CBS 114, and clarify a number of features of its

structure.

Note that there has been some controversy concerning these as-

teroseismic successes, which is related to the fact that both com-

position variation in the core and in the envelope below the he-

lium atmosphere produce similar non uniformities in the period

spectrum (Fontaine & Brassard 2002; Brassard & Fontaine 2003;

Montgomery, Metcalfe & Winget 2003).

Given that the analysis in the previous subsection did not uncover

any clear trends in the pulsation mode data (except for perhaps the

rotational and magnetic splitting we have proposed), one would

hope that use of a global fitting procedure could yield some definitive

results. Adopting this mode splitting model reduces the 11 identified

normal modes to only eight independent modes with different n
and/or � values. This is comparable to the number of modes available

for the analyses of both GD 358 and CBS 114 discussed above. But,

in contrast to these other two pulsators where additional constraints

are evident (�= 1 assignments with consecutive radial index values),

the EC 20058 pulsation spectrum offers none of these clues. The

revealed modes are most likely a mixtures of � = 1 and 2.

Using the 8-mode data set, we applied a modified version of the

global model-fitting procedure originally described by Metcalfe,

Montgomery & Kawaler (2003). This version of the code incorpo-

rates the OPAL radiative opacities (Iglesias & Rogers 1996) rather

than the older LAO data (Huebner et al. 1977), which are known to

produce systematic errors in the derived temperatures (Fontaine &

Brassard 1994). The fitting procedure uses a parallel genetic algo-

rithm (Metcalfe & Charbonneau 2003) to minimize the rms resid-

uals between the observed and calculated periods (σ P) for models

with effective temperatures (Teff) between 20 000 and 30 000 K, and

stellar masses (M�) between 0.45 and 0.70 M�. We restricted the

mass range more than in earlier applications to avoid a family of

models with high masses, which contain such a high density of

� = 2 modes that they can match essentially any set of observed

periods. We allowed the base of the uniform He/C envelope to be

located at an outer mass fraction log (Menv/M�) between −2.0 and

−4.0. The base of the pure He surface layer could assume values of

log(MHe/M�) between −5.0 and −7.0.

Since we have almost no information about the spherical degree

of the modes, we assumed only � = 1 and 2 modes were observable

and calculated all of the periods in the range 150–600 s for each

model; we then selected the closest model period for each observed

mode. This procedure tends to bias the identification in favour of

� = 2 modes since there are always more of them for a given model.

Following Metcalfe, Montgomery & Kanaan (2004), we required an

�= 2 mode to be closer to the observed period by a factor N�=2/N�=1

for selection as a better match. In effect, we optimized the mode

identification internally for each model evaluation, while the genetic

algorithm optimized the values of the other four parameters.

To quantify the effect of our ignorance of the core composition, we

repeated this fitting procedure using three different types of cores:

pure C, a uniform 50:50 mixture of C/O, and pure O. The results of

these three fits are shown in Table 4, and the corresponding model

periods and mode identifications are shown in Table 5. With the

exception of the period at 350.6 s, the mode identifications are the

same for all three fits. The fit using a pure C core identified the 350.6 s

period as (� = 1, n = 7) while the other two fits both preferred an

Table 4. Optimal model parameters for EC 20058.

Parameter C C/O O Average

(pure) 50:50 (pure)

Teff(K) 28 100 28 200 28 400 28 250 ± 150

M�(M�) 0.550 0.550 0.550 0.550 ± 0.005

log(Menv/M�) −3.56 −3.60 −3.62 −3.59 ± 0.03

log(MHe/M�) −6.42 −6.46 −6.48 −6.45 ± 0.03

σ P(s) 1.89 1.94 2.03 –
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Table 5. Periods and mode identification.

Pcalc

fnum Pobs Pure C 50:50 C/O Pure O � n

f12 195.0 192.57 192.82 192.76 2 6

f10 204.6 205.23 205.72 205.86 1 3

f8 256.9 260.37 260.61 260.85 2 9

f6 281.0 280.84 281.08 281.13 1 5

f4 333.5 330.89 330.65 330.70 2 12

f3 350.6 350.44 350.44 350.39 2,1 13,7

f2 525.4 523.98 524.47 524.60 2 21

f1 539.8 540.92 541.01 541.27 2 22

identification of (� = 2, n = 13). The pure C model also includes

this � = 2 mode, and although it was closer to the observed period

than the � = 1 mode, it was not close enough to overcome the

requirement that it be closer by the factor N�=2/N�=1. Thus, the

mode identification appears to be reasonably robust.

All three core compositions yield very good fits to the observed

periods, with σ P ∼ 2 seconds in all cases. This is slightly better

than the quality of the four-parameter fits achieved for the DBV

white dwarfs GD 358 and CBS 114 by Metcalfe et al. (2005) us-

ing the same code. The main effect of the different core compo-

sitions is to modify the optimal value of Teff, and to make slight

adjustments to the locations of the two near-surface composition

gradients. The average values of the mass and effective tempera-

ture are in good agreement with the spectroscopically determined

values (Beauchamp et al. 1999), the total envelope mass is within

the range expected from stellar evolution theory (D’Antona &

Mazzitelli 1979), and the thickness of the pure He surface layer,

when compared to similar measures for GD 358 and CBS 114,

is consistent with the expectations of diffusion theory (Metcalfe

2007).

5.4 Review of the global fitting

At this point it is prudent to pause and critically examine where our

analysis has led us. From a total of 11 detected pulsation modes,

we assumed that eight of them had independent n and � values, and

then our modelling has identified unique index values for all but one

of these modes (Table 5). An obvious question is how plausible and

unique is our ‘best’ model?

One interesting result, which was foreshadowed in our previous

general discussion, is the assignment of different � values (1 and 2)

to the dominant 281 s ( f6) and 257 s ( f8) equal (observed) ampli-

tude modes. Taking into account the expected larger geometrical flux

cancellation from an � = 2 mode, this requires a higher physical am-

plitude for the 257-s mode to compensate for this geometrical effect.

In isolation, a more plausible assumption might be that both modes

have the same � = 1 value, and the small period spacing between

them is explained by an unusually high mass (∼ 0.8 M�) for the star.

But, we do have external constraints: model fits to EC 20058’s opti-

cal spectrum are not consistent with such a high mass (Beauchamp

et al. 1999; Sullivan et al. 2007). It is also interesting that a high

mass can be ruled out largely through asteroseismic constraints, as

discussed in the next paragraph.

As a further check on our conclusions, we undertook a relatively

exhaustive exploration of model parameter space using a grid of

pre-computed models. Unconstrained fitting to the pulsation spec-

trum using criteria similar to that discussed previously yielded two

competing best fit models: the ‘low-mass’ (∼0.55 M�) ones dis-

cussed previously, and a ‘high-mass’ family with M ∼0.8–0.9 M�.

However, when the 281-s ( f6) mode was constrained to be � = 1,

then the high-mass family did not remain competitive, and hence the

best model assigned � = 2 to the 257-s mode and predicted a mass

of 0.55 M�, confirming the above. Assigning � = 1 to the 281-s

mode is not totally arbitrary and is consistent with the rotational

and magnetic mode splitting arguments developed in the previous

section.

Thus, two independent constraints added to the asteroseismic fit-

ting resulted in the same conclusion. We conclude our modelling

discussion at this point, and add the comment that a more exhaustive

modelling effort is currently underway.

6 S U M M A RY A N D F U T U R E WO R K

The work presented here has significantly extended our knowledge

of the helium atmosphere pulsating white dwarf, EC 20058−5234

beyond that revealed by the discovery observations of Koen et al.

(1995). Analysis of nearly 135 h of photometric time-series data

obtained by four southern telescopes during the 8-d 1997 WET run

XCOV15, along with 42 h of single-site data obtained during a week

of observing at Mt John Observatory in 2004 June has more than

doubled the number of detected frequencies from 8 to 18 (Table 3).

Following a detailed simulation procedure that we undertook, we

are confident at the 1 in 1000 FAP level that the power in the detected

modes (the lowest 0.6 mma frequencies, in particular) is not simply

the result of random noise fluctuations.

Although we were able to identify signal power in our WET data

at 18 different frequencies that are above our adopted 0.54 mma

significance level (and one possibility just below: ‘a’), only 11 of

these could reasonably be viewed as pulsation modes. The seven

other periods are readily characterized as combination frequencies

resulting from the non-linear processes that translate mechanical

movement of the stellar material into observable flux changes.

Our initial investigation of the detected pulsation mode structure

revealed no clear systematic trends, except for perhaps a rotational

splitting value of 70 (or 75) μHz for two of the modes. Interestingly,

the modes suspected of showing rotational splitting were indepen-

dently identified as the only � = 1 modes from our objective fitting

method, which could explain why they are the only modes that show

this behaviour. We (tentatively) interpret this as evidence that the

white dwarf is rotating with a period of about 2 h.

A global fitting analysis of the period structure, following proce-

dures similar to those described in Metcalfe et al. (2000), resulted

in three models with different core compositions that all yielded

very good fits to the eight assumed independent observed periods

(see Tables 4 and 5). All models had similar effective temperatures

(∼28 200 K) and masses (0.55 M�) that were in good agreement

with the spectroscopically determined values (Beauchamp et al.

1999; Sullivan et al. 2007). This analysis provided no insights on

the core composition, as the fits were largely insensitive to the three

different chosen C/O ratios. As expected from the earlier discus-

sions, the global fitting assigned different mode � values to the two

dominant pulsation frequencies: f 6, � = 1 and f 8, � = 2.

