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Figure 

 

Figure S1. Summary of data after quality control.  

A) Age at first birth. B) Year of birth. C) Age at interview. D) Education level: Based on 

Guggenheim et al.1, the original 7-grouped education levels were categorized as 4 levels, i.e. (1) 

None, (2) O-levels or CSEs, (3) A-levels, NVQ, HND, HNC or other professional qualification 

and (4) College or University degree, E) Income: The averaged total household income before 

tax, categorized as 5 levels, i.e. (1) less than £18,000, (2) from £18,000 to £30,999, (3) from 

£31,000 to £51,999, (4) from £52,000 to £100,000 and (5) greater than £100,000. 
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Figure S2. MAF of SNPs in UK Biobank and SCZ sample after quality control. 

The number of SNPs was 518,992.  
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Figure S3. The off-diagonal entries of genomic relationship matrix based on the quality controlled 

UK Biobank and SCZ sample. 
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Figure S4. Means and standard errors of schizophrenia PRS-score (top panel) and PRS-scorePGC 

(bottom panel) in the UK Biobank sample grouped by age at first birth.  

PRS-scores were estimated from the GWAS summary statistics that were performed based on 

the current QCed genotype data of SCZ sample. PRS-scorePGC were estimated from the 

publicly available GWAS summary statistics from the full PGC SCZ GWAS2. 
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Figure S5. -log(P) values under the null hypothesis of R2 = 0 based on a linear model using different 

samples.  

Full range of AFB: All available samples with a record of age at first birth were used. AFB < 26 

(≥26): Analyses were only focused on samples with AFB < 26 (≥26). Base Model: The AFB 

phenotypes were adjusted for age at interview, year of birth, assessment center at which the 

participant consented, genotype batch, and the first 20 principal components. Base Model + SES: 

The AFB phenotypes were adjusted for socioeconomic status (i.e. education and income level), 

in addition to the factors adjusted in the base model. Base Model + SES + smoking + alcohol: 

The AFB phenotypes were also adjusted for smoking and alcohol drinking status in addition to 

the Base model + SES. PRS-GBLUP: Schizophrenia (SCZ) polygenic risk scores estimated from 

genomic best linear unbiased prediction were used as an explanatory variable in the model. PRS-

score: SCZ polygenic risk scores estimated from GWAS based on the available individual 

genotype data were used as an explanatory variable in the model. PRS-scorePGC: SCZ 

polygenic risk scores estimated from the publicly available summary statistics of the full PGC 

SCZ GWAS were used as an explanatory variable in the model. Response variables were 

generated with a polynomial function derived by Mehta et al.3, which describes the relationship 

between SCZ risk in offspring and maternal age (z = 2.7214 - 0.1105X+0.0018X2, where X is 

age at first birth), and used in the model.  
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Figure S6. Means and 95% confidence intervals of genetic correlation in simulated data.  

The dark green dots (N=52) are estimated genetic correlations that are significantly different 

from 1 in 1000 replicates.  
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Figure S7. Means and 95% confidence intervals of genetic correlation in simulated data.  

The dark green dots (N=50, 45 and 32 for the upper, middle and lower panel) are estimated 

genetic correlations that are significantly different from 0 (for the upper and middle panel) or 1 

(for the bottom panel). Each panel shows results from 1000 replicates.  
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Figure S8. Genetic correlation (left) and heritability (right) of SCZ risk, age at first birth < 26, and 

age at first birth ≥ 26 based on different models.   

Base Model: The AFB phenotypes were adjusted for age at interview, year of birth, assessment 

center at which the participant consented, genotype batch, and the first 20 principal components. 

