19 research outputs found

    A nexus of intrinsic dynamics underlies translocase priming

    Get PDF
    The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.</p

    Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism

    Get PDF
    Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly “catch and release” trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted

    Preprotein mature domains contain translocase targeting signals that are essential for secretion

    Get PDF
    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion

    The LifeCycle Project-EU Child Cohort Network : a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF
    Early life is an important window of opportunity to improve health across the full lifecycle. An accumulating body of evidence suggests that exposure to adverse stressors during early life leads to developmental adaptations, which subsequently affect disease risk in later life. Also, geographical, socio-economic, and ethnic differences are related to health inequalities from early life onwards. To address these important public health challenges, many European pregnancy and childhood cohorts have been established over the last 30 years. The enormous wealth of data of these cohorts has led to important new biological insights and important impact for health from early life onwards. The impact of these cohorts and their data could be further increased by combining data from different cohorts. Combining data will lead to the possibility of identifying smaller effect estimates, and the opportunity to better identify risk groups and risk factors leading to disease across the lifecycle across countries. Also, it enables research on better causal understanding and modelling of life course health trajectories. The EU Child Cohort Network, established by the Horizon2020-funded LifeCycle Project, brings together nineteen pregnancy and childhood cohorts, together including more than 250,000 children and their parents. A large set of variables has been harmonised and standardized across these cohorts. The harmonized data are kept within each institution and can be accessed by external researchers through a shared federated data analysis platform using the R-based platform DataSHIELD, which takes relevant national and international data regulations into account. The EU Child Cohort Network has an open character. All protocols for data harmonization and setting up the data analysis platform are available online. The EU Child Cohort Network creates great opportunities for researchers to use data from different cohorts, during and beyond the LifeCycle Project duration. It also provides a novel model for collaborative research in large research infrastructures with individual-level data. The LifeCycle Project will translate results from research using the EU Child Cohort Network into recommendations for targeted prevention strategies to improve health trajectories for current and future generations by optimizing their earliest phases of life.Peer reviewe

    A nexus of intrinsic dynamics underlies translocase priming

    Get PDF
    The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.</p

    Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome

    No full text
    Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.status: publishe

    Maternal diet, prenatal exposure to dioxin-like compounds and birth outcomes in a European prospective mother-child study (NewGeneris)

    No full text
    Maternal diet can result in exposure to environmental contaminants including dioxins which may influence foetal growth. We investigated the association between maternal diet and birth outcomes by defining a dioxin-rich diet. We used validated food frequency questionnaires to assess the diet of pregnant women from Greece, Spain, United Kingdom, Denmark and Norway and estimated plasma dioxin-like activity by the Dioxin-Responsive Chemically Activated LUciferase eXpression (DR-CALUX?) bioassay in 604 maternal blood samples collected at delivery. We applied reduced rank regression to identify a dioxin-rich dietary pattern based on dioxin-like activity (DR-CALUX?) levels in maternal plasma, and calculated a dioxin-diet score as an estimate of adherence to this dietary pattern. In the five country population, dioxin-diet score was characterised by high consumption of red and white meat, lean and fatty fish, low-fat dairy and low consumption of salty snacks and high-fat cheese, during pregnancy. The upper tertile of the dioxin-diet score was associated with a change in birth weight of -121g (95% confidence intervals: -232, -10g) compared to the lower tertile after adjustment for confounders. A small non-significant reduction in gestational age was also observed (-1.4days, 95% CI: -3.8, 1.0days). Our results suggest that maternal diet might contribute to the exposure of the foetus to dioxins and dioxin-like compounds and may be related to reduced birth weight. More studies are needed to develop updated dietary guidelines for women of reproductive age, aiming to the reduction of dietary exposure to persistent organic pollutants as dioxins and dioxin-like compounds

    Maternal diet, prenatal exposure to dioxin-like compounds and birth outcomes in a European prospective mother-child study (NewGeneris)

    No full text
    Maternal diet can result in exposure to environmental contaminants including dioxins which may influence foetal growth. We investigated the association between maternal diet and birth outcomes by defining a dioxin-rich diet. We used validated food frequency questionnaires to assess the diet of pregnant women from Greece, Spain, United Kingdom, Denmark and Norway and estimated plasma dioxin-like activity by the Dioxin-Responsive Chemically Activated LUciferase eXpression (DR-CALUX (R)) bioassay in 604 maternal blood samples collected at delivery. We applied reduced rank regression to identify a dioxin-rich dietary pattern based on dioxin-like activity (DR-CALUX (R)) levels in maternal plasma, and calculated a dioxin-diet score as an estimate of adherence to this dietary pattern. In the five country population, dioxin-diet score was characterised by high consumption of red and white meat, lean and fatty fish, low-fat dairy and low consumption of salty snacks and high-fat cheese, during pregnancy. The upper tertile of the dioxin-diet score was associated with a change in birth weight of -121 g (95% confidence intervals: -232, -10 g) compared to the lower tertile after adjustment for con-founders. A small non-significant reduction in gestational age was also observed (-1.4 days, 95% CI: -3.8, 1.0 days). Our results suggest that maternal diet might contribute to the exposure of the foetus to dioxins and dioxin-like compounds and may be related to reduced birth weight. More studies are needed to develop updated dietary guidelines for women of reproductive age, aiming to the reduction of dietary exposure to persistent organic pollutants as dioxins and dioxin-like compounds. (C) 2014 Elsevier B.V. All rights reserved

    Abstract 1263: Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90

    No full text
    Abstract Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1263. doi:1538-7445.AM2012-126
    corecore