519 research outputs found

    On the very long term evolutionary behavior of hydrogen-accreting Low-Mass CO white dwarfs

    Get PDF
    Hydrogen-rich matter has been added to a CO white dwarf of initial mass 0.516 \msun at the rates 10810^{-8} and 2×1082\times 10^{-8} \msun \yrm1, and results are compared with those for a white dwarf of the same initial mass which accretes pure helium at the same rates. For the chosen accretion rates, hydrogen burns in a series of recurrent mild flashes and the ashes of hydrogen burning build up a helium layer at the base of which a He flash eventually occurs. In previous studies involving accretion at higher rates and including initially more massive WDs, the diffusion of energy inward from the H shell-flashing region contributes to the increase in the temperature at the base of the helium layer, and the mass of the helium layer when the He flash begins is significantly smaller than in a comparison model accreting pure helium; the He shell flash is not strong enough to develop into a supernova explosion. In contrast, for the conditions adopted here, the temperature at the base of the He layer becomes gradually independent of the deposition of energy by H shell flashes, and the mass of the He layer when the He flash occurs is a function only of the accretion rate, independent of the hydrogen content of the accreted matter. When the He flash takes place, due to the high degeneracy at the base of the He layer, temperatures in the flashing zone will rise without a corresponding increase in pressure, nuclear burning will continue until nuclear statistical equilibrium is achieved; the model will become a supernova, but not of the classical type Ia variety.Comment: 14 pages and 3 Postscript figures, Accepted for publication on ApJ Letter

    On the mass of supernova progenitors: the role of the 12^{12}C+12+^{12}C reaction

    Full text link
    A precise knowledge of the masses of supernova progenitors is essential to answer various questions of modern astrophysics, such as those related to the dynamical and chemical evolution of Galaxies. In this paper we revise the upper bound for the mass of the progenitors of CO white dwarfs (\mup) and the lower bound for the mass of the progenitors of normal type II supernovae (\mups). In particular, we present new stellar models with mass between 7 and 10 \msun, discussing their final destiny and the impact of recent improvements in our understanding of the low energy rate of the \c12c12 reaction.Comment: To be published on the proceedings of NIC 201

    Low and intermediate-mass close binary evolution and the initial - final mass relation

    Full text link
    Using Eggleton's stellar evolution code, we carry out 150 runs of Pop I binary evolution calculations, with the initial primary mass between 1 and 8 solar masses the initial mass ratio between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle, or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass of the primary, the initial mass ratio, and the radius of the primary at the onset of RLOF. We also find that a carbon-oxygen white dwarf with mass as low as 0.33 solar masses may be formed if the primary's initial mass is around 2.5 solar masses.Comment: 7 pages for main text, 11 pages for appendix (table A1), 12 figure

    Nucleosynthesis in Type II Supernovae

    Get PDF
    Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 MM_\odot to 70 MM_\odot are calculated. We examine the dependence of the supernova yields on the stellar mass, ^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear Physics A, Vol. A616 (1997

    Resonances and the thermonuclear reaction rate

    Full text link
    We present an approximate analytic expression for thermonuclear reaction rate of charged particles when the cross section contains a single narrow or wide resonance described by a Breit-Wigner shape. The resulting expression is uniformly valid as the effective energy and resonance energy coalesce. We use our expressions to calculate the reaction rate for 12^{12}C(p,γ\gamma)13^{13}N.Comment: 4 pages, 1 figure, presented at the VIII International Conference on Nucleus-Nucleus in Moscow (Russia) on June 17-21, 200

    Pulsating young brown dwarfs

    Full text link
    We present the results of a nonadiabatic, linear stability analysis of models of very low-mass stars (VLMSs) and brown dwarfs (BDs) during the deuterium burning phase in the center. We find unstable fundamental modes with periods varying between ~5 hr for a 0.1 Msun star and ~1 hr for a 0.02 Msun BD. The growth time of the instability decreases with decreasing mass and remains well below the deuterium burning time scale in the mass range considered (0.1--0.02 Msun). These results are robust against variations of the relevant input physics in the evolutionary models. We identify possible candidates for pulsational variability among known VLMSs and BDs in nearby star forming regions whose location in the HR diagram falls within or close to the boundary of the instability strip. Finally, we discuss the possibility that the variability observed in a few objects with periods of ~1 hr can be interpreted in terms of pulsation.Comment: 5 pages, 3 figures, A&A Letters (in press

    The Faint Cepheids of the Small Magellanic Cloud: an evolutionary selection effect?

    Full text link
    Two problems about the faintest Small Magellanic Cloud (SMC) Cepheids are addressed. On one hand evolutionary tracks fail to cross the Cepheid Instability Strip for the highest magnitudes (i.e. I-mag~17) where Cepheids are observed; Mass-Luminosity relations (ML) obtained from evolutionary tracks disagree with Mass-Luminosity relations derived from observations. We find that the above failures concern models built with standard input physics as well as with non-standard ones. The present work suggests that towards highest magnitudes, Cepheids stars undergo a selection effect caused by evolution: only the most metal poor stars cross the Instability Strip during the ``blue loop'' phase and are therefore the only ones which can be observed at low luminosity. This solution enables us to reproduce the shape of the lower part of the Instability Strip and improves the agreement between observed and theoretical ML-relations. Some issues are discussed, among them Beat Cepheids results argue strongly in favor of our hypothesis.Comment: 13 pages, 8 figure

    The surface carbon and nitrogen abundances in models of ultra metal-poor stars

    Full text link
    We investigate whether the observed high number of carbon- and nitrogen-enhanced extremely metal-poor stars could be explained by peculiar evolutionary properties during the core He flash at the tip of the red giant branch. For this purpose we compute a series of detailed stellar models expanding upon our previous work; in particular, we investigate if during the major He flash the penetration of the helium convective zone into the overlying hydrogen-rich layers can produce carbon- and nitrogen-rich abundances in agreement with current spectroscopic observations. The dependence of this phenomenon on selected model input parameters, such as initial metallicity and treatment of convection is examined in detail.Comment: 8 pages, 4 figures, submitted to A&
    corecore