The Structure of 1 -tert-butyl-2,2,3,4,4-pentamethylphosphetane 1-oxide, $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OP}$

J. A. Campbell

Montana State University - Bozeman
C. N. Caughlan

Montana State University - Bozeman
A. Fitzgerald

Saint Martin's College
C. Campana

Nicolet Analytical Instruments
Sheldon E. Cremer
Marquette University, sheldon.cremer@marquette.edu

Published version. Acta Crystallographica Section C, C40 (1984)" 1918-1920. DOI. © 1984 International Union of Crystallography. Used with permission.

The Structure of 1-tert-Butyl-2,2,3,4,4-pentamethylphosphetane 1-Oxide, $\mathrm{C}_{12} \mathbf{H}_{\mathbf{2 5}} \mathbf{O P}$

By J. A. Campbell* \dagger and C. N. Caughlan
Department of Chemistry, Montana State University, Bozeman, Montana 59717, USA
A. Fitzgerald
Department of Chemistry, Saint Martin's College, Lacey, Washington 98503, USA
C. Campana
Nicolet Analytical Instruments, Madison, Wisconsin 53711, USA
and S. E. Cremer
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA

(Received 16 March 1984; accepted 6 July 1984)

Abstract. $\quad M_{r}=216 \cdot 30$, monoclinic, $P 2 / m, \quad a=$ $6 \cdot 137(2), \quad b=12 \cdot 181(4), \quad c=9.005(3) \AA, \quad \beta=$ 96.24 (3) ${ }^{\circ}, \quad V=669.2$ (9) $\AA^{3}, Z=2, D_{m}=1.06, D_{x}$ $=1.07 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71069 \AA, \mu=1.73 \mathrm{~cm}^{-1}$, $F(000)=240, \quad T=295 \mathrm{~K}, \quad R=0.052, \quad R_{w}=0.051$, 1138 observed reflections. The single methyl group on $\mathrm{C}(3)$ is trans to the tert-butyl group on P . The four-membered ring is puckered with an angle of

[^0]0108-2701/84/111918-03\$01.50
$19.2(4)^{\circ}$, and the direction of ring puckering is such that the diaxial cross-ring interactions $\left(\mathrm{CH}_{3}\right.$ and O$)$ between the substituents on P and $\mathrm{C}(3)$ are minimized.

Introduction. The structural analysis of 1-tert-butyl-2,2,3,4,4-pentamethylphosphetane 1-oxide (TPPO) was undertaken to confirm the stereochemistry, the direction and amount of puckering in the fourmembered ring, and to compare the results with predictions based on previous results of similar compounds. The title compound was prepared by previously published methods (Gray \& Cremer, 1972).

Experimental. D_{m} by flotation in ethanol and methyl iodide mixture, colorless crystals of TPPO suitable for X-ray analysis obtained by recrystallization from cyclohexane. Crystal size $0.4 \times 0.1 \times 0.2 \mathrm{~mm}$. Nicolet $R 3 m$ diffractometer, graphite monochromator (Campana, 1981), accurate unit-cell parameters from leastsquares refinement of 25 reflections (θ range $10-15^{\circ}$), two standard reflections (040 and 200) measured every $120 \mathrm{~min}, 4 \%$ variation. Range of $h k l: 0 \leq h \leq 8$, $0 \leq k \leq 16, \quad-12 \leq l \leq 12 . \quad 1845$ data measured ($3 \leq 2 \theta \leq 55^{\circ}$), 1138 with $I \geq 3 \sigma(I)$; corrections for Lorentz and polarization effects (absorption and time decay ignored). Trial structure by direct methods and refined by full-matrix least-squares procedures, function minimized $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=1 /\left[\sigma^{2}(F)+\right.$ $G(F)^{2}$] and $G=0.001$; non-hydrogen atoms anisotropic, H atoms located in ΔF map and idealized coordinates calculated and not refined, isotropic thermal parameters for H assigned as $1.2 \times$ value for C to which they are attached, $R=0.052$ and $R_{w}=0.051$, scattering factors for $\mathrm{P}, \mathrm{O}, \mathrm{C}$ and H from International Tables for X-ray Crystallography (1962), $S=1 \cdot 27$. In final cycle $(\Delta / \sigma)_{\max }=0.006$; final difference map showed no peaks or depressions larger than $0.2 \mathrm{e}^{-3}$. Calculations carried out with SHELXTL package on Nicolet $R 3 m$ crystallographic system (Sheldrick, 1980).*

Discussion. The atomic fractional coordinates with their standard deviations and $U_{\text {eq }}$ values (Hamilton, 1959) are given in Table 1. The structure and numbering scheme of the title compound are shown in Fig. 1. Table 2 is a listing of selected interatomic distances and angles with their standard deviations.

The single methyl group on $\mathrm{C}(3)$ is trans to the tert-butyl group on phosphorus. The mirror plane passes through the P and O atoms as well as C atoms $1,2,3$ and 8.

