11 research outputs found

    Risk Prediction of Prostate Cancer with Single Nucleotide Polymorphisms and Prostate Specific Antigen

    Get PDF
    Purpose:Combined information on single nucleotide polymorphisms and prostate specific antigen offers opportunities to improve the performance of screening by risk stratification. We aimed to predict the risk of prostate cancer based on prostate specific antigen together with single nucleotide polymorphism information.Materials and Methods:We performed a prospective study of 20,575 men with prostate specific antigen testing and 4,967 with a polygenic risk score for prostate cancer based on 66 single nucleotide polymorphisms from the Finnish population based screening trial of prostate cancer and 5,269 samples of 7 single nucleotide polymorphisms from the Finnish prostate cancer DNA study. A Bayesian predictive model was built to estimate the risk of prostate cancer by sequentially combining genetic information with prostate specific antigen compared with prostate specific antigen alone in study subjects limited to those with prostate specific antigen 4 ng/ml or above.Results:The posterior odds of prostate cancer based on 7 single nucleotide polymorphisms together with the prostate specific antigen level ranged from 3.7 at 4 ng/ml, 14.2 at 6 and 40.7 at 8 to 98.2 at 10 ng/ml. The ROC AUC was elevated to 88.8% (95% CI 88.6-89.1) for prostate specific antigen combined with the risk score based on 7 single nucleotide polymorphisms compared with 70.1% (95% CI 69.6-70.7) for prostate specific antigen alone. It was further escalated to 96.7% (95% CI 96.5-96.9) when all prostate cancer susceptibility polygenes were combined.Conclusions:Expedient use of multiple genetic variants together with information on prostate specific antigen levels better predicts the risk of prostate cancer than prostate specific antigen alone and allows for higher prostate specific antigen cutoffs. Combined information also provides a basis for risk stratification which can be used to optimize the performance of prostate cancer screening.Peer reviewe

    Risk Prediction of Prostate Cancer with Single Nucleotide Polymorphisms and Prostate Specific Antigen

    Get PDF
    Purpose: Combined information on single nucleotide polymorphisms and prostate specific antigen offers opportunities to improve the performance of screening by risk stratification. We aimed to predict the risk of prostate cancer based on prostate specific antigen together with single nucleotide polymorphism information.Materials and Methods: We performed a prospective study of 20,575 men with prostate specific antigen testing and 4,967 with a polygenic risk score for prostate cancer based on 66 single nucleotide polymorphisms from the Finnish population based screening trial of prostate cancer and 5,269 samples of 7 single nucleotide polymorphisms from the Finnish prostate cancer DNA study. A Bayesian predictive model was built to estimate the risk of prostate cancer by sequentially combining genetic information with prostate specific antigen compared with prostate specific antigen alone in study subjects limited to those with prostate specific antigen 4 ng/ml or above.Results: The posterior odds of prostate cancer based on 7 single nucleotide polymorphisms together with the prostate specific antigen level ranged from 3.7 at 4 ng/ml, 14.2 at 6 and 40.7 at 8 to 98.2 at 10 ng/ml. The ROC AUC was elevated to 88.8% (95% CI 88.6–89.1) for prostate specific antigen combined with the risk score based on 7 single nucleotide polymorphisms compared with 70.1% (95% CI 69.6–70.7) for prostate specific antigen alone. It was further escalated to 96.7% (95% CI 96.5–96.9) when all prostate cancer susceptibility polygenes were combined.Conclusions: Expedient use of multiple genetic variants together with information on prostate specific antigen levels better predicts the risk of prostate cancer than prostate specific antigen alone and allows for higher prostate specific antigen cutoffs. Combined information also provides a basis for risk stratification which can be used to optimize the performance of prostate cancer screening. </p

    A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

    Get PDF
    To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore