295 research outputs found
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Thermal correction to the Casimir force, radiative heat transfer, and an experiment
The low-temperature asymptotic expressions for the Casimir interaction
between two real metals described by Leontovich surface impedance are obtained
in the framework of thermal quantum field theory. It is shown that the Casimir
entropy computed using the impedance of infrared optics vanishes in the limit
of zero temperature. By contrast, the Casimir entropy computed using the
impedance of the Drude model attains at zero temperature a positive value which
depends on the parameters of a system, i.e., the Nernst heat theorem is
violated. Thus, the impedance of infrared optics withstands the thermodynamic
test, whereas the impedance of the Drude model does not. We also perform a
phenomenological analysis of the thermal Casimir force and of the radiative
heat transfer through a vacuum gap between real metal plates. The
characterization of a metal by means of the Leontovich impedance of the Drude
model is shown to be inconsistent with experiment at separations of a few
hundred nanometers. A modification of the impedance of infrared optics is
suggested taking into account relaxation processes. The power of radiative heat
transfer predicted from this impedance is several times less than previous
predictions due to different contributions from the transverse electric
evanescent waves. The physical meaning of low frequencies in the Lifshitz
formula is discussed. It is concluded that new measurements of radiative heat
transfer are required to find out the adequate description of a metal in the
theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.
Mass Splitting and Production of and Measured in N Interactions
From a sample of decaying to the
final state, we have observed, in the hadroproduction experiment E791 at
Fermilab, and through
their decays to . The mass difference ) is measured to be ; for
, we find .
The rate of production from decays of the triplet is
(22\pm 2\pm 3) {%} of the total production assuming equal rate
of production from all three, as measured for and .
We do not observe a statistically significant baryon-antibaryon
production asymmetry. The and spectra of from
decays are observed to be similar to those for all 's
produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed
fil
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites
Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels
Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference
Globally, the number of patients undergoing maintenance dialysis is increasing, yet throughout the world there is significant variability in the practice of initiating dialysis. Factors such as availability of resources, reasons for starting dialysis, timing of dialysis initiation, patient education and preparedness, dialysis modality and access, as well as varied \u201ccountry-specific\u201d factors significantly affect patient experiences and outcomes. As the burden of end-stage kidney disease (ESKD) has increased globally, there has also been a growing recognition of the importance of patient involvement in determining the goals of care and decisions regarding treatment. In January 2018, KDIGO (Kidney Disease: Improving Global Outcomes) convened a Controversies Conference focused on dialysis initiation, including modality choice, access, and prescription. Here we present a summary of the conference discussions, including identified knowledge gaps, areas of controversy, and priorities for research. A major novel theme represented during the conference was the need to move away from a \u201cone-size-fits-all\u201d approach to dialysis and provide more individualized care that incorporates patient goals and preferences while still maintaining best practices for quality and safety. Identifying and including patient-centered goals that can be validated as quality indicators in the context of diverse health care systems to achieve equity of outcomes will require alignment of goals and incentives between patients, providers, regulators, and payers that will vary across health care jurisdictions
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
Search for electroweak production of single top quarks in collisions.
We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv
Helicity of the W Boson in Lepton+Jets ttbar Events
We examine properties of ttbar candidates events in lepton+jets final states
to establish the helicities of the W bosons in t->W+b decays. Our analysis is
based on a direct calculation of a probability that each event corresponds to a
ttbar final state, as a function of the helicity of the W boson. We use the 125
events/pb sample of data collected by the DO experiment during Run I of the
Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal
helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction
of F_0=0.70 from the standard model
Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV
Using the D0 detector, we have studied events produced in proton-antiproton
collisions that contain large forward regions with very little energy
deposition (``rapidity gaps'') and concurrent jet production at center-of-mass
energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet
events associated with such rapidity gaps are measured and compared to
predictions from Monte Carlo models. For hard diffractive candidate events, we
use the calorimeter to extract the fractional momentum loss of the scattered
protons.Comment: 11 pages 4 figures. submitted to PR
- …