48 research outputs found

    Prognostic and Predictive Cross-Roads of Microsatellite Instability and Immune Response to Colon Cancer

    Get PDF
    Understanding molecular features of colon cancer has shed light on its pathogenesis and progression. Over time, some of these features acquired clinical dignity and were incorporated in decision making. Namely, microsatellite instability (MSI) due to mismatch repair of defects, which primarily was adopted for the diagnosis of Lynch syndrome, became recognized as the biomarker of a different disease type, showing a less aggressive behavior. MSI tumors harbor high amounts of tumor infiltrating lymphocytes (TILs) due to their peculiar load in neoantigens. However, microsatellite stable colon cancer may also show high amounts of TILs, and this feature is as well associated with better outcomes. High TIL loads are in general associated with a favorable prognosis, especially in stage II colon cancer, and therein identifies a patient subset with the lowest probability of relapse. With respect to post-surgical adjuvant treatment, particularly in stage III, TILs predictive ability seems to weaken along with the progression of the disease, being less evident in high risk patients. Moving from cohort studies to the analysis of a series from clinical trials contributed to increase the robustness of TILs as a biomarker. The employment of high TIL densities as an indicator of good prognosis in early-stage colon cancers is strongly advisable, while in late-stage colon cancers the employment as an indicator of good responsiveness to post-surgical therapy requires refinement. It remains to be clarified whether TILs could help in identifying those patients with node-positive cancers to whom adjuvant treatment could be spared, at least in low-risk groups as defined by the TNM staging system

    Freezing of gait in Parkinson’s disease patients treated with bilateral subthalamic nucleus deep brain stimulation: A long-term overview

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson’s Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (>/=5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and reevaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the preoperative off-medication assessment (z = -1.930; p = 0.05) but not in the on-stimulation/off-medication (z = -0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = -2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG

    Freezing of Gait in Parkinson's Disease Patients Treated with Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Long-Term Overview

    Get PDF
    Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment in advanced Parkinson's Disease (PD). However, the effects of STN-DBS on freezing of gait (FOG) are still debated, particularly in the long-term follow-up (≥5-years). The main aim of the current study is to evaluate the long-term effects of STN-DBS on FOG. Twenty STN-DBS treated PD patients were included. Each patient was assessed before surgery through a detailed neurological evaluation, including FOG score, and revaluated in the long-term (median follow-up: 5-years) in different stimulation and drug conditions. In the long term follow-up, FOG score significantly worsened in the off-stimulation/off-medication condition compared with the pre-operative off-medication assessment (z = -1.930; p = 0.05) but not in the on-stimulation/off-medication (z = -0.357; p = 0.721). There was also a significant improvement of FOG at long-term assessment by comparing on-stimulation/off-medication and off-stimulation/off-medication conditions (z = -2.944; p = 0.003). These results highlight the possible beneficial long-term effects of STN-DBS on FOG

    Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center?

    Get PDF
    BACKGROUND: As yet, no population-based prospective studies have been conducted to investigate the incidence and clinical outcome of glioblastoma (GBM) or the diffusion and impact of the current standard therapeutic approach in newly diagnosed patients younger than aged 70 years. METHODS: Data on all new cases of primary brain tumors observed from January 1, 2009, to December 31, 2010, in adults residing within the Emilia-Romagna region were recorded in a prospective registry in the Project of Emilia Romagna on Neuro-Oncology (PERNO). Based on the data from this registry, a prospective evaluation was made of the treatment efficacy and outcome in GBM patients. RESULTS: Two hundred sixty-seven GBM patients (median age, 64 y; range, 29-84 y) were enrolled. The median overall survival (OS) was 10.7 months (95% CI, 9.2-12.4). The 139 patients 64aged 70 years who were given standard temozolomide treatment concomitant with and adjuvant to radiotherapy had a median OS of 16.4 months (95% CI, 14.0-18.5). With multivariate analysis, OS correlated significantly with KPS (HR = 0.458; 95% CI, 0.248-0.847; P = .0127), MGMT methylation status (HR = 0.612; 95% CI, 0.388-0.966; P = .0350), and treatment received in a high versus low-volume center (HR = 0.56; 95% CI, 0.328-0.986; P = .0446). CONCLUSIONS: The median OS following standard temozolomide treatment concurrent with and adjuvant to radiotherapy given to (72.8% of) patients aged 6470 years is consistent with findings reported from randomized phase III trials. The volume and expertise of the treatment center should be further investigated as a prognostic factor

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning
    corecore