2,737 research outputs found

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde

    Neuromorphic Few-Shot Learning: Generalization in Multilayer Physical Neural Networks

    Full text link
    Neuromorphic computing leverages the complex dynamics of physical systems for computation. The field has recently undergone an explosion in the range and sophistication of implementations, with rapidly improving performance. Neuromorphic schemes typically employ a single physical system, limiting the dimensionality and range of available dynamics - restricting strong performance to a few specific tasks. This is a critical roadblock facing the field, inhibiting the power and versatility of neuromorphic schemes. Here, we present a solution. We engineer a diverse suite of nanomagnetic arrays and show how tuning microstate space and geometry enables a broad range of dynamics and computing performance. We interconnect arrays in parallel, series and multilayered neural network architectures, where each network node is a distinct physical system. This networked approach grants extremely high dimensionality and enriched dynamics enabling meta-learning to be implemented on small training sets and exhibiting strong performance across a broad taskset. We showcase network performance via few-shot learning, rapidly adapting on-the-fly to previously unseen tasks

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles

    Get PDF
    In this work, we study the `scalar channel' of the emission of Hawking radiation from a (4+n)-dimensional, rotating black hole on the brane. We numerically solve both the radial and angular part of the equation of motion for the scalar field, and determine the exact values of the absorption probability and of the spheroidal harmonics, respectively. With these, we calculate the particle, energy and angular momentum emission rates, as well as the angular variation in the flux and power spectra -- a distinctive feature of emission during the spin-down phase of the life of the produced black hole. Our analysis is free from any approximations, with our results being valid for arbitrarily large values of the energy of the emitted particle, angular momentum of the black hole and dimensionality of spacetime. We finally compute the total emissivities for the number of particles, energy and angular momentum and compare their relative behaviour for different values of the parameters of the theory.Comment: 24 pages, 13 figure

    Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry

    Full text link
    We show that the anomalously large top quark forward-backward asymmetry observed by CDF and D\O\, can naturally be accommodated in models with flavor-violating couplings of a new massive spin-2 state to quarks. Regardless of its origin, the lowest-order couplings of a spin-2 boson to fermions are analogous to the coupling of the graviton to energy/momentum, leading to strong sensitivity of the effects associated with its virtual exchange to the energy scales at hand. Precisely due to this fact, the observed dependence of the asymmetry on the ttˉt\bar t invariant mass fits nicely into the proposed framework. In particular, we find a vast parameter space which can lead to the central value for the observed forward-backward asymmetry in the high mass bin, while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches version accepted for publication in JHE

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Modeling factors influencing the demand for emergency department services in ontario: a comparison of methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emergency departments are medical treatment facilities, designed to provide episodic care to patients suffering from acute injuries and illnesses as well as patients who are experiencing sporadic flare-ups of underlying chronic medical conditions which require immediate attention. Supply and demand for emergency department services varies across geographic regions and time. Some persons do not rely on the service at all whereas; others use the service on repeated occasions. Issues regarding increased wait times for services and crowding illustrate the need to investigate which factors are associated with increased frequency of emergency department utilization. The evidence from this study can help inform policy makers on the appropriate mix of supply and demand targeted health care policies necessary to ensure that patients receive appropriate health care delivery in an efficient and cost-effective manner. The purpose of this report is to assess those factors resulting in increased demand for emergency department services in Ontario. We assess how utilization rates vary according to the severity of patient presentation in the emergency department. We are specifically interested in the impact that access to primary care physicians has on the demand for emergency department services. Additionally, we wish to investigate these trends using a series of novel regression models for count outcomes which have yet to be employed in the domain of emergency medical research.</p> <p>Methods</p> <p>Data regarding the frequency of emergency department visits for the respondents of Canadian Community Health Survey (CCHS) during our study interval (2003-2005) are obtained from the National Ambulatory Care Reporting System (NACRS). Patients' emergency department utilizations were linked with information from the Canadian Community Health Survey (CCHS) which provides individual level medical, socio-demographic, psychological and behavioral information for investigating predictors of increased emergency department utilization. Six different multiple regression models for count data were fitted to assess the influence of predictors on demand for emergency department services, including: Poisson, Negative Binomial, Zero-Inflated Poisson, Zero-Inflated Negative Binomial, Hurdle Poisson, and Hurdle Negative Binomial. Comparison of competing models was assessed by the Vuong test statistic.</p> <p>Results</p> <p>The CCHS cycle 2.1 respondents were a roughly equal mix of males (50.4%) and females (49.6%). The majority (86.2%) were young-middle aged adults between the ages of 20-64, living in predominantly urban environments (85.9%), with mid-high household incomes (92.2%) and well-educated, receiving at least a high-school diploma (84.1%). Many participants reported no chronic disease (51.9%), fell into a small number (0-5) of ambulatory diagnostic groups (62.3%), and perceived their health status as good/excellent (88.1%); however, were projected to have high Resource Utilization Band levels of health resource utilization (68.2%). These factors were largely stable for CCHS cycle 3.1 respondents. Factors influencing demand for emergency department services varied according to the severity of triage scores at initial presentation. For example, although a non-significant predictor of the odds of emergency department utilization in high severity cases, access to a primary care physician was a statistically significant predictor of the likelihood of emergency department utilization (OR: 0.69; 95% CI OR: 0.63-0.75) and the rate of emergency department utilization (RR: 0.57; 95% CI RR: 0.50-0.66) in low severity cases.</p> <p>Conclusion</p> <p>Using a theoretically appropriate hurdle negative binomial regression model this unique study illustrates that access to a primary care physician is an important predictor of both the odds and rate of emergency department utilization in Ontario. Restructuring primary care services, with aims of increasing access to undersupplied populations may result in decreased emergency department utilization rates by approximately 43% for low severity triage level cases.</p

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Double Non-Global Logarithms In-N-Out of Jets

    Full text link
    We derive the leading non-global logarithms (NGLs) of ratios of jet masses m_{1,2} and a jet energy veto \Lambda due to soft gluons splitting into regions in and out of jets. Such NGLs appear in any exclusive jet cross section with multiple jet measurements or with a veto imposed on additional jets. Here, we consider back-to-back jets of radius R produced in e^+e^- collisions, found with a cone or recombination algorithm. The leading NGLs are of the form \alpha_s^2 \ln^2(\Lambda/m_{1,2}) or \alpha_s^2\ln^2(m_1/m_2). Their coefficients depend both on the algorithm and on R. We consider cone, \kt, anti-\kt, and Cambridge-Aachen algorithms. In addition to determining the full algorithmic and R dependence of the leading NGLs, we derive new relations among their coefficients. We also derive to all orders in \alpha_s a factorized form for the soft function S(k_L,k_R,\Lambda) in the cross section \sigma(m_1,m_2,\Lambda) in which dependence on each of the global logs of \mu/k_L, \mu/k_R and \mu/\Lambda determined by the renormalization group are separated from one another and from the non-global logs. The same kind of soft function, its associated non-global structure, and the algorithmic dependence we derive here will also arise in exclusive jet cross sections at hadron colliders, and must be understood and brought under control to achieve precise theoretical predictions.Comment: 19 pages, 10 figures. v2: minor edits, additional discussion in Introduction. v3: version published in JHE

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore