138 research outputs found

    Computation of Potentially Visible Set for Occluded Three-Dimensional Environments

    Get PDF
    Thesis advisor: William AmesThis thesis deals with the problem of visibility culling in interactive three-dimensional environments. Included in this thesis is a discussion surrounding the issues involved in both constructing and rendering three-dimensional environments. A renderer must sort the objects in a three-dimensional scene in order to draw the scene correctly. The Binary Space Partitioning (BSP) algorithm can sort objects in three-dimensional space using a tree based data structure. This thesis introduces the BSP algorithm in its original context before discussing its other uses in three-dimensional rendering algorithms. Constructive Solid Geometry (CSG) is an efficient interactive modeling technique that enables an artist to create complex three-dimensional environments by performing Boolean set operations on convex volumes. After providing a general overview of CSG, this thesis describes an efficient algorithm for computing CSG expression trees via the use of a BSP tree. When rendering a three-dimensional environment, only a subset of objects in the environment is visible to the user. We refer to this subset of objects as the Potentially Visible Set (PVS). This thesis presents an algorithm that divides an environment into a network of convex cellular volumes connected by invisible portal regions. A renderer can then utilize this network of cells and portals to compute a PVS via a depth first traversal of the scene graph in real-time. Finally, this thesis discusses how a simulation engine might exploit this data structure to provide dynamic collision detection against the scene graph.Thesis (BA) — Boston College, 2004.Submitted to: Boston College. College of Arts and Sciences.Discipline: Computer Science.Discipline: College Honors Program

    Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of NF-κB Activation

    Get PDF
    Signaling proteins display remarkable cell-to-cell heterogeneity in their dynamic responses to stimuli, but the consequences of this heterogeneity remain largely unknown. For instance, the contribution of the dynamics of the innate immune transcription factor nuclear factor κB (NF-κB) to gene expression output is disputed. Here we explore these questions by integrating live-cell imaging approaches with single-cell sequencing technologies. We used this approach to measure both the dynamics of lipopolysaccharide-induced NF-κB activation and the global transcriptional response in the same individual cell. Our results identify multiple, distinct cytokine expression patterns that are correlated with NF-κB activation dynamics, establishing a functional role for NF-κB dynamics in determining cellular phenotypes. Applications of this approach to other model systems and single-cell sequencing technologies have significant potential for discovery, as it is now possible to trace cellular behavior from the initial stimulus, through the signaling pathways, down to genome-wide changes in gene expression, all inside of a single cell

    The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology

    Get PDF
    Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury

    Theory and Validation of Magnetic Resonance Fluid Motion