234 research outputs found

    Cost Effectiveness and Budget Impact of Siponimod Compared to Interferon Beta-1a in the Treatment of Adult Patients with Secondary Progressive Multiple Sclerosis with Active Disease in Switzerland

    Get PDF
    OBJECTIVE The study aim was to evaluate the cost effectiveness and budget impact of siponimod compared to interferon beta-1a for adult patients with secondary progressive multiple sclerosis (SPMS) with active disease, from a Swiss health insurance perspective. METHODS We conducted an analysis using a Markov cohort model with a cycle length of 1 year, life-long time horizon, and discount rate of 3% for cost and health outcomes. We used a matching-adjusted indirect comparison to estimate clinical outcomes using data from the EXPAND randomised controlled trial of siponimod vs placebo and the Nordic SPMS randomised controlled trial of interferon beta-1a vs placebo as the basis for estimates of disability progression and relapse outcomes. We used 6-month confirmed disability progression results to estimate disability progression in the base-case analysis. We calculated quality-adjusted life-years (QALYs) based on an external study that administered the EQ-5D-3L questionnaire to European patients with multiple sclerosis. We included costs (Swiss Franc (CHF), year 2020) of drug acquisition/administration, adverse events and disease management. We also performed a budget impact analysis to estimate the cost over the first 3 years of introducing siponimod. RESULTS For the base case, siponimod resulted in mean incremental costs of CHF 84,901 (siponimod: CHF 567,838, interferon beta-1a: CHF 482,937) and mean incremental QALYs of 1.591 (siponimod: 7.495, interferon beta-1a: 5.905), leading to an incremental cost-effectiveness ratio of CHF 53,364 per QALY gained. In the probabilistic sensitivity analysis, the probability of the cost effectiveness of siponimod assuming a willingness-to-pay threshold of CHF 100,000 per QALY gained was 90%. Siponimod was projected to result in drug administration costs for siponimod of CHF 23,817,856 in the first 3 years after introduction, accompanied by large cost offsets in drug acquisition of other multiple sclerosis drugs. Considering drug administration, monitoring and adverse event management costs, it was estimated to result in additional healthcare costs in Switzerland of CHF 2,177,021. CONCLUSIONS In the base-case analysis, we found that siponimod may be cost effective for treating Swiss adult patients with SPMS with active disease. The results of the cost-effectiveness analyses are valid under the assumption that the efficacy of siponimod and the comparators on disability progression for the overall SPMS population would be the same in the active SPMS population. CLINICAL TRIAL IDENTIFIER NCT01665144. This economic evaluation was based on the EXPAND trial

    Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells

    Get PDF
    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular bacteria based on the GFP signal, with only intracellular bacteria being able to express GFP. This allows the robust detection of single intracellular bacteria before intracellular proliferation is initiated

    Patient and Provider Perspectives on How Trust Influences Maternal Vaccine Acceptance Among Pregnant Women in Kenya

    Get PDF
    Background Pregnant women and newborns are at high risk for infectious diseases. Altered immunity status during pregnancy and challenges fully vaccinating newborns contribute to this medical reality. Maternal immunization is a strategy to protect pregnant women and their newborns. This study aimed to find out how patient-provider relationships affect maternal vaccine uptake, particularly in the context of a lower middle- income country where limited research in this area exists. Methods We conducted semi-structured, in-depth narrative interviews of both providers and pregnant women from four sites in Kenya: Siaya, Nairobi, Mombasa, and Marsabit. Interviews were conducted in either English or one of the local regional languages. Results We found that patient trust in health care providers (HCPs) is integral to vaccine acceptance among pregnant women in Kenya. The HCP-patient relationship is a fiduciary one, whereby the patients’ trusts is primarily rooted in the provider’s social position as a person who is highly educated in matters of health. Furthermore, patient health education and provider attitudes are crucial for reinstating and fostering that trust, especially in cases where trust was impeded by rumors, community myths and misperceptions, and religious and cultural factors. Conclusion Patient trust in providers is a strong facilitator contributing to vaccine acceptance among pregnant women in Kenya. To maintain and increase immunization trust, providers have a critical role in cultivating a positive environment that allows for favorable interactions and patient health education. This includes educating providers on maternal immunizations and enhancing knowledge of effective risk communication tactics in clinical encounters

    A Role for the VPS Retromer in Brucella Intracellular Replication Revealed by Genomewide siRNA Screening

    Get PDF
    Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella- containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.; IMPORTANCE; With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella- containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

    Get PDF
    Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity

    Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

    Get PDF
    The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo
    • …
    corecore