120 research outputs found

    Supplementary descriptions and DNA barcodes of two rarely encountered Trisetacus species (Eriophyoidea, Phytoptidae) associated with Tertiary relict conifers from the Mediterranean region

    Get PDF
    New records and supplementary morphological descriptions of two rarely encountered Trisetacus species from Pinaceae, T. abietis Postner 1968 and T. cedri (Nalepa 1920), are reported. Trisetacus abietis was found in Abkhazia under the needle epidermis of Abies nordmanniana (Steven) Spach, a conifer endemic to the mountainous Asian coast of the Black Sea. Trisetacus cedri was found in buds of introduced Cedrus deodara(Roxb. ex D. Don) G. Don in Abkhazia and South Africa. It is the only member of Trisetacus known from Cedrus spp. For the first time we provide sequences of two genes (COI and D1–D2 28S) of T. abietis(MN022221, MN025333) and T. cedri (MN022222, MN022223, MN025334, MN025335), along with microphotographs of the damage caused by these mites on their coniferous hosts. Sequences of D1–D2 28S of T. cedri from Abkhazian and South African populations are identical; COI sequences from different populations differ by only one synonymous substitution in a codon for asparagine. Females of T. abietis have long asymmetrical 8/7-rayed empodia, whereas males have shorter symmetrical 6/6-rayed empodia and shorter solenidia ω I. Similar sexual dimorphism in tarsal appendages was previously reported in Novophytoptus, representing an endoparasitic lineage of phytoptids on monocots. In T. cedri, a “long form” and a “short form” of both males and females were detected, suggesting a complex life cycle in this species. The evolution of Trisetacus is discussed within the broader context of the molecular phylogenies of Pinaceae and Eriophyoidea, including estimations of divergence times.The Russian Foundation for Basic Research; ZIN RAS (project АААА-А19-119020790133-6) and the Russian Science Foundation.https://www.biotaxa.org/saaam2019Forestry and Agricultural Biotechnology Institute (FABI

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Image-guided ToF depth upsampling: a survey

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of time-of-flight (ToF) depth cameras. Despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we review the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also briefly discussed. Finally, we provide an overview of performance evaluation tests presented in the related studies

    Mutationism and the Dual Causation of Evolutionary Change

    Get PDF
    The rediscovery of Mendel's laws a century ago launched the science that William Bateson called "genetics," and led to a new view of evolution combining selection, particulate inheritance, and the newly characterized phenomenon of "mutation." This "mutationist" view clashed with the earlier view of Darwin, and the later "Modern Synthesis," by allowing discontinuity, and by recognizing mutation (or more properly, mutation-and-altered-development) as a source of creativity, direction, and initiative. By the mid-20th century, the opposing Modern Synthesis view was a prevailing orthodoxy: under its influence, "evolution" was redefined as "shifting gene frequencies," that is, the sorting out of pre-existing variation without new mutations; and the notion that mutation-and-altered-development can exert a predictable influence on the course of evolutionary change was seen as heretical. Nevertheless, mutationist ideas re-surfaced: the notion of mutational determinants of directionality emerged in molecular evolution by 1962, followed in the 1980s by an interest among evolutionary developmental biologists in a shaping or creative role of developmental propensities of variation, and more recently, a recognition by theoretical evolutionary geneticists of the importance of discontinuity and of new mutations in adaptive dynamics. The synthetic challenge presented by these innovations is to integrate mutation-and-altered-development into a new understanding of the dual causation of evolutionary change--a broader and more predictive understanding that already can lay claim to important empirical and theoretical results--and to develop a research program appropriately emphasizing the emergence of variation as a cause of propensities of evolutionary change

    Đ Đ°ŃĐżĐŸĐ·ĐœĐ°ĐČĐ°ĐœĐžĐ” ĐŸĐ±Đ»Đ°ŃŃ‚Đ”Đč Ń‚Đ”Đșста с ĐżĐ”Ń€ŃĐŸĐœĐ°Đ»ŃŒĐœŃ‹ĐŒĐž ĐŽĐ°ĐœĐœŃ‹ĐŒĐž ĐœĐ° ĐŽĐžĐ°ĐłĐœĐŸŃŃ‚ĐžŃ‡Đ”ŃĐșох ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ…

    Get PDF
    The aim of the study is to develop a method for detecting areas of text with private data on medical diagnostic images using the Tesseract module and the modified Levenshtein distance.Materials and methods. For threshold filtering, the brightness of the points belonging to the text characters in the images is determined at the initial stage. The dynamic threshold is calculated from the histogram of the brightness of the pixels of the image. Next, the Tesseract module is used for primary text recognition. Based on the tag values from DICOM files, a set of strings was formed to search for them in the recognized text. A modified Levenshtein distance was used to search for these strings. A set of DICOM files of the “Dose Report” type was used to test the algorithm. The accuracy was assessed by experts marking up blocks of private information on images.Results. A tool has been developed with a set of metrics and optimal thresholds for choosing decisive rules in finding matches that allow detecting areas of text with private data on medical images. For this tool, the accuracy of localization of areas with personal data on a set of 1131 medical images was determined in comparison with expert markup, which is 99.86%.Conclusion. The tool developed within the framework of this study allows identifying personal data on digital medical images with high accuracy, which indicates the possibility of its practical application in the preparation of data sets.ĐŠĐ”Đ»ŃŒ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ: Ń€Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚ĐșĐ° ĐŒĐ”Ń‚ĐŸĐŽĐ° ĐŸĐ±ĐœĐ°Ń€ŃƒĐ¶Đ”ĐœĐžŃ ĐŸĐ±Đ»Đ°ŃŃ‚Đ”Đč Ń‚Đ”Đșста с проĐČĐ°Ń‚ĐœŃ‹ĐŒĐž ĐŽĐ°ĐœĐœŃ‹ĐŒĐž ĐœĐ° ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșох ĐŽĐžĐ°ĐłĐœĐŸŃŃ‚ĐžŃ‡Đ”ŃĐșох ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ… про ĐżĐŸĐŒĐŸŃ‰Đž ĐŒĐŸĐŽŃƒĐ»Ń Tesseract Đž ĐŒĐŸĐŽĐžŃ„ĐžŃ†ĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐłĐŸ Ń€Đ°ŃŃŃ‚ĐŸŃĐœĐžŃ ЛДĐČĐ”ĐœŃˆŃ‚Đ”ĐčĐœĐ°.ĐœĐ°Ń‚Đ”Ń€ĐžĐ°Đ» Đž ĐŒĐ”Ń‚ĐŸĐŽŃ‹. Đ”Đ»Ń ĐżĐŸŃ€ĐŸĐłĐŸĐČĐŸĐč Ń„ĐžĐ»ŃŒŃ‚Ń€Đ°Ń†ĐžĐž ĐœĐ° ĐœĐ°Ń‡Đ°Đ»ŃŒĐœĐŸĐŒ ŃŃ‚Đ°ĐżĐ” ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ŃĐ”Ń‚ŃŃ ярĐșĐŸŃŃ‚ŃŒ Ń‚ĐŸŃ‡Đ”Đș, ĐżŃ€ĐžĐœĐ°ĐŽĐ»Đ”Đ¶Đ°Ń‰ĐžŃ… ŃĐžĐŒĐČĐŸĐ»Đ°ĐŒ Ń‚Đ”Đșста ĐœĐ° ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ…. Đ”ĐžĐœĐ°ĐŒĐžŃ‡Đ”ŃĐșĐžĐč ĐżĐŸŃ€ĐŸĐł ĐČŃ‹Ń‡ĐžŃĐ»ŃĐ”Ń‚ŃŃ ĐżĐŸ ĐłĐžŃŃ‚ĐŸĐłŃ€Đ°ĐŒĐŒĐ” ярĐșĐŸŃŃ‚Đ”Đč пОĐșсДлДĐč ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃ. ДалДД ĐŽĐ»Ń пДрĐČĐžŃ‡ĐœĐŸĐłĐŸ Ń€Đ°ŃĐżĐŸĐ·ĐœĐ°ĐČĐ°ĐœĐžŃ Ń‚Đ”Đșста ĐžŃĐżĐŸĐ»ŃŒĐ·ŃƒĐ”Ń‚ŃŃ ĐŒĐŸĐŽŃƒĐ»ŃŒ Tesseract. На ĐŸŃĐœĐŸĐČĐ°ĐœĐžĐž Đ·ĐœĐ°Ń‡Đ”ĐœĐžĐč Ń‚ŃĐłĐŸĐČ ĐžĐ· DICOM-фаĐčĐ»ĐŸĐČ Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°Đ»ŃŃ ĐœĐ°Đ±ĐŸŃ€ ŃŃ‚Ń€ĐŸĐș ĐŽĐ»Ń ĐżĐŸĐžŃĐșĐ° ох ĐČ Ń€Đ°ŃĐżĐŸĐ·ĐœĐ°ĐœĐœĐŸĐŒ Ń‚Đ”ĐșстД. Đ”Đ»Ń ĐżĐŸĐžŃĐșĐ° этох ŃŃ‚Ń€ĐŸĐș ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°Đ»ĐŸŃŃŒ ĐŒĐŸĐŽĐžŃ„ĐžŃ†ĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐ” Ń€Đ°ŃŃŃ‚ĐŸŃĐœĐžĐ” ЛДĐČĐ”ĐœŃˆŃ‚Đ”ĐčĐœĐ°. Đ”Đ»Ń Ń‚Đ”ŃŃ‚ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ Đ°Đ»ĐłĐŸŃ€ĐžŃ‚ĐŒĐ° ĐżŃ€ĐžĐŒĐ”ĐœŃĐ»ŃŃ ĐœĐ°Đ±ĐŸŃ€ DICOM фаĐčĐ»ĐŸĐČ Ń‚ĐžĐżĐ° “Dose Report” ĐŒĐŸĐŽĐ°Đ»ŃŒĐœĐŸŃŃ‚Đž CT. ĐžŃ†Đ”ĐœĐșу Ń‚ĐŸŃ‡ĐœĐŸŃŃ‚Đž ĐżŃ€ĐŸĐČĐŸĐŽĐžĐ»Đž эĐșспДрты, Ń€Đ°Đ·ĐŒĐ”Ń‡Đ°ŃŽŃ‰ĐžĐ” Đ±Đ»ĐŸĐșĐž проĐČĐ°Ń‚ĐœĐŸĐč ĐžĐœŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž ĐœĐ° ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ….Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹. Đ Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚Đ°Đœ ĐžĐœŃŃ‚Ń€ŃƒĐŒĐ”ĐœŃ‚ с ĐœĐ°Đ±ĐŸŃ€ĐŸĐŒ ĐŒĐ”Ń‚Ń€ĐžĐș Đž ĐŸĐżŃ‚ĐžĐŒĐ°Đ»ŃŒĐœŃ‹Ń… ĐżĐŸŃ€ĐŸĐłĐŸĐČ ĐŽĐ»Ń ĐČŃ‹Đ±ĐŸŃ€Đ° Ń€Đ”ŃˆĐ°ŃŽŃ‰ĐžŃ… праĐČОл ĐČ ĐœĐ°Ń…ĐŸĐ¶ĐŽĐ”ĐœĐžĐž ŃĐŸĐČĐżĐ°ĐŽĐ”ĐœĐžĐč, ĐżĐŸĐ·ĐČĐŸĐ»ŃŃŽŃ‰ĐžŃ… ĐŸĐ±ĐœĐ°Ń€ŃƒĐ¶ĐžĐČать ĐŸĐ±Đ»Đ°ŃŃ‚Đž Ń‚Đ”Đșста с проĐČĐ°Ń‚ĐœŃ‹ĐŒĐž ĐŽĐ°ĐœĐœŃ‹ĐŒĐž ĐœĐ° ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșох ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ…. Đ”Đ»Ń ŃŃ‚ĐŸĐłĐŸ ĐžĐœŃŃ‚Ń€ŃƒĐŒĐ”ĐœŃ‚Đ° ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐ° Ń‚ĐŸŃ‡ĐœĐŸŃŃ‚ŃŒ Đ»ĐŸĐșалОзацОО ĐŸĐ±Đ»Đ°ŃŃ‚Đ”Đč с Đ»ĐžŃ‡ĐœŃ‹ĐŒĐž ĐŽĐ°ĐœĐœŃ‹ĐŒĐž ĐżĐŸ сраĐČĐœĐ”ĐœĐžŃŽ с эĐșŃĐżĐ”Ń€Ń‚ĐœĐŸĐč Ń€Đ°Đ·ĐŒĐ”Ń‚ĐșĐŸĐč, ĐșĐŸŃ‚ĐŸŃ€Đ°Ń ŃĐŸŃŃ‚Đ°ĐČĐ»ŃĐ”Ń‚ 99,86%.