Abstract

Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55e90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients.This work was supported by grants from Instituto de Salud-Carlos III (ISCIII); cofinanced by the European Union; (FEDER) (PI12/00357), and a Ramón and Cajal research program (MINECO; RYC-2013-14097) to JPV, Asociación Española Contra el Cáncer and ISCIII grants (RD06/0020/0107, RD012/0036/0060) to MAP, and Coordinated Project of Excellence inter-Institutos de investigación acreditados institutes (ISCIII; PIE15/00081) to MAP. The Ramón and Cajal research program also supports IV. SD was supported by the Torres Quevedo subprogram (MICINN; PTQ-12-05391)

    Similar works