120 research outputs found

    p53 Mutation in Squamous Cell Carcinomas from Psoriasis Patients Treated with Psoralen + UVA (PUVA)

    Get PDF
    Individuals suffering from psoriasis are treated with a combination of psoralen and UVA radiation, commonly referred to as "PUVA" therapy. Epidemiologic studies have shown that PUVA therapy is a risk factor for skin cancer in psoriasis patients. Although PUVA treatment induces skin cancer in laboratory animals, it is unknown whether the increased incidence of skin cancer reported in PUVA-treated psoriasis patients is due to the carcinogenic effects of PUVA or due to other factors such as UVB. Because CV and PUVA induce different types of DNA damage resulting in unique types of p53 mutation, we investigated whether skin cancers from PUVA-treated psoriasis patients have PUVA-type or UV-type p53 mutations. Analysis of 17 squamous cell carcinomas (SCCs) from Austrian PUVA-treated patients revealed a total of 25 p53 mutations in 11 SCCs. A majority of p53 mutations occurred at 5'TpG sites. Although previous studies have shown that 5'TpA sites are the primary targets for PUVA mutagenesis, substitutions at 5'TpG sites are also quite common. Interestingly, a sizable portion of p53 mutations detected were C→T or CC→TT transitions, characteristic of UV-induced mutations. Because some psoriasis patients had substantial exposure to UVB before PUVA therapy and because the light sources used in PUVA therapy contained small but significant wave-lengths in the UVB region, it is possible that the C→T and CC→TT transitions detected in SCCs from PUVA-treated patients were induced by UVB. Nonetheless, our results indicate that both PUVA and UVB may play a role in the development of skin cancer in Austrian psoriasis patients who undergo PUVA therapy

    De novo appearance of multiple chemical sensitivity syndrome in a patient affected with lateral meningocele syndrome: unlucky coincidence?

    Get PDF
    Although the coexistence of rare pathologies in the same patient is considered an exceptional event, the possibility to contend with a condition such like this may occur in clinical practice. In these cases, a multidisciplinary approach is required in order to find the most appropriate therapeutic strategy. Here we describe the clinical case of a 61 years old female affected with a rare genetic pathology known as lateral meningocele syndrome (LMS) who developed a pathological condition that could be framed in the context of a multiple chemical sensitivity syndrome (MCSS) characterized by intolerance to several drugs, foods as well as environmental and chemical agents

    E-cadherin expression and blunted interferon response in blastic plasmacytoid dendritic cell neoplasm

    Get PDF
    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive neoplasm derived from plasmacytoid dendritic cells (pDCs). In this study, we investigated by immunohistochemical analysis the expression of E-cadherin (EC) on pDCs in reactive lymph nodes and tonsils, bone marrow, and in BPDCN. We compared the expression of EC in BPDCN to that in leukemia cutis (LC) and cutaneous lupus erythematosus (CLE), the latter typically featuring pDC activation. In BPDCN, we also assessed the immunomodulatory activity of malignant pDCs through the expression of several type I interferon (IFN-I) signaling effectors and downstream targets, PD-L1/CD274, and determined the extent of tumor infiltration by CD8-expressing T cells. In reactive lymph nodes and tonsils, pDCs expressed EC, whereas no reactivity was observed in bone marrow pDCs. BPDCN showed EC expression in the malignant pDCs in the vast majority of cutaneous (31/33 cases, 94%), nodal, and spleen localizations (3/3 cases, 100%), whereas it was more variable in the bone marrow (5/13, 38,5%), where tumor cells expressed EC similarly to the skin counterpart in 4 cases and differently in other 4. Notably, EC was undetectable in LC (n=30) and in juxta-epidermal pDCs in CLE (n=31). Contrary to CLE showing robust expression of IFN-I-induced proteins MX1 and ISG5 in 20/23 cases (87%), and STAT1 phosphorylation, BPDCN biopsies showed inconsistent levels of these proteins in most cases (85%). Expression of IFN-I-induced genes, IFI27, IFIT1, ISG15, RSAD2, and SIGLEC1, was also significantly (P\u3c0.05) lower in BPDCN as compared with CLE. In BPDCN, a significantly blunted IFN-I response correlated with a poor CD8+T-cell infiltration and the lack of PD-L1/CD274 expression by the tumor cells. This study identifies EC as a novel pDC marker of diagnostic relevance in BPDCN. The results propose a scenario whereby malignant pDCs through EC-driven signaling promote the blunting of IFN-I signaling and, thereby, the establishment of a poorly immunogenic tumor microenvironment

    Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas

    Get PDF
    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55e90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients.This work was supported by grants from Instituto de Salud-Carlos III (ISCIII); cofinanced by the European Union; (FEDER) (PI12/00357), and a Ramón and Cajal research program (MINECO; RYC-2013-14097) to JPV, Asociación Española Contra el Cáncer and ISCIII grants (RD06/0020/0107, RD012/0036/0060) to MAP, and Coordinated Project of Excellence inter-Institutos de investigación acreditados institutes (ISCIII; PIE15/00081) to MAP. The Ramón and Cajal research program also supports IV. SD was supported by the Torres Quevedo subprogram (MICINN; PTQ-12-05391)

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe
    corecore