ЗаĐșĐ»ŃŽŃ‡Đ”ĐœĐžĐ”. Đ Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚Đ°ĐœĐœŃ‹Đč ĐČ Ń€Đ°ĐŒĐșах ĐœĐ°ŃŃ‚ĐŸŃŃ‰Đ”ĐłĐŸ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐžĐœŃŃ‚Ń€ŃƒĐŒĐ”ĐœŃ‚ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń‚ ĐČыяĐČĐ»ŃŃ‚ŃŒ ĐżĐ”Ń€ŃĐŸĐœĐ°Đ»ŃŒĐœŃ‹Đ” ĐŽĐ°ĐœĐœŃ‹Đ” ĐœĐ° Ń†ĐžŃ„Ń€ĐŸĐČых ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșох ĐžĐ·ĐŸĐ±Ń€Đ°Đ¶Đ”ĐœĐžŃŃ… с ĐČŃ‹ŃĐŸĐșĐŸĐč Ń‚ĐŸŃ‡ĐœĐŸŃŃ‚ŃŒŃŽ, Ń‡Ń‚ĐŸ уĐșĐ°Đ·Ń‹ĐČаДт ĐœĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃ‚ŃŒ Đ”ĐłĐŸ праĐșтОчДсĐșĐŸĐłĐŸ ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ про ĐżĐŸĐŽĐłĐŸŃ‚ĐŸĐČĐșĐ” ĐœĐ°Đ±ĐŸŃ€ĐŸĐČ ĐŽĐ°ĐœĐœŃ‹Ń…

    Radioactivity control strategy for the JUNO detector

    Get PDF
    602siopenJUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∌1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]openAbusleme A.; Adam T.; Ahmad S.; Ahmed R.; Aiello S.; Akram M.; An F.; An Q.; Andronico G.; Anfimov N.; Antonelli V.; Antoshkina T.; Asavapibhop B.; de Andre J.P.A.M.; Auguste D.; Babic A.; Baldini W.; Barresi A.; Basilico D.; Baussan E.; Bellato M.; Bergnoli A.; Birkenfeld T.; Blin S.; Blum D.; Blyth S.; Bolshakova A.; Bongrand M.; Bordereau C.; Breton D.; Brigatti A.; Brugnera R.; Bruno R.; Budano A.; Buscemi M.; Busto J.; Butorov I.; Cabrera A.; Cai H.; Cai X.; Cai Y.; Cai Z.; Cammi A.; Campeny A.; Cao C.; Cao G.; Cao J.; Caruso R.; Cerna C.; Chang J.; Chang Y.; Chen P.; Chen P.-A.; Chen S.; Chen X.; Chen Y.-W.; Chen Y.; Chen Y.; Chen Z.; Cheng J.; Cheng Y.; Chetverikov A.; Chiesa D.; Chimenti P.; Chukanov A.; Claverie G.; Clementi C.; Clerbaux B.; Conforti Di Lorenzo S.; Corti D.; Cremonesi O.; Dal Corso F.; Dalager O.; De La Taille C.; Deng J.; Deng Z.; Deng Z.; Depnering W.; Diaz M.; Ding X.; Ding Y.; Dirgantara B.; Dmitrievsky S.; Dohnal T.; Dolzhikov D.; Donchenko G.; Dong J.; Doroshkevich E.; Dracos M.; Druillole F.; Du S.; Dusini S.; Dvorak M.; Enqvist T.; Enzmann H.; Fabbri A.; Fajt L.; Fan D.; Fan L.; Fang J.; Fang W.; Fargetta M.; Fedoseev D.; Fekete V.; Feng L.-C.; Feng Q.; Ford R.; Formozov A.; Fournier A.; Gan H.; Gao F.; Garfagnini A.; Giammarchi M.; Giaz A.; Giudice N.; Gonchar M.; Gong G.; Gong H.; Gornushkin Y.; Gottel A.; Grassi M.; Grewing C.; Gromov V.; Gu M.; Gu X.; Gu Y.; Guan M.; Guardone N.; Gul M.; Guo C.; Guo J.; Guo W.; Guo X.; Guo Y.; Hackspacher P.; Hagner C.; Han R.; Han Y.; Hassan M.S.; He M.; He W.; Heinz T.; Hellmuth P.; Heng Y.; Herrera R.; Hor Y.K.; Hou S.; Hsiung Y.; Hu B.-Z.; Hu H.; Hu J.; Hu J.; Hu S.; Hu T.; Hu Z.; Huang C.; Huang G.; Huang H.; Huang W.; Huang X.; Huang X.; Huang Y.; Hui J.; Huo L.; Huo W.; Huss C.; Hussain S.; Ioannisian A.; Isocrate R.; Jelmini B.; Jen K.-L.; Jeria I.; Ji X.; Ji X.; Jia H.; Jia J.; Jian S.; Jiang D.; Jiang X.; Jin R.; Jing X.; Jollet C.; Joutsenvaara J.; Jungthawan S.; Kalousis L.; Kampmann P.; Kang L.; Karaparambil R.; Kazarian N.; Khan W.; Khosonthongkee K.; Korablev D.; Kouzakov K.; Krasnoperov A.; Kruth A.; Kutovskiy N.; Kuusiniemi P.; Lachenmaier T.; Landini C.; Leblanc S.; Lebrin V.; Lefevre F.; Lei R.; Leitner R.; Leung J.; Li D.; Li F.; Li F.; Li H.; Li H.; Li J.; Li M.; Li M.; Li N.; Li N.; Li Q.; Li R.; Li S.; Li T.; Li W.; Li W.; Li X.; Li X.; Li X.; Li Y.; Li Y.; Li Z.; Li Z.; Li Z.; Liang H.; Liang H.; Liao J.; Liebau D.; Limphirat A.; Limpijumnong S.; Lin G.