1,278 research outputs found

    The Higher Derivative Expansion of the Effective Action by the String-Inspired Method, Part I

    Full text link
    The higher derivative expansion of the one-loop effective action for an external scalar potential is calculated to order O(T**7), using the string-inspired Bern-Kosower method in the first quantized path integral formulation. Comparisons are made with standard heat kernel calculations and with the corresponding Feynman diagrammatic calculation in order to show the efficiency of the present method.Comment: 13 pages, Plain TEX, 1 figure may be obtained from the authors, HD-THEP-93-4

    Optimization of anti-wear and anti-bacterial properties of beta TiNb alloy via controlling duty cycle in open-air laser nitriding

    Get PDF
    A multifunctional beta TiNb surface, featuring wear-resistant and antibacterial properties, was successfully created by means of open-air fibre laser nitriding. Beta TiNb alloy was selected in this study as it has low Young’s modulus, is highly biocompatible, and thus can be a promising prosthetic joint material. It is, however, necessary to overcome intrinsically weak mechanical properties and poor wear resistance of beta TiNb in order to cover the range of applications to loadbearing and/or shearing parts. To this end, open-air laser nitriding technique was employed. A control of single processing parameter, namely duty cycle (between 5% and 100%), led to substantially different structural and functional properties of the processed beta TiNb surfaces as analyzed by an array of analytical tools. The TiNb samples nitrided at the DC condition of 60% showed a most enhanced performance in terms of improving surface hardness, anti-friction, antiwear and anti-bacterial properties in comparison with other conditions. These findings are expected to be highly important and useful when TiNb alloys are considered as materials for hip/knee articular joint implant

    Fibre laser treatment of martensitic NiTi alloys for load-bearing implant applications: Effects of surface chemistry on inhibiting Staphylococcus aureus biofilm formation

    Get PDF
    Biofilm infection is one of the main reasons for implant failure. It is extremely difficult to cure due to its high resistance to antibiotic treatments, and can result in substantial healthcare costs. In this study, the important shape memory NiTi alloy, in its martensitic state, was laser-treated using our newly-developed surface modification technique, aiming to tackle the biofilm infection problem. Martensitic NiTi was chosen for investigation because of its potential advantages in terms of (i) lower elastic modulus and (ii) higher damping capacity over its austenitic counterpart, giving rise to a lower risk of stress shielding and maximum stress between bones and load-bearing implants. The surfaces after laser treatment were systemically analysed using a series of surface measurement (i.e. surface roughness and water contact angle) and material characterisation (i.e. SEM-EDX, XRD and XPS) techniques. The antibacterial performance of the laser-treated surfaces was evaluated using the Staphylococcus aureus (or S. aureus) cells in-vitro cultured at 37 oC for 24h. Fluorescence microscopy accompanied by Live/Dead staining was employed to analyse the cell culture results. The surfaces in their as-received states and after polishing were also tested and compared with the laser-treated surfaces in order to gain a deeper insight in how different surface conditions would influence biofilm formation. Our results indicate that the surfaces after laser treatment can mitigate bacterial attachment and biofilm formation effectively. The antibacterial performance was mainly attributable to the laser-formed oxides which brought desirable changes to the surface chemistry of NiTi. The laser-induced changes in surface roughness and topography, on a micrometre scale, only played a minor role in influencing bacterial attachment. The findings of this study demonstrated for the first time that martensitic NiTi with laser treatment could be a promising choice for the next-generation implants given its superior antimicrobial resistance and favourable mechanical properties for loading bearing applications

    Mast Cell-Mediated Inhibition of Abdominal Neutrophil Inflammation by a PEGylated TLR7 Ligand

    Get PDF
    Although the mechanisms for sustained chemokine gradients and recurring cell infiltration in sterile peritonitis have not been elucidated, toll-like receptors (TLRs) have been implicated. To abate the deleterious recruitment of neutrophils in sterile inflammation, we repeatedly administered a TLR7 ligand that hyposensitized to TLR7 and receptors that converged on the MyD88-signaling intermediary and reduced cellular infiltration in murine autoimmune models of multiple sclerosis and arthritis. To reduce potential adverse effects, a polyethylene glycol polymer was covalently attached to the parent compound (Tolerimod1). The proinflammatory potency of Tolerimod1 was 10-fold less than the unconjugated TLR7 ligand, and Tolerimod1 reduced neutrophil recruitment in chemically induced peritonitis and colitis. The effects of Tolerimod1 were mediated by the radioresistant cells in radiation chimeric mice and by mast cells in reconstituted mast cell-deficient mice (KitW-sh). Although the Tolerimod1 had weak proinflammatory agonist activity, it effectively reduced neutrophil recruitment in sterile peritoneal inflammation

