7 research outputs found

    Sc and neutron-capture abundances in Galactic low- and high-α field halo stars

    Get PDF
    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with −1.5 < [Fe/H] < −0.8. We also measure the iron-peak element Sc. These stars separate into three populations (low- and high-α halo and thick-disc stars) based on the [α/Fe] abundance ratio and their kinematics as discovered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundance ratios of [Sc/Fe], [Zr/Fe], [La/Zr], [Y/Eu] and [Ba/Eu] when including Y and Ba from Nissen & Schuster. For all ratios except [La/Zr], the low-α stars have a lower abundance compared to the high-α stars. The low-α stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-α stars. These distinct chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-α population. By comparing the low-α population with AGB stellar models, we place constraints on the mass range of the AGB stars

    Chemical abundances in bright giants of the globular cluster M62 (NGC 6266)

    Get PDF
    With the exception of Terzan 5, all the Galactic globular clusters that possess significant metallicity spreads, such as omega Cen and M22, are preferentially the more luminous clusters with extended horizontal branches. Here we present radial velocities and chemical abundances for seven bright giants in the globular cluster M62, a previously little-studied cluster. With M_V = -9.18, M62 is the ninth most luminous Galactic globular cluster and has an extended horizontal branch. Within our sample, we find (i) no evidence for a dispersion in metallicity, [Fe/H], beyond the measurement uncertainties, (ii) star-to-star abundance variations for C, O, Na and Al with the usual correlations between these elements as seen in other globular clusters, and (iii) a global enrichment for the elements Zr, Ba and La at the level [X/Fe] = +0.4 dex. For elements heavier than La, the abundance ratios are consistent with the scaled-solar rr-process distribution. Below La, the abundances are anomalous when compared to the scaled-solar s-process or r-process distributions. For these elements, the abundance signature in M62 is in agreement with predictions of the s-process from fast-rotating massive stars, although the high [Rb/Y] ratio we measure may be a challenge to this scenario.Comment: Accepted for publication in MNRA

    The architecture of Abell 1386 and its relationship to the Sloan Great Wall

    Full text link
    We present new radial velocities from AAOmega on the Anglo-Australian Telescope for 307 galaxies (b_J < 19.5) in the region of the rich cluster Abell 1386. Consistent with other studies of galaxy clusters that constitute sub-units of superstructures, we find that the velocity distribution of A1386 is very broad (21,000--42,000 kms^-1, or z=0.08--0.14) and complex. The mean redshift of the cluster that Abell designated as number 1386 is found to be ~0.104. However, we find that it consists of various superpositions of line-of-sight components. We investigate the reality of each component by testing for substructure and searching for giant elliptical galaxies in each and show that A1386 is made up of at least four significant clusters or groups along the line of sight whose global parameters we detail. Peculiar velocities of brightest galaxies for each of the groups are computed and found to be different from previous works, largely due to the complexity of the sky area and the depth of analysis performed in the present work. We also analyse A1386 in the context of its parent superclusters: Leo A, and especially the Sloan Great Wall. Although the new clusters may be moving toward mass concentrations in the Sloan Great Wall or beyond, many are most likely not yet physically bound to it.Comment: 21 pages, 9 figures, includes the full appendix table. Accepted for publication in MNRA
    corecore