Base Model + SES: The AFB phenotypes were adjusted for socioeconomic status (i.e. education 

and income level), in addition to the factors adjusted in the base model. Base Model + SES + 

smoking + alcohol: The AFB phenotypes were also adjusted for smoking and alcohol drinking 

status in addition to the Base model + SES. Cor(AFB<26, AFB ≥26): Estimated genetic 

correlation between the groups with AFB < 26 and with AFB ≥ 26. Cor(SCZ, AFB≥26): 

Estimated genetic correlation between SCZ and AFB in the older AFB group. Cor(SCZ, 

AFB<26): Estimated genetic correlation between SCZ and AFB in the younger AFB group. In 

the top panel, sample sizes were 41630, 16838, and 15,010 for SCZ, younger and older AFB 

group, respectively. In the bottom panel, samples sizes were 41,630, 16,789, and 14,988 for 

SCZ, younger and older AFB group, respectively. 
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Figure S9. Genetic correlation estimated with LDSC from different scenarios based on simulated 

phenotype. 

‘Without constraining intercept’: the intercept in LDSC was estimated from the data. 

‘Constraining intercept’: the intercept was constrained as 0, assuming there is no overlapping 

samples in two data sets. Eur: the LD scores were estimated from European samples in 1000 

Genome. Own: the LD scores were estimated from the available individual-level genotype data. 

The percentage of overlapping individuals was labeled as 0, 10 or 20 after ‘eur’ or ‘own’ symbol 

(e.g. eur_0 or own_0). The detailed simulation process is in Supplemental Note 3. The simulated 

true genetic correlation was 0.6. The method was considered as unbiased if the estimated genetic 

correlation was not significantly different from 0.6.   
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Table  

Table S1. Number of individuals of the SCZ sample used in the current studya 

Cohort Case Control N Cohort Case Control N 

ajsz 77 138 215 lacw 153 264 417 

asrb 438 284 722 lemu 106 114 220 

buls 188 597 785 lie2 122 251 373 

butr 588 574 1162 lie5 460 354 814 

cims 62 52 114 mgs2 2506 2575 5081 

clm2 3330 4033 7363 msaf 151 73 224 

clo3 2067 873 2940 pewb 549 1804 2353 

cou3 522 539 1061 pews 148 229 377 

denm 462 449 911 swe5 1586 2380 3966 

dubl 250 801 1051 swe6 742 972 1714 

edin 358 277 635 top8 376 397 773 

egcu 171 857 1028 ucla 668 594 1262 

ersw 233 294 527 uktr 25 30 55 

gras 998 1129 2127 umeb 232 400 632 

irwt 1279 986 2265 umes 111 353 464 

Total 18,957 22,673 41,630 
aNot all of the cohorts from the PGC2 SCZ sample were publicly available and we had access to 

39 out of 52 cohorts only. Out of 39 cohorts, eight cohorts were excluded because the number of 

SNPs passing the QC process was too small and one cohort was excluded because essential 

covariate information was not available.  
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Table S2. Mean and standard error of schizophrenia polygenic risk scores in the UK Biobank 

sample grouped by age at first birth 

    < 20 20 to <25 25 to <30 30 to <35 ≥35  

PRS-GBLUPa 
Estimate 0.051 0.010 -0.027 0.002 0.029 

SE 0.016 0.009 0.008 0.014 0.027 

PRS-scoreb 
Estimate 0.068 0.007 -0.027 -0.001 0.017 

SE 0.016 0.009 0.008 0.014 0.027 

PRS-scorePGCc 
Estimate 0.067 0.013 -0.036 0.009 0.017 

SE 0.016 0.009 0.008 0.014 0.028 
aPolygenic risk scores calculated using GBLUP. 
bPolygenic risk scores calculated using GWAS summary statistics from the SCZ GWAS data. 
cPolygenic risk scores calculated using GWAS summary statistics from the full SCZ GWAS 

study. 
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Table S3. P-value of testing significant difference of PRS-GBLUP (lower triangle) and PRS-score 

(upper triangle) between AFB groups   

 < 20 20 to <25 25 to <30 30 to <35 ≥35 

<20 1 6.42E-04 6.68E-08 1.01E-03 1.04E-01 

20 to <25 2.2E-02 1 3.86E-03 6.15E-01 7.37E-01 

25 to <30 1.2E-05 2.0E-03 1 1.09E-01 1.23E-01 

30 to <35 2.0E-02 6.3E-01 7.6E-02 1 5.60E-01 

≥35 4.9E-01 4.9E-01 4.8E-02 3.7E-01 1 

PRS-GBLUP: schizophrenia (SCZ) polygenic risk scores estimated from genomic best linear 

unbiased prediction were used as an explanatory variable in the model. PRS-score: SCZ 

polygenic risk scores estimated from genome-wide association study based on the available 

individual genotype data were used as an explanatory variable in the model. Response variables 

were generated with a polynomial function derived by Mehta et al.3, which describes the 

relationship between SCZ risk in offspring and maternal age (z = 2.7214 - 0.1105X+0.0018X2, 

where X is age at first birth), and used in the model. 
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Table S4. P-value of testing significant difference of PRS-scorePGCa between AFB groups  

   <20 20 to <25 25 to <30 30 to <35 ≥35  

<20 1     

20 to <25 2.56E-03 1    

25 to <30 6.44E-09 4.07E-05 1   

30 to <35 5.13E-03 7.76E-01 6.10E-03 1  
≥35 1.15E-01 9.12E-01 7.47E-02 8.01E-01 1 

aPRS-scorePGC: SCZ polygenic risk scores estimated from publicly available summary statistics 

results of the full PGC SCZ GWAS study with 33,640 cases and 43,456 controls were used as an 

explanatory variable in the model. Response variables were generated with a polynomial 

function derived by Mehta et al.3, which describes the relationship between SCZ risk in offspring 

and maternal age (z = 2.7214 - 0.1105X+0.0018X2, where X is age at first birth), and used in the 

model. 
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Table S5. Coefficients of determination (R2), P values and number of individuals used in different linear models based on different 

samples  
   PRS-GBLUP PRS-scorea PRS-scorePGCb 

  #individuals R2 P Value R2 P Value R2 P Value 

Full range 

of AFB 

Base modelc 38892 4.96E-04 1.12E-05 6.67E-04 3.53E-07 5.49E-04 3.80E-06 

Base model + SES 31848 4.11E-04 2.98E-04 6.04E-04 1.15E-05 6.13E-04 9.92E-06 

Base model + SES + smoking + alcohol 31777 2.72E-04 3.26E-03 4.51E-04 1.53E-04 4.68E-04 1.15E-04 

<26 

Base model 21294 9.83E-04 4.71E-06 1.38E-03 6.06E-08 1.04E-03 2.46E-06 

Base model + SES 16838 8.43E-04 1.64E-04 1.27E-03 3.88E-06 1.12E-03 1.38E-05 

Base model + SES + smoking + alcohol 16789 6.27E-04 1.17E-03 9.87E-04 4.68E-05 8.70E-04 1.32E-04 

>=26 

Base model 17598 9.79E-08 9.67E-01 5.42E-06 7.58E-01 1.26E-05 6.37E-01 

Base model + SES 15010 2.17E-06 8.57E-01 3.97E-05 4.40E-01 6.70E-05 3.16E-01 

Base model + SES + smoking + alcohol 14988 2.27E-06 8.54E-01 4.16E-05 4.30E-01 7.19E-05 2.99E-01 
aEstimated from GWAS based on the available genotype data. 
bEstimated form the full PGC SCZ GWAS study with 33,640 cases and 43,456 controls, which are publicly available 

(https://www.med.unc.edu/pgc/). 

 cThe AFB phenotypes were adjusted for age at interview, year of birth, assessment center at which participant consented, genotype 

batch, and the first 20 principal components. 

  



16 

 

Table S6. Coefficients of determination (R2), P values and number of individuals used in different linear models based on samples with 

age at interview older than 45 
  R2 P Value #individuals 

PRS-GBLUP 

Base modela 4.57E-04 5.65E-05 35451 

Base model + SES 3.63E-04 1.25E-03 28712 

Base model + SES+ smoking + alcohol 2.33E-04 9.75E-03 28643 

PRS-scoreb 

Base model 6.15E-04 3.03E-06 35451 

Base model + SES 5.08E-04 1.34E-04 28712 

Base model + SES+ smoking + alcohol 3.71E-04 1.12E-03 28643 

PRS-scorePGCc 

Base model 5.06E-04 2.28E-05 35451 

Base model + SES 5.28E-04 9.92E-05 28712 

Base model + SES + smoking + alcohol 4.09E-04 6.22E-04 28643 
aThe AFB phenotypes were adjusted for age at interview, year of birth, assessment center at which the participant consented, genotype 

batch, and the first 20 principal components. 
bEstimated from GWAS based on the available genotype data. 
cEstimated from the full SCZ GWAS study with 33,640 cases and 43,456 controls, which are publicly available 

(https://www.med.unc.edu/pgc/). 

  

https://www.med.unc.edu/pgc/
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Table S7. Coefficients of determination (R2), P values and number of individuals used in different linear models based on samples born 

before or after the year 1945 

    Born after 1945   Born before 1945 (including 1945) 

    R2 P Value #individuals   R2 P Value #individuals 

Full range 

of AFB  

Base model 5.84E-04 6.40E-05 27365   2.95E-04 6.52E-02 11527 

Base model + SES 4.47E-04 1.26E-03 23278   1.97E-04 1.94E-01 8570 

Base model + SES + smoking + alcohol 2.88E-04 9.65E-03 23223   1.36E-04 2.80E-01 8554 

AFB < 26 

  

Base model 1.31E-03 1.95E-05 13872   5.18E-04 4.99E-02 7422 

Base model + SES 9.22E-04 1.18E-03 11418   6.11E-04 6.88E-02 5420 

Base model + SES+ smoking + alcohol 6.97E-04 4.87E-03 11379   4.60E-04 1.15E-01 5410 

AFB ≥ 26 

  

Base model 9.32E-06 7.23E-01 13493   1.47E-04 4.38E-01 4105 

Base model + SES 3.09E-06 8.48E-01 11860   2.82E-04 3.46E-01 3150 

Base model + SES + smoking + alcohol 4.66E-06 8.14E-01 11844   3.74E-04 2.78E-01 3144 
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Table S8. P-value testing if the genetic correlation between younger and older AFB is significantly different from 1, or that between AFB 

and SCZ is significantly different from 0 
 Cor (AFB<26, AFB≥26)a Cor (SCZ, AFB≥26)b Cor (SCZ, AFB<26)b #individuals 

Base Model 3.45E-03 1.02E-01 2.22E-04 38892 

Base model + SES 7.52E-03 4.04E-01 3.40E-03 31848 

Base model + SES + smoking + alcohol 3.12E-02 2.22E-01 1.64E-02 31777 
aTesting if genetic correlation is significantly different from 1. 
bTesting if genetic correlation is significantly different from 0. 
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Table S9. Genetic correlation between younger, older AFB and SCZ estimated from LDSC and GREML  
  Cor(AFB<26,AFB≥26) Cor(SCZ,AFB<26) Cor(SCZ,AFB≥26) 

Data Method Estimate SE Estimate SE Estimate SE 

 

QCed GWAS data 

(18,957 SCZ cases, 

22,673 SCZ controls, 

57,428 UK Biobank) 

1000 Genomea, no constrainb 0.674 0.3122 -0.2252 0.0878 -0.0039 0.1262 

1000 Genome, constrainc 0.5106 0.2066 -0.1516 0.0431 0.1236 0.0833 

Sampled, no constrain 0.372 0.2724 -0.1552 0.0768 -0.0007 0.1231 

Sample, constrain 0.4915 0.2025 -0.1546 0.0422 0.1202 0.0793 

 

Full GWAS summary results 

(33,640 SCZ cases, 

43,456 SCZ controls, 

57,428 UK Biobank) 

1000 Genome, no constrain - - -0.1235 0.0738 0.1471 0.112 

 

QCed GWAS data 

 

GREML 0.4743 0.1946 -0.1599 0.0433 0.1368 0.0837 

aLD score were pre-computed LD Scores which were estimated based on European-ancestry individuals in 1000 Genome 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2).  
bThe LD Score regression intercept was estimated from data. 
cThe LD Score regression intercept was constrained as 0.  
dUse current individual genotype data to estimate LD score. 