    On the design and implementation of FIR and IIR digital filters with variable frequency characteristics

    Get PDF
    This paper studies the design and implementation of finite-impulse response (FIR) and infinite-impulse response (IIR) variable digital filters (VDFs), whose frequency characteristics can be controlled continuously by some control or tuning parameters. A least squares (LS) approach is proposed for the design of FIR VDFs by expressing the impulse response of the filter as a linear combination of basis functions. It is shown that the optimal LS solution can be obtained by solving a system of linear equations. By choosing the basis functions as piecewise polynomials, VDFs with larger tuning range than that of ordinary polynomial based approach results. The proposed VDF can be efficiently implemented using the familiar Farrow structure. Making use of the FIR VDF so obtained, an Eigensystem Realization Algorithm (ERA)-based model reduction technique is proposed to approximate the FIR VDF by a stable IIR VDF with lower system order. The advantages of the model reduction approach are: 1) it is computational simple which only requires the computation of the singular value decomposition of a Hankel matrix; 2) the IIR VDF obtained is guaranteed to be stable; and 3) the frequency response such as the phase response of the FIR prototype is well preserved. Apart from the above advantages, the proposed IIR VDF does not suffer from undesirable transient response during parameter tuning found in other approaches based on direct tuning of filter parameters. For frequency selective VDFs, about 40% of the multiplications can be saved using the IIR VDFs. The implementation of the proposed FIR VDF using sum-of-powers-of-two (SOPOT) coefficient and the multiplier block (MB) technique are also studied. Results show that about two-third of the additions in implementing the multiplication of the SOPOT coefficients can be saved using the multiplier block, which leads to significant savings in hardware complexity.link_to_subscribed_fulltex

    The Higher Derivative Expansion of the Effective Action by the String Inspired Method. Part II

    Full text link
    We apply the string inspired worldline formalism to the calculation of the higher derivative expansion of one-loop effective actions in non-Abelian gauge theory. For this purpose, we have completely computerized the method, using the symbolic manipulation programs FORM, PERL and M. Explicit results are given to sixth order in the inverse mass expansion, reduced to a minimal basis of invariants specifically adapted to the method. Detailed comparisons are made with other gauge-invariant algorithms for calculating the same expansion. This includes an explicit check of all coefficients up to fifth order.Comment: 37 pages, LaTeX, 3 figures, typos corrected, to appear in Ann. Phys. (N.Y.

    IL-15 trans-presentation promotes human NK cell development and differentiation in vivo

    Get PDF
    The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self–major histocompatability complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2−/−γc−/− mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor α (IL-15Rα) significantly augmented human NK cells. IL-15–IL-15Rα complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16+KIR+ NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56hiCD16−KIR− to CD56loCD16+KIR−, and finally to CD56loCD16+KIR+. These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15–responsive cells during immunotherapy strategies

    Researching the comparability of paper-based and computer-based delivery in a high-stakes writing test

    Get PDF
    International language testing bodies are now moving rapidly towards using computers for many areas of English language assessment, despite the fact that research on comparability with paper-based assessment is still relatively limited in key areas. This study contributes to the debate by researching the comparability of a highstakes EAP writing test (IELTS) in two delivery modes, paper-based (PB) and computer-based (CB). The study investigated 153 test takers' performances and their cognitive processes on IELTS Academic Writing Task 2 in the two modes, and the possible effect of computer familiarity on their test scores. Many-Facet Rasch Measurement (MFRM) was used to examine the difference in test takers' scores between the two modes, in relation to their overall and analytic scores. By means of questionnaires and interviews, we investigated the cognitive processes students employed under the two conditions of the test. A major contribution of our study is its use - for the first time in the computer-based writing assessment literature - of data from research into cognitive processes within realworld academic settings as a comparison with cognitive processing during academic writing under test conditions. In summary, this study offers important new insights into academic writing assessment in computer mode

    EphA2 is a functional receptor for the growth factor progranulin.

    Get PDF
    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases
    corecore