3 research outputs found

    Measurement of the transverse momentum and ϕ∗ηϕη∗ distributions of Drell–Yan lepton pairs in proton–proton collisions at s√=8s=8 TeV with the ATLAS detector

    Get PDF
    Distributions of transverse momentum p T and the related angular variable φ∗ η of Drell–Yan lepton pairs are measured in 20.3 fb−1 of proton–proton collisions at √s = 8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton–proton collisions at √s = 7 TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of φ∗ η < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of φ∗ η this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p T while the fixed-order prediction of Dynnlo falls below the data at high values of p T . ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the φ∗ η and p T distributions as a function of lepton-pair mass and rapidity than the basic shape of the data. Conte

    Jet reconstruction and performance using particle flow with the ATLAS Detector

    Get PDF
    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb -1-1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability

    Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector

    No full text
    corecore