All phosphetane ring structures studied to date exhibit puckering of the four-membered ring. The amount of puckering in the four-membered ring is the angle between the planes defined by $\mathrm{C}(4)-\mathrm{P}-\mathrm{C}\left(4^{i}\right)$ and

[^1]$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(4^{1}\right)$. The amount of puckering in TPPO is 19.2°. Qualitatively, the amount of puckering has been related to the number of substituent interactions (Fitzgerald, Campbell, Smith, Caughlan \& Cremer, 1978). An interaction is considered to exist between substituents that are attached to adjacent ring atoms

Table 1. Final atomic coordinates for non-hydrogen atoms with e.s.d.'s in parentheses and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$

	x	y	z	U_{eq}^{*}
	$0.14872(16)$	0.25000	$1.15899(11)$	$4.40(3)$
P	$0.2071(6)$	0.2500	$0.9623(4)$	$4.95(12)$
$\mathrm{C}(1)$	$0.0920(4)$	0.2500	$1.1621(3)$	$7.28(12)$
$\mathrm{O}(1)$	$-4.980(8)$	0.2500	$0.9371(6)$	$6.82(19)$
$\mathrm{C}(2)$	0.4480			
$\mathrm{C}(3)$	$0.4541(6)$	0.2500	$1.3442(4)$	$4.92(12)$
$\mathrm{C}(4)$	$0.3087(4)$	$0.1518(2)$	$1.2834(3)$	$5.26(9)$
$\mathrm{C}(5)$	$0.4391(6)$	$0.0581(3)$	$1.2235(4)$	$7.79(13)$
$\mathrm{C}(6)$	$0.0942(6)$	$0.1487(3)$	$0.9908(4)$	$8.11(14)$
$\mathrm{C}(7)$	$0.1589(6)$	$0.1051(4)$	$1.3931(4)$	$8.85(15)$
$\mathrm{C}(8)$	$0.5367(11)$	0.2500	$1.5090(6)$	$8.37(24)$

* U_{eq} is defined as one third of the orthogonalized $U_{i j}$ tensor.

Table 2. Selected bond angles $\left(^{\circ}\right.$) and bond distances (\AA) with e.s.d.'s in parentheses

P-C(1)	$1.845(4)$	$\mathrm{C}(4)-\mathrm{P}-\mathrm{C}\left(4^{\prime}\right)$	$80.7(2)$
$\mathrm{P}-\mathrm{O}(1)$	$1.480(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(4^{\prime}\right)$	$100.5(3)$
$\mathrm{P}-\mathrm{C}(4)$	$1.846(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{P}$	$87.8(2)$
		$\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(1)$	$108.5(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.520(6)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(4)$	$115.9(1)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.523(4)$	$\mathrm{C}(4)-\mathrm{P}-\mathrm{O}(1)$	$117.0(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.556(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$110.0(2)$
		$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{P}$	$115.9(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.518(7)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{P}$	$106.2(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.531(5)$	$\mathrm{P}-\mathrm{C}(4)-\mathrm{C}(5)$	$108.4(2)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.526(5)$	$\mathrm{P}-\mathrm{C}(4)-\mathrm{C}(7)$	$122.3(2)$
		$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.8(2)$
		$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$113.4(2)$
		$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$117.6(2)$
		$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}\left(6^{2}\right)$	$108.2(3)$
		$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(7)$	$109.0(3)$

Fig. 1. The structure and numbering scheme for TPPO. Nonhydrogen atoms are represented as thermal ellipsoids scaled to enclose 50% probability. The hydrogen atoms are represented as spheres with $0.15 \AA$ radius in this illustration.
and cis to one another with respect to the phosphetane ring system. The $\mathrm{C}(5)-\mathrm{C}(8)$ distance in TPPO is $3.010(6) \AA$, which is substantially less than a $3.4 \AA$ distance based on van der Waals radii (Bondi, 1964). The $\mathrm{C}(5)-\mathrm{O}(1)$ distance is $3.019(5) \AA$, which is also less than the sum of van der Waals radii (Bondi, 1964). Fitzgerald et al. (1978) found the amount of puckering to be in the range $19 \cdot 6-24^{\circ}$ for similar compounds with two methyl-methyl interactions. The amount of puckering in TPPO is very close to this range and may, in fact, represent a lower limit for compounds with two cis methyl-methyl interactions.

With respect to puckering direction or conformation preferences for TPPO, the following conformers may be considered.

(1A)

(18)

TPPO exists in form (1A), and the C(8)-O distance of 4.69 (6) \AA agrees well with similar compounds in which there is a single methyl group trans to a substituent on P (Fitzgerald et al., 1978) and with distances measured from the molecular model of ($1 A$).

We thank G. D. Smith and K. Emerson for many helpful discussions and assistance.

References

Bondl, A. (1964). J. Phys. Chem. 68, 441-448.
Campana, C. F. (1981). Editor. Nicolet P3/R3 Data Collection Manual. Nicolet XRD Corp., Cupertino, CA.
Fitzgerald, A., Campbell, J. A., Smith, G. D., Caughlan, C. N. \& Cremer, S. E. (1978). J. Org. Chem. 43, 3513-3517.

Gray, G. A. \& Cremer, S. E. (1972). J. Org. Chem. 37, 3458-3469.
Hamilton, W. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography' (1962). Vol. III, 2nd ed. Birmingham: Kynoch Press.
Sheldrick, G. M. (1980). Editor. Nicolet SHELXTL Structure Determination Manual. Nicolet XRD Corp., Cupertino, CA.

[^0]: * Address all correspondence to this author.
 \dagger Present address: Dow Chemical Company, Analytical Laboratory, 574 Building, Midland, MI 48640, USA.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39629 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