-L.; Lin S.; Lin T.; Ling J.; Lippi I.; Liu F.; Liu H.; Liu H.; Liu H.; Liu H.; Liu H.; Liu J.; Liu J.; Liu M.; Liu Q.; Liu Q.; Liu R.; Liu S.; Liu S.; Liu S.; Liu X.; Liu X.; Liu Y.; Liu Y.; Lokhov A.; Lombardi P.; Lombardo C.; Loo K.; Lu C.; Lu H.; Lu J.; Lu J.; Lu S.; Lu X.; Lubsandorzhiev B.; Lubsandorzhiev S.; Ludhova L.; Luo F.; Luo G.; Luo P.; Luo S.; Luo W.; Lyashuk V.; Ma B.; Ma Q.; Ma S.; Ma X.; Ma X.; Maalmi J.; Malyshkin Y.; Mantovani F.; Manzali F.; Mao X.; Mao Y.; Mari S.M.; Marini F.; Marium S.; Martellini C.; Martin-Chassard G.; Martini A.; Mayer M.; Mayilyan D.; Mednieks I.; Meng Y.; Meregaglia A.; Meroni E.; Meyhofer D.; Mezzetto M.; Miller J.; Miramonti L.; Montini P.; Montuschi M.; Muller A.; Nastasi M.; Naumov D.V.; Naumova E.; Navas-Nicolas D.; Nemchenok I.; Nguyen Thi M.T.; Ning F.; Ning Z.; Nunokawa H.; Oberauer L.; Ochoa-Ricoux J.P.; Olshevskiy A.; Orestano D.; Ortica F.; Othegraven R.; Pan H.-R.; Paoloni A.; Parmeggiano S.; Pei Y.; Pelliccia N.; Peng A.; Peng H.; Perrot F.; Petitjean P.-A.; Petrucci F.; Pilarczyk O.; Pineres Rico L.F.; Popov A.; Poussot P.; Pratumwan W.; Previtali E.; Qi F.; Qi M.; Qian S.; Qian X.; Qian Z.; Qiao H.; Qin Z.; Qiu S.; Rajput M.U.; Ranucci G.; Raper N.; Re A.; Rebber H.; Rebii A.; Ren B.; Ren J.; Ricci B.; Robens M.; Roche M.; Rodphai N.; Romani A.; Roskovec B.; Roth C.; Ruan X.; Ruan X.; Rujirawat S.; Rybnikov A.; Sadovsky A.; Saggese P.; Sanfilippo S.; Sangka A.; Sanguansak N.; Sawangwit U.; Sawatzki J.; Sawy F.; Schever M.; Schwab C.; Schweizer K.; Selyunin A.; Serafini A.; Settanta G.; Settimo M.; Shao Z.; Sharov V.; Shaydurova A.; Shi J.; Shi Y.; Shutov V.; Sidorenkov A.; Simkovic F.; Sirignano C.; Siripak J.; Sisti M.; Slupecki M.; Smirnov M.; Smirnov O.; Sogo-Bezerra T.; Sokolov S.; Songwadhana J.; Soonthornthum B.; Sotnikov A.; Sramek O.; Sreethawong W.; Stahl A.; Stanco L.; Stankevich K.; Stefanik D.; Steiger H.; Steinmann J.; Sterr T.; Stock M.R.; Strati V.; Studenikin A.; Sun S.; Sun X.; Sun Y.; Sun Y.; Suwonjandee N.; Szelezniak M.; Tang J.; Tang Q.; Tang Q.; Tang X.; Tietzsch A.; Tkachev I.; Tmej T.; Treskov K.; Triossi A.; Troni G.; Trzaska W.; Tuve C.; Ushakov N.; van den Boom J.; van Waasen S.; Vanroyen G.; Vassilopoulos N.; Vedin V.; Verde G.; Vialkov M.; Viaud B.; Vollbrecht M.C.; Volpe C.; Vorobel V.; Voronin D.; Votano L.; Walker P.; Wang C.; Wang C.-H.; Wang E.; Wang G.; Wang J.; Wang J.; Wang K.; Wang L.; Wang M.; Wang M.; Wang M.; Wang R.; Wang S.; Wang W.; Wang W.; Wang W.; Wang X.; Wang X.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Y.; Wang Z.; Wang Z.; Wang Z.; Wang Z.; Waqas M.; Watcharangkool A.; Wei L.; Wei W.; Wei W.; Wei Y.; Wen L.; Wiebusch C.; Wong S.C.