4,508 research outputs found

    Performance Studies of Prototype II for the CASTOR forward Calorimeter at the CMS Experiment

    Get PDF
    We present results of the performance of the second prototype of the CASTOR quartz-tungsten sampling calorimeter, to be installed in the very forward region of the CMS experiment at the LHC. The energy linearity and resolution, as well as the spatial resolution of the prototype to electromagnetic and hadronic showers are studied with E=20-200 GeV electrons, E=20-350 GeV pions, and E=50,150 GeV muons from beam tests carried out at CERN/SPS in 2004. The responses of the calorimeter using two different types of photodetectors (avalanche photodiodes APDs, and photomultiplier tubes PMTs) are compared.Comment: 16 pages, 22 figs., submitted to EPJ-

    FACET : a new long-lived particle detector in the very forward region of the CMS experiment

    Get PDF
    We describe a proposal to add a set of very forward detectors to the CMS experiment for the high-luminosity era of the Large Hadron Collider to search for beyond the standard model long-lived particles, such as dark photons, heavy neutral leptons, axion-like particles, and dark Higgs bosons. The proposed subsystem is called FACET for Forward-Aperture CMS ExTension, and will be sensitive to any particles that can penetrate at least 50 m of magnetized iron and decay in an 18 m long, 1 m diameter vacuum pipe. The decay products will be measured in detectors using identical technology to the planned CMS Phase-2 upgrade.Peer reviewe

    Yang-Mills Theory In Axial Gauge

    Get PDF
    The Yang-Mills functional integral is studied in an axial variant of 't Hooft's maximal Abelian gauge. In this gauge Gau\ss ' law can be completely resolved resulting in a description in terms of unconstrained variables. Compared to previous work along this line starting with work of Goldstone and Jackiw one ends up here with half as many integration variables, besides a field living in the Cartan subgroup of the gauge group and in D-1 dimension. The latter is of particular relevance for the infrared behaviour of the theory. Keeping only this variable we calculate the Wilson loop and find an area law.Comment: 43 pages REVTeX, 6 figure

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Full text link
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu
    corecore