81 research outputs found

    A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects.</p> <p>Methods</p> <p>Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0.</p> <p>Results</p> <p>In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients.</p> <p>Conclusions</p> <p>This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials.</p

    Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis

    Get PDF
    RATIONALE: Many studies have reported deficits of mismatch negativity (MMN) in schizophrenic patients. Pharmacological challenges with hallucinogens in healthy humans are used as models for psychotic states. Previous studies reported a significant reduction of MMN after ketamine (N-methyl-D-aspartate acid [NMDA] antagonist model) but not after psilocybin (5HT2A agonist model). OBJECTIVES: The aim of the present study was to directly compare the two models of psychosis using an intraindividual crossover design. MATERIALS AND METHODS: Fifteen healthy subjects participated in a randomized, double-blind, crossover study with a low and a high dose of the 5HT2A agonist dimethyltryptamine (DMT) and the NMDA antagonist S-ketamine. During electroencephalographic recording, the subjects were performing the AX-version of a continuous performance test (AX-CPT). A source analysis of MMN was performed on the basis of a four-source model of MMN generation. RESULTS: Nine subjects completed both experimental days with the two doses of both drugs. Overall, we found blunted MMN and performance deficits in the AX-CPT after both drugs. However, the reduction in MMN activity was overall more pronounced after S-ketamine intake, and only S-ketamine had a significant impact on the frontal source of MMN. CONCLUSIONS: The NDMA antagonist model and the 5HT2A agonist model of psychosis display distinct neurocognitive profiles. These findings are in line with the view of the two classes of hallucinogens modeling different aspects of psychosis

    Differentiation of Schizophrenia Patients from Healthy Subjects by Mismatch Negativity and Neuropsychological Tests

    Get PDF
    BACKGROUND: Schizophrenia is a heterogeneous disorder with diverse presentations. The current and the proposed DSM-V diagnostic system remains phenomenologically based, despite the fact that several neurobiological and neuropsychological markers have been identified. A multivariate approach has better diagnostic utility than a single marker method. In this study, the mismatch negativity (MMN) deficit of schizophrenia was first replicated in a Han Chinese population, and then the MMN was combined with several neuropsychological measurements to differentiate schizophrenia patients from healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS: 120 schizophrenia patients and 76 healthy controls were recruited. Each subject received examinations for duration MMN, Continuous Performance Test, Wisconsin Card Sorting Test, and Wechsler Adult Intelligence Scale Third Edition (WAIS-III). The MMN was compared between cases and controls, and important covariates were investigated. Schizophrenia patients had significantly reduced MMN amplitudes, and MMN decreased with increasing age in both patient and control groups. None of the neuropsychological indices correlated with MMN. Predictive multivariate logistic regression models using the MMN and neuropsychological measurements as predictors were developed. Four predictors, including MMN at electrode FCz and three scores from the WAIS-III (Arithmetic, Block Design, and Performance IQ) were retained in the final predictive model. The model performed well in differentiating patients from healthy subjects (percentage of concordant pairs: 90.5%). CONCLUSIONS/SIGNIFICANCE: MMN deficits were found in Han Chinese schizophrenia patients. The multivariate approach combining biomarkers from different modalities such as electrophysiology and neuropsychology had a better diagnostic utility

    A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework.

    Get PDF
    BACKGROUND: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). RESULTS: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. CONCLUSIONS: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    Get PDF
    Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders

    Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the ZNF804A Pathway

    Get PDF
    Importance: We investigated the variation in neuropsychological function explained by risk alleles at the psychosis susceptibility gene ZNF804A and its interacting partners using single nucleotide polymorphisms (SNPs), polygenic scores, and epistatic analyses. Of particular importance was the relative contribution of the polygenic score vs epistasis in variation explained. Objectives To (1) assess the association between SNPs in ZNF804A and the ZNF804A polygenic score with measures of cognition in cases with psychosis and (2) assess whether epistasis within the ZNF804A pathway could explain additional variation above and beyond that explained by the polygenic score. Design, Setting, and Participants: Patients with psychosis (n = 424) were assessed in areas of cognitive ability impaired in schizophrenia including IQ, memory, attention, and social cognition. We used the Psychiatric GWAS Consortium 1 schizophrenia genome-wide association study to calculate a polygenic score based on identified risk variants within this genetic pathway. Cognitive measures significantly associated with the polygenic score were tested for an epistatic component using a training set (n = 170), which was used to develop linear regression models containing the polygenic score and 2-SNP interactions. The best-fitting models were tested for replication in 2 independent test sets of cases: (1) 170 individuals with schizophrenia or schizoaffective disorder and (2) 84 patients with broad psychosis (including bipolar disorder, major depressive disorder, and other psychosis). Main Outcomes and Measures: Participants completed a neuropsychological assessment battery designed to target the cognitive deficits of schizophrenia including general cognitive function, episodic memory, working memory, attentional control, and social cognition. Results: Higher polygenic scores were associated with poorer performance among patients on IQ, memory, and social cognition, explaining 1% to 3% of variation on these scores (range, P = .01 to .03). Using a narrow psychosis training set and independent test sets of narrow phenotype psychosis (schizophrenia and schizoaffective disorder), broad psychosis, and control participants (n = 89), the addition of 2 interaction terms containing 2 SNPs each increased the R2 for spatial working memory strategy in the independent psychosis test sets from 1.2% using the polygenic score only to 4.8% (P = .11 and .001, respectively) but did not explain additional variation in control participants. Conclusions and Relevance: These data support a role for the ZNF804A pathway in IQ, memory, and social cognition in cases. Furthermore, we showed that epistasis increases the variation explained above the contribution of the polygenic score

    The uses of Chrysomya megacephala (Fabricius, 1794)(Diptera: Calliphoridae) in forensic entomology:

    Get PDF
    Chrysomya megacephala (Fabricius, 1794) occurs on every continent and is closely associated with carrion and decaying material in human environments. Its abilities to find dead bodies and carry pathogens give it a prominence in human affairs that may involve prosecution or litigation, and therefore forensic entomologists. The identification, geographical distribution and biology of the species are reviewed to provide a background for approaches that four branches of forensic entomology (urban, stored-product, medico-criminal and environmental) might take to investigations involving this fly

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Previous studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health
    corecore