Although the number of known DBV objects is relatively small

(17), and is totally dwarfed by the current known number of cooler

hydrogen atmosphere (DAV) pulsators (now exceeding 140), it is

still tempting to draw some conclusions about the nature and extent

of the DB instability strip along the lines discussed by Mukadam

et al. (2004) (see also Mukadam et al. 2005). Even using just the two

stars GD 358 and EC 20058, we can infer that the DBVs mimick the

characteristics exhibited by the DAVs. GD 358 has a relatively low
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effective temperature (24 900 K, Beauchamp et al.) and exhibits both

large amplitude pulsations and unstable behaviour (modes come and

go), while EC 20058 has a significantly higher effective tempera-

ture (28 400 K) and displays low-amplitude very stable behaviour.

Similar behaviour is found in the ensemble of DAVs, and some au-

thors have divided them into hot (hDAV) and cold (cDAV) pulsators

(e.g. Mukadam et al. 2004). The hDAVs feature only a few de-

tectable pulsation modes that have low amplitudes and are relatively

stable, while the cDAVs exhibit many variable modes. This is surely

telling us something about the onset and cessation of pulsation as

the white dwarf cools through the temperature dependent instability

strip.

Certainly compared with GD 358, EC 20058 is a stable pulsator

in terms of both mode amplitude and period. The two lower panels

in Fig. 5, in particular, demonstrate that the mode amplitude stability

might be subject to some qualification, as the mode f7 has an ampli-

tude of 1.2 mma in the WET data, but there is no evidence of it in the

MJ04 data. An alternative possibility is that beating between unre-

solved modes explains the low-level amplitude variability. However,

the dominant modes are always present in the photometry with about

the same amplitudes.

Both data sets presented here indicate that EC 20058 has very sta-

ble pulsation periods. This conclusion is also supported by other ob-

servational work (Sullivan & Sullivan 2000; Sullivan 2003, 2005).

This means that we can attempt to measure evolutionary cooling

effects over human time-scales. The key point is that the DBV

white dwarf model periods increase with decreasing temperature

(e.g. Bradley et al. 1994), so careful monitoring of a stable mode

period or periods over a multiyear interval should in principle lead

to a detectable period change and therefore a direct measure of the

stellar evolutionary time-scale.

As one might expect, the models for both the cooler DAV white

dwarfs and the much hotter DOV pulsating pre-white dwarfs also

predict period increases with decreasing temperature. More than

10 yr of time-series photometry (including several WET runs) on

the DOV object PG 1159−035 produced a measured period increase

(Costa, Kepler & Winget 1999), largely because the predicted rate

is several orders of magnitude higher than for the DBVs. Note that

as a direct testimony on the difficulties of these measurements, a

‘false alarm’ result was published at an earlier date (Winget et al.

1985, 1991). Kepler and collaborators (Kepler et al. 2005b) have

been monitoring the highly stable DAV G 117−B15A over three

decades and have finally detected a definite period change. As re-

cently pointed out by Winget et al. (2004), with sufficient quality

data one might expect to measure a period change for a DBV over

a time-scale as short as ∼5 yr. This is the aim of an ongoing obser-

vational campaign featuring EC 20058 (Sullivan 2005).

The cooling mechanism for both the very hot pre-white dwarfs

and the hot white dwarfs is dominated by neutrino emission from

the high-temperature degenerate cores (e.g. Winget, Hansen & Van

Horn 1983; O’Brien & Kawaler 2000; Winget et al. 2004). Models

show that this core neutrino flux exceeds the surface photon flux

down to an effective temperature of about 25 000 K, depending on

the mass of the star.

In fact, Winget et al. (2004) demonstrate that a DB model with a

typical mass of 0.6 M� with an effective temperature of 28 400 K

(the EC 20058 estimated value), has a neutrino cooling flux approx-

imately four times that of the photon flux. These facts suggest a very

interesting experiment: measure a period change and compare this

rate with two values obtained from models that include and exclude

the neutrino mechanism. Then, provided we are confident that the

star’s mass and effective temperature are in the right-hand region,

we have the exciting possibility that we are using a pulsating star to

directly test a key low-energy prediction of electroweak theory.

This is the current promise for EC 20058 as at these effective

temperatures the evolutionary cooling occurs at approximately con-

stant radius, in contrast to the much hotter pre-white dwarfs (Winget,

Hansen & Van Horn 1983). In the latter case, both continuing gravi-

tational contraction and evolutionary cooling have an impact on the

pulsation periods so any comparisons with theoretical predictions

are less certain.

Given the potential importance of this star, we have recently un-

dertaken both time-series photometry and spectroscopy using one

of the Magellan 6.5 m telescopes (Sullivan et al. 2007), in addition

to seasonal monitoring using Mt John Observatory (Sullivan 2003).
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