-F.; Wonsak B.; Wu D.; Wu F.; Wu Q.; Wu Z.; Wurm M.; Wurtz J.; Wysotzki C.; Xi Y.; Xia D.; Xie X.; Xie Y.; Xie Z.; Xing Z.; Xu B.; Xu C.; Xu D.; Xu F.; Xu H.; Xu J.; Xu J.; Xu M.; Xu Y.; Xu Y.; Yan B.; Yan T.; Yan W.; Yan X.; Yan Y.; Yang A.; Yang C.; Yang C.; Yang H.; Yang J.; Yang L.; Yang X.; Yang Y.; Yang Y.; Yao H.; Yasin Z.; Ye J.; Ye M.; Ye Z.; Yegin U.; Yermia F.; Yi P.; Yin N.; Yin X.; You Z.; Yu B.; Yu C.; Yu C.; Yu H.; Yu M.; Yu X.; Yu Z.; Yu Z.; Yuan C.; Yuan Y.; Yuan Z.; Yuan Z.; Yue B.; Zafar N.; Zambanini A.; Zavadskyi V.; Zeng S.; Zeng T.; Zeng Y.; Zhan L.; Zhang A.; Zhang F.; Zhang G.; Zhang H.; Zhang H.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang J.; Zhang P.; Zhang Q.; Zhang S.; Zhang S.; Zhang T.; Zhang X.; Zhang X.; Zhang X.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Y.; Zhang Z.; Zhang Z.; Zhao F.; Zhao J.; Zhao R.; Zhao S.; Zhao T.; Zheng D.; Zheng H.; Zheng M.; Zheng Y.; Zhong W.; Zhou J.; Zhou L.; Zhou N.; Zhou S.; Zhou T.; Zhou X.; Zhu J.; Zhu K.; Zhu K.; Zhu Z.; Zhuang B.; Zhuang H.; Zong L.; Zou J.Abusleme, A.; Adam, T.; Ahmad, S.; Ahmed, R.; Aiello, S.; Akram, M.; An, F.; An, Q.; Andronico, G.; Anfimov, N.; Antonelli, V.; Antoshkina, T.; Asavapibhop, B.; de Andre, J. P. A. M.; Auguste, D.; Babic, A.; Baldini, W.; Barresi, A.; Basilico, D.; Baussan, E.; Bellato, M.; Bergnoli, A.; Birkenfeld, T.; Blin, S.; Blum, D.; Blyth, S.; Bolshakova, A.; Bongrand, M.; Bordereau, C.; Breton, D.; Brigatti, A.; Brugnera, R.; Bruno, R.; Budano, A.; Buscemi, M.; Busto, J.; Butorov, I.; Cabrera, A.; Cai, H.; Cai, X.; Cai, Y.; Cai, Z.; Cammi, A.; Campeny, A.; Cao, C.; Cao, G.; Cao, J.; Caruso, R.; Cerna, C.; Chang, J.; Chang, Y.; Chen, P.; Chen, P. -A.; Chen, S.; Chen, X.; Chen, Y. -W.; Chen, Y.; Chen, Y.; Chen, Z.; Cheng, J.; Cheng, Y.; Chetverikov, A.; Chiesa, D.; Chimenti, P.; Chukanov, A.; Claverie, G.; Clementi, C.; Clerbaux, B.; Conforti Di Lorenzo, S.; Corti, D.; Cremonesi, O.; Dal Corso, F.; Dalager, O.; De La Taille, C.; Deng, J.; Deng, Z.; Deng, Z.; Depnering, W.; Diaz, M.; Ding, X.; Ding, Y.; Dirgantara, B.; Dmitrievsky, S.; Dohnal, T.; Dolzhikov, D.; Donchenko, G.; Dong, J.; Doroshkevich, E.; Dracos, M.; Druillole, F.; Du, S.; Dusini, S.; Dvorak, M.; Enqvist, T.; Enzmann, H.; Fabbri, A.; Fajt, L.; Fan, D.; Fan, L.; Fang, J.; Fang, W.; Fargetta, M.; Fedoseev, D.; Fekete, V.; Feng, L. -C.; Feng, Q.; Ford, R.; Formozov, A.; Fournier, A.; Gan, H.; Gao, F.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Giudice, N.; Gonchar, M.; Gong, G.; Gong, H.; Gornushkin, Y.; Gottel, A.; Grassi, M.; Grewing, C.; Gromov, V.; Gu, M.; Gu, X.; Gu, Y.; Guan, M.; Guardone, N.; Gul, M.; Guo, C.; Guo, J.; Guo, W.; Guo, X.; Guo, Y.; Hackspacher, P.; Hagner, C.; Han, R.; Han, Y.; Hassan, M. S.; He, M.; He, W.; Heinz, T.; Hellmuth, P.; Heng, Y.; Herrera, R.; Hor, Y. K.; Hou, S.; Hsiung, Y.; Hu, B. -Z.; Hu, H.; Hu, J.; Hu, J.; Hu, S.; Hu, T.; Hu, Z.; Huang, C.; Huang, G.; Huang, H.; Huang, W.; Huang, X.; Huang, X.; Huang, Y.; Hui, J.; Huo, L.; Huo, W.; Huss, C.; Hussain, S.; Ioannisian, A.; Isocrate, R.; Jelmini, B.; Jen, K. -L.; Jeria, I.; Ji, X.; Ji, X.; Jia, H.; Jia, J.; Jian, S.; Jiang, D.; Jiang, X.; Jin, R.; Jing, X.; Jollet, C.; Joutsenvaara, J.; Jungthawan, S.; Kalousis, L.; Kampmann, P.; Kang, L.; Karaparambil, R.; Kazarian, N.; Khan, W.; Khosonthongkee, K.; Korablev, D.; Kouzakov, K.; Krasnoperov, A.; Kruth, A.; Kutovskiy, N.; Kuusiniemi, P.; Lachenmaier, T.; Landini, C.; Leblanc, S.; Lebrin, V.; Lefevre, F.; Lei, R.; Leitner, R.; Leung, J.; Li, D.; Li, F.; Li, F.; Li, H.; Li, H.; Li, J.; Li, M.; Li, M.; Li, N.; Li, N.; Li, Q.; Li, R.; Li, S.; Li, T.; Li, W.; Li, W.; Li, X.; Li, X.; Li, X.; Li, Y.; Li, Y.; Li, Z.; Li, Z.; Li, Z.; Liang, H.; Liang, H.; Liao, J.; Liebau, D.; Limphirat, A.; Limpijumnong, S.; Lin, G. -L.; Lin, S.; Lin, T.; Ling, J.; Lippi, I.; Liu, F.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, H.; Liu, J.; Liu, J.; Liu, M.; Liu, Q.; Liu, Q.; Liu, R.; Liu, S.; Liu, S.; Liu, S.; Liu, X.; Liu, X.; Liu, Y.; Liu, Y.; Lokhov, A.; Lombardi, P.; Lombardo, C.; Loo, K.; Lu, C.; Lu, H.; Lu, J.; Lu, J.; Lu, S.; Lu, X.; Lubsandorzhiev, B.; Lubsandorzhiev, S.; Ludhova, L.; Luo, F.; Luo, G.; Luo, P.; Luo, S.; Luo, W.; Lyashuk, V.; Ma, B.; Ma, Q.; Ma, S.; Ma, X.; Ma, X.; Maalmi, J.; Malyshkin, Y.; Mantovani, F.; Manzali, F.; Mao, X.; Mao, Y.; Mari, S. M.; Marini, F.; Marium, S.; Martellini, C.; Martin-Chassard, G.; Martini, A.; Mayer, M.; Mayilyan, D.; Mednieks, I.; Meng, Y.; Meregaglia, A.; Meroni, E.; Meyhofer, D.; Mezzetto, M.; Miller, J.; Miramonti, L.; Montini, P.; Montuschi, M.; Muller, A.; Nastasi, M.; Naumov, D. V.; Naumova, E.; Navas-Nicolas, D.; Nemchenok, I.; Nguyen Thi, M. T.; Ning, F.; Ning, Z.; Nunokawa, H.; Oberauer, L.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orestano, D.; Ortica, F.; Othegraven, R.; Pan, H. -R.; Paoloni, A.; Parmeggiano, S.; Pei, Y.; Pelliccia, N.; Peng, A.; Peng, H.; Perrot, F.; Petitjean, P. -A.; Petrucci, F.; Pilarczyk, O.; Pineres Rico, L. F.; Popov, A.; Poussot, P.; Pratumwan, W.; Previtali, E.; Qi, F.; Qi, M.; Qian, S.; Qian, X.; Qian, Z.; Qiao, H.; Qin, Z.; Qiu, S.; Rajput, M. U.; Ranucci, G.; Raper, N.; Re, A.; Rebber, H.; Rebii, A.; Ren, B.; Ren, J.; Ricci, B.; Robens, M.; Roche, M.; Rodphai, N.; Romani, A.; Roskovec, B.; Roth, C.; Ruan, X.; Ruan, X.; Rujirawat, S.; Rybnikov, A.; Sadovsky, A.; Saggese, P.; Sanfilippo, S.; Sangka, A.; Sanguansak, N.; Sawangwit, U.; Sawatzki, J.; Sawy, F.; Schever, M.; Schwab, C.; Schweizer, K.; Selyunin, A.; Serafini, A.; Settanta, G.; Settimo, M.; Shao, Z.; Sharov, V.; Shaydurova, A.; Shi, J.; Shi, Y.; Shutov, V.; Sidorenkov, A.; Simkovic, F.; Sirignano, C.; Siripak, J.; Sisti, M.; Slupecki, M.; Smirnov, M.; Smirnov, O.; Sogo-Bezerra, T.; Sokolov, S.; Songwadhana, J.; Soonthornthum, B.; Sotnikov, A.; Sramek, O.; Sreethawong, W.; Stahl, A.; Stanco, L.; Stankevich, K.; Stefanik, D.; Steiger, H.; Steinmann, J.; Sterr, T.; Stock, M. R.; Strati, V.; Studenikin, A.; Sun, S.; Sun, X.; Sun, Y.; Sun, Y.; Suwonjandee, N.; Szelezniak, M.; Tang, J.; Tang, Q.; Tang, Q.; Tang, X.; Tietzsch, A.; Tkachev, I.; Tmej, T.; Treskov, K.; Triossi, A.; Troni, G.; Trzaska, W.; Tuve, C.; Ushakov, N.; van den Boom, J.; van Waasen, S.; Vanroyen, G.; Vassilopoulos, N.; Vedin, V.; Verde, G.; Vialkov, M.; Viaud, B.; Vollbrecht, M. C.; Volpe, C.; Vorobel, V.; Voronin, D.; Votano, L.; Walker, P.; Wang, C.; Wang, C. -H.; Wang, E.; Wang, G.; Wang, J.; Wang, J.; Wang, K.; Wang, L.; Wang, M.; Wang, M.; Wang, M.; Wang, R.; Wang, S.; Wang, W.; Wang, W.; Wang, W.; Wang, X.; Wang, X.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Y.; Wang, Z.; Wang, Z.; Wang, Z.; Wang, Z.; Waqas, M.; Watcharangkool, A.; Wei, L.; Wei, W.; Wei, W.; Wei, Y.; Wen, L.; Wiebusch, C.; Wong, S. C. -F.; Wonsak, B.; Wu, D.; Wu, F.; Wu, Q.; Wu, Z.; Wurm, M.; Wurtz, J.; Wysotzki, C.; Xi, Y.; Xia, D.; Xie, X.; Xie, Y.; Xie, Z.; Xing, Z.; Xu, B.; Xu, C.; Xu, D.; Xu, F.; Xu, H.; Xu, J.; Xu, J.; Xu, M.; Xu, Y.; Xu, Y.; Yan, B.; Yan, T.; Yan, W.; Yan, X.; Yan, Y.; Yang, A.; Yang, C.; Yang, C.; Yang, H.; Yang, J.; Yang, L.; Yang, X.; Yang, Y.; Yang, Y.; Yao, H.; Yasin, Z.; Ye, J.; Ye, M.; Ye, Z.; Yegin, U.; Yermia, F.; Yi, P.; Yin, N.; Yin, X.; You, Z.; Yu, B.; Yu, C.; Yu, C.; Yu, H.; Yu, M.; Yu, X.; Yu, Z.; Yu, Z.; Yuan, C.; Yuan, Y.; Yuan, Z.; Yuan, Z.; Yue, B.; Zafar, N.; Zambanini, A.; Zavadskyi, V.; Zeng, S.; Zeng, T.; Zeng, Y.; Zhan, L.; Zhang, A.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, J.; Zhang, P.; Zhang, Q.; Zhang, S.; Zhang, S.; Zhang, T.; Zhang, X.; Zhang, X.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Zhang, Z.; Zhang, Z.; Zhao, F.; Zhao, J.; Zhao, R.; Zhao, S.; Zhao, T.; Zheng, D.; Zheng, H.; Zheng, M.; Zheng, Y.; Zhong, W.; Zhou, J.; Zhou, L.; Zhou, N.; Zhou, S.; Zhou, T.; Zhou, X.; Zhu, J.; Zhu, K.; Zhu, K.; Zhu, Z.; Zhuang, B.; Zhuang, H.; Zong, L.; Zou, J

    The Confidence Database

    Get PDF
    Understanding how people rate their confidence is critical for the characterization of a wide range of perceptual, memory, motor and cognitive processes. To enable the continued exploration of these processes, we created a large database of confidence studies spanning a broad set of paradigms, participant populations and fields of study. The data from each study are structured in a common, easy-to-use format that can be easily imported and analysed using multiple software packages. Each dataset is accompanied by an explanation regarding the nature of the collected data. At the time of publication, the Confidence Database (which is available at https://osf.io/s46pr/) contained 145 datasets with data from more than 8,700 participants and almost 4 million trials. The database will remain open for new submissions indefinitely and is expected to continue to grow. Here we show the usefulness of this large collection of datasets in four different analyses that provide precise estimations of several foundational confidence-related effects
    • 

    corecore