The genetic correlation was estimated base on the Base Model where the AFB phenotypes were adjusted for age at interview, year of 

birth, assessment center at which participant consented, genotype batch, and the first 20 principal components. 
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Supplemental Note 1 

Unbiased estimation of the genetic correlation between two groups with a truncated 

selection  

Assuming that a random variable y is distributed as N (0, 1), a linear model can be written as  

y = g + e  

where g is random genetic effects, which are distributed as N (0, h2), and e is random residuals, 

which are from N (0, 1-h2). When the values for the phenotype y less than a threshold t are 

selected, the variables after the selection can be written as 

ys = gs + es. 

Following quantitative genetic theory4, the mean and variance for the selected variable are   

E(ys ) = i, 

E(ys
2 ) = (1+ it)  and 

var(ys ) = E(ys
2 )-E(ys )

2 = (1+ it)- i2 . 

The mean and variance for the genetic values after the selection are 

E(gs ) = E(ys )h
2
, 

E(gs
2 ) = h2(1+h2it) and 

var(gs ) = E(gs
2 )-E(gs)

2 = h2(1+h2i2t2 )- (h2i)2
.     (1) 

The heritability after the selection is 

hs
2 =
h2[(1+h2i2t2 )-h2i2 ]

(1+ it)- i2
. 

From Eq. (1), the genetic values after the selection can be defined as5,6  

gs = c+bg              (2) 

where c is a constant and 
b =

(1+h2i2t2 )-h2i2

(1+ it)- i2 .  

From Eq. (2), the genetic covariance between two sets of selected sample can be written as   

cov(gs1,gs2 ) = b1b2 cov(g1,g2 ),  

and the genetic correlation is 
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cor(gs1,gs2 ) =
b1b2 cov(g1,g2 )

b1 var(g1)b2 var(g2 )
= cor(g1,g2 ).                     (3) 

Therefore, from equation (3), it is clear that even when samples are ascertained with a truncated 

selection, the genetic correlation is unbiased, and there is no spurious estimation of 

heterogeneity. 
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Supplemental Note 2 

 

In current study, the UK Biobank data were split into two groups according to their AFB 

measure, younger and older groups truncated by the mean of AFB (26 years). To test if the 

truncation data can bias the estimation of genetic correlation, a simulation was performed 

(simulation 1). The simulated phenotypes were divided into two groups (larger or smaller than 

the mean), and GREML was performed to estimate the genetic correlation. Over 1000 replicates, 

the average of the estimated genetic correlation was 1.02 (SE=0.004.2), and 52 out of 1000 

replicates were significantly different from 1 (type I error, Supplementary Figure 6). Moreover, 

to mimic the estimation of the genetic correlation between SCZ and younger and older AFB, and 

to assess type I error rate under the null model, two phenotypes (phenI and phenII) were 

simulated such that the genetic correlation between two traits was zero in a second simulation 

(see simulation 2). Then, PhenII was divided into two groups (larger or smaller than mean). 

Afterwards, three-variate linear mixed model was used to estimate genetic variance and 

covariance between group with phenI, and groups with larger or smaller phenII. Over 1000 

replicates, the estimated genetic correlation between phenI and group with smaller (or larger) 

phenII was 0.0047 ± 0.0021 (-0.001 ± 0.0021), and genetic correlation between smaller or larger 

phenII was 1 ± 0.0004. The type I error was 5% for all three estimated genetic correlations 

(Supplementary Figure 8). Overall, the simulated results showed that a truncated selection hardly 

biases the estimation of genetic correlation, which agreed with theory (Supplementary Note 1). 

 

Simulation 1: 

The simulation was conducted using MTG2 based on available genotyped data (section #10 in 

the manual)7. The genotype data of 20,000 out of 57,428 samples were randomly selected to be 

used in the simulation process. Out of 518,992 SNPs which passed the quality control criteria, 

10,000 SNPs were randomly selected as QTLs and have effects drown from a normal 

distribution N (0, 1). True breeding values or genetic profile scores can be obtained from the 

product of SNP genotype coefficients and the corresponding SNP effects. The simulated 

phenotype can be generated as the sum of true breeding values and residual effects which follow 

a normal distribution N (0, 1). According to the phenotypic values, the data were split into two 
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groups (i.e. larger or smaller than the mean of simulated phenotype). Then, GREML was 

performed based on the real genotype data and simulate phenotype data to estimate the genetic 

correlation between the two groups. The number of replicates was 1000 each with a different set 

of QTLs and their effects.  

 

Simulation 2: 

The simulation was conducted with MTG2 7 based on given genotyped data. The genotype data 

of 30,000 out of 80,522 samples (SCZ sample + UK Biobank sample) were randomly selected 

for the simulation process. Out of 518,992 SNPs which passed the quality control criteria, 10,000 

SNPs were randomly selected as QTLs. In order to mimic SCZ and AFB, each QTL was 

assigned two independent effects which following a multivariate normal distribution. The 

covariance matrix of those two effects were [
1 0
0 1

] and the mean vector was [0, 0]. Thus, the 

genetic correlation between two simulated phenotypes (denoted as phenI and phenII) should be 

0. True breeding values were obtained as the product of SNP genotype coefficients and the 

corresponding SNP effects. The simulated phenotype can be generated as the sum of true 

breeding values and residual effects which follow a multivariate normal distribution with mean 

[0, 0] and the covariance matrix [
1 0
0 1

]. Among the 30,000 individuals, a random set of 10,000 

individuals was made available for the first trait (phenI) only (but missing for the second trait). 

For the other 20,000 individuals whose phenotypes were available for the second trait (phenII) 

only (but, missing for the first trait), a truncated selection according to the second trait was 

applied to divide them into two groups (i.e. larger or smaller than the mean of phenII 

phenotypes). Three-variate linear mixed model was used to estimate genetic variance and 

covariance between the three groups. The number of replicates was 1000 each with a different 

set of QTLs and their effects. In this simulation, it would be expected that estimated genetic 

correlation between phenI and phenII was 0, and that between the groups with larger and smaller 

phenII phenotypes was 1.  
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Supplemental Note 3 

Two sets of samples were selected, each with random 10,000 individuals, based on the real 

genotype data from the UK Biobank. The percentages of overlapped individuals were used as 

0%, 10%, and 20%. Out of 518,992 SNPs, 10,000 SNPs were randomly selected as QTLs and 

assigned two SNP effects that were randomly drawn from a multivariate normal distribution 

MVN~([
0
0
] , [

1 0.6
0.6 1

]). True breeding values or genetic profile scores were obtained from the 

product of SNP genotype coefficients and the corresponding SNP effects. Residual effects were 

generated from MVN~([
0
0
] , [

1 0.8
0.8 1

]). Phenotype in each data set were generated as the sum 

of true breeding values and residual effects. Therefore, the heritabilites of two phenotypes were 

0.5 for both data sets and genetic correlation between the two data sets was 0.6. The number of 

replicates was 20. For the LDSC analyses, GWAS were performed to obtain P values for each 

SNP in each data set. The LD scores used in the LDSC analyses were either obtained from 

European samples in 1000 Genomes or estimated from the current genotype data. The results 

based on this simulation are shown in Supplementary Figure 9.  
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List of abbrevations 

 

AFB: Age at first birth 

SCZ: Schizophrenia 

GWAS: Genome-wide association study 

GBLUP: Genomic best linear unbiased prediction 

GREML: Genomic residual maximum likelihood 

LDSC: Linkage disequilibrium score regression 

PGC: Psychiatric genomics consortium 

PRS: Polygenic risk score 

PRS-score: PRS based on GWAS summary statistics from the SCZ GWAS data 

PRS-GBLUP: PRS calculated using GBLUP 

PRS-scorePGC: PRS from the full PGC SCZ GWAS study 

PC: Principal component 

QC: Quality control 

MAF: Minor allele frequency 

GCTA: Genome-wide Complex Trait Analysis 

MTG2: Multi-Trait GREML and GBLUP 
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