73 research outputs found

    The Persistence of Memory, or How the X-Ray Spectrum of SNR 0509-67.5 Reveals the Brightness of its Parent Type Ia Supernova

    Full text link
    We examine the dynamics and X-ray spectrum of the young Type Ia supernova remnant 0509-67.5 in the context of the recent results obtained from the optical spectroscopy of its light echo. Our goal is to estimate the kinetic energy of the supernova explosion using Chandra and XMM-Newton observations of the supernova remnant, thus placing the birth event of 0509-67.5 in the sequence of dim to bright Type Ia supernovae. We base our analysis on a standard grid of one-dimensional delayed detonation explosion models, together with hydrodynamic and X-ray spectral calculations of the supernova remnant evolution. From the remnant dynamics and the properties of the O, Si, S, and Fe emission in its X-ray spectrum we conclude that 0509-67.5 was originated ~400 years ago by a bright, highly energetic Type Ia explosion similar to SN 1991T. Our best model has a kinetic energy of 1.4x10E51 erg and synthesizes 0.97 Msun of 56Ni. These results are in excellent agreement with the age estimate and spectroscopy from the light echo. We have thus established the first connection between a Type Ia supernova and its supernova remnant based on a detailed quantitative analysis of both objects.Comment: 10 pages, 9 figures, plus an exclusive astro-ph-only Appendix; ApJ in press, companion paper to Rest et al. 0

    Geometric Measure of Indistinguishability for Groups of Identical Particles

    Get PDF
    The concept of p-orthogonality (1=< p =< n) between n-particle states is introduced. It generalizes common orthogonality, which is equivalent to n-orthogonality, and strong orthogonality between fermionic states, which is equivalent to 1-orthogonality. Within the class of non p-orthogonal states a finer measure of non p-orthogonality is provided by Araki's angles between p-internal spaces. The p-orthogonality concept is a geometric measure of indistinguishability that is independent of the representation chosen for the quantum states. It induces a new hierarchy of approximations for group function methods. The simplifications that occur in the calculation of matrix elements between p-orthogonal group functions are presented

    Singlet-triplet gaps in large multireference systems: spin-flip-driven alternatives for bioinorganic modelling

    Get PDF
    The proper description of low-spin states of open-shell systems, which are commonly encountered in the field of bioinorganic chemistry, rigorously requires using multireference ab initio methodologies. Such approaches are unfortunately very CPU-time consuming as dynamic correlation effects also have to be taken into account. The broken-symmetry unrestricted (spin-polarized) density functional theory (DFT) technique has been widely employed up to now to bypass that drawback, but despite a number of relative successes in the determination of singlet-triplet gaps, this framework cannot be considered as entirely satisfactory. In this contribution, we investigate some alternative ways relying on the spin-flip time-dependent DFT approach [Y. Shao et al. J. Chem. Phys. 118, 4807 (2003)]. Taking a few well-documented copper-dioxygen adducts as examples, we show that spin-flip (SF)-DFT computed singlet-triplet gaps compare very favorably to either experimental results or large-scale CASMP2 computations. Moreover, it is shown that this approach can be used to optimize geometries at a DFT level including some multireference effects. Finally, a clear-cut added value of the SF-DFT computations is drawn: if pure ab initio data are required, then the electronic excitations revealed by SF-DFT can be considered in designing dramatically reduced zeroth-order variational spaces to be used in subsequent multireference configuration interaction or multireference perturbation treatments

    Gamma ray emission from SNR RX J1713.7-3946 and the origin of galactic cosmic rays

    Full text link
    We calculate the flux of non-thermal radiations from the supernova remnant RX J1713.7-3946 in the context of the non-linear theory of particle acceleration at shocks, which allows us to take into account self-consistently the dynamical reaction of the accelerated particles, the generation of magnetic fields in the shock proximity and the dynamical reaction of the magnetic field on the plasma. When the fraction of particles which get accelerated is of order 104\sim 10^{-4}, we find that the strength of the magnetic field obtained as a result of streaming instability induced by cosmic rays is compatible with the interpretation of the X-ray emitting filaments being produced by strong synchrotron losses in 100μG\sim 100 \mu G magnetic fields. If the X-ray filaments are explained in alternative ways, the constraint on the magnetic field downstream of the shock disappears and the HESS data can be marginally fit with ICS of relativistic electrons off a complex population of photons, tailored to comprise CMB and ambient IR/Optical photons. The fit, typically poor at the highest energies, requires a large density of target photons within the remnant; only a fraction of order 106\sim 10^{-6} of the background particles gets accelerated; the local magnetic field is of order 20μG\sim 20\mu G and the maximum energy of protons is much lower than the knee energy. Current HESS gamma ray observations combined with recent X-ray observations by Suzaku do not allow as yet to draw a definitive conclusion on whether RX J1713.7-3946 is an efficient cosmic ray accelerator, although at the present time a hadronic interpretation of HESS data seems more likely. We discuss the implications of our results for the GLAST gamma ray telescope, which should be able to discriminate the two scenarios discussed above.Comment: Accepted for Publication in MNRA

    X-Ray Measured Dynamics of Tycho's Supernova Remnant

    Full text link
    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0".20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0".40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0".14 yr^{-1} (m=0.26) to 0".40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0".21-0".31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}

    Expansion Velocity of Ejecta in Tycho's Supernova Remnant Measured by Doppler Broadened X-ray Line Emission

    Full text link
    We show that the expansion of ejecta in Tycho's supernova remnant (SNR) is consistent with a spherically symmetric shell, based on Suzaku measurements of the Doppler broadened X-ray emission lines. All the strong K_alpha line emission show broader widths at the center than at the rim, while the centroid energies are constant across the remnant (except for Ca). This is the pattern expected for Doppler broadening due to expansion of the SNR ejecta in a spherical shell. To determine the expansion velocities of the ejecta, we applied a model for each emission line feature having two Gaussian components separately representing red- and blue-shifted gas, and inferred the Doppler velocity difference between these two components directly from the fitted centroid energy difference. Taking into account the effect of projecting a three-dimensional shell to the plane of the detector, we derived average spherical expansion velocities independently for the K_alpha emission of Si, S, Ar, and Fe, and K_beta of Si. We found that the expansion velocities of Si, S, and Ar ejecta of 4700+/-100 km/s are distinctly higher than that obtained from Fe K_alpha emission, 4000+/-300 km/s, which is consistent with segregation of the Fe in the inner ejecta. Combining the observed ejecta velocities with the ejecta proper-motion measurements by Chandra, we derived a distance to the Tycho's SNR of 4+/-1 kpc.Comment: Accepted to Apj, 25 pages, 7 figures, 5 table

    On the Structure and Scale of Cosmic Ray Modified Shocks

    Full text link
    Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought to develop CR precursors. The length of such precursor LpL_{p} is believed to be set by the ratio of the CR mean free path λ\lambda to the shock speed, i.e., Lpcλ/Vshcrg/VshL_{p}\sim c\lambda/V_{sh}\sim cr_{g}/V_{sh}, which is formally independent of the CR pressure PcP_{c}. However, the X-ray observations of supernova remnant shocks suggest that the precursor scale may be significantly shorter than LpL_{p} which would question the above estimate unless the magnetic field is strongly amplified and the gyroradius rgr_{g} is strongly reduced over a short (unresolved) spatial scale. We argue that while the CR pressure builds up ahead of the shock, the acceleration enters into a strongly nonlinear phase in which an acoustic instability, driven by the CR pressure gradient, dominates other instabilities (at least in the case of low β\beta plasma). In this regime the precursor steepens into a strongly nonlinear front whose size scales with \emph{the CR pressure}as LfLp(Ls/Lp)2(Pc/Pg)2L_{f}\sim L_{p}\cdot(L_{s}/L_{p})^{2}(P_{c}/P_{g})^{2}, where LsL_{s} is the scale of the developed acoustic turbulence, and Pc/PgP_{c}/P_{g} is the ratio of CR to gas pressure. Since LsLpL_{s}\ll L_{p}, the precursor scale reduction may be strong in the case of even a moderate gas heating by the CRs through the acoustic and (possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC

    XMM-Newton observation of Kepler's supernova remnant

    Full text link
    We present the first results coming from the observation of Kepler's supernova remnant obtained with the EPIC instruments on board the XMM-Newton satellite. We focus on the images and radial profiles of the emission lines (Si K, Fe L, Fe K) and of the high energy continuum. Chiefly, the Fe L and Si K emission-line images are generally consistent with each other and the radial profiles show that the Si K emission extends to a larger radius than the Fe L emission (distinctly in the southern part of the remnant). Therefore, in contrast to Cas A, no inversion of the Si- and Fe-rich ejecta layers is observed in Kepler. Moreover, the Fe K emission peaks at a smaller radius than the Fe L emission, which implies that the temperature increases inwards in the ejecta. The 4-6 keV high energy continuum map shows the same distribution as the asymmetric emission-line images except in the southeast where there is a strong additional emission. A two color image of the 4-6 keV and 8-10 keV high energy continuum illustrates that the hardness variations of the continuum are weak all along the remnant except in a few knots. The asymmetry in the Fe K emission-line is not associated with any asymmetry in the Fe K equivalent width map. The Si K maps lead to the same conclusions. Hence, abundance variations do not cause the north-south brightness asymmetry. The strong emission in the north may be due to overdensities in the circumstellar medium. In the southeastern region of the remnant, the lines have a very low equivalent width and the X-ray emission is largely nonthermal.Comment: 15 pages, 15 figures, accepted for publication in A&

    Annihilation emission from young supernova remnants

    Get PDF
    A promising source of the positrons that contribute through annihilation to the diffuse Galactic 511keV emission is the beta-decay of unstable nuclei like 56Ni and 44Ti synthesised by massive stars and supernovae. Although a large fraction of these positrons annihilate in the ejecta of SNe/SNRs, no point-source of annihilation radiation appears in the INTEGRAL/SPI map of the 511keV emission. We exploit the absence of detectable annihilation emission from young local SNe/SNRs to derive constraints on the transport of MeV positrons inside SN/SNR ejecta and their escape into the CSM/ISM, both aspects being crucial to the understanding of the observed Galactic 511keV emission. We simulated 511keV lightcurves resulting from the annihilation of the decay positrons of 56Ni and 44Ti in SNe/SNRs and their surroundings using a simple model. We computed specific 511keV lightcurves for Cas A, Tycho, Kepler, SN1006, G1.9+0.3 and SN1987A, and compared these to the upper-limits derived from INTEGRAL/SPI observations. The predicted 511keV signals from positrons annihilating in the ejecta are below the sensitivity of the SPI instrument by several orders of magnitude, but the predicted 511keV signals for positrons escaping the ejecta and annihilating in the surrounding medium allowed to derive upper-limits on the positron escape fraction of ~13% for Cas A, ~12% for Tycho, ~30% for Kepler and ~33% for SN1006. The transport of ~MeV positrons inside SNe/SNRs cannot be constrained from current observations of the 511keV emission from these objects, but the limits obtained on their escape fraction are consistent with a nucleosynthesis origin of the positrons that give rise to the diffuse Galactic 511keV emission.Comment: 15 pages, 11 figures, accepted for publication in A&

    Subaru high-resolution spectroscopy of Star G in the Tycho supernova remnant

    Get PDF
    It is widely believed that Type Ia supernovae (SN Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova explosion, providing an opportunity to understand the progenitors of Type Ia supernovae.In this paper we argue that rotation is a generic signature expected of most non-giant donor stars that is easily measurable. \citep{2004Natur.431.1069R} examined stars in the center of the remnant of SN 1572 (Tycho's SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's centre was the system's donor star. We present high-resolution (R \simeq 40000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79±279\pm 2 \kms with respect to the LSR and put an upper limit on the star's rotation of 7.5 \kms. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be μl=1.6±2.1\mu_l = -1.6 \pm 2.1 \masyr and μb=2.7±1.6\mu_b = -2.7 \pm 1.6 \masyr. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho's SN that is not associated with the supernova event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.Comment: Accepted for publication in Ap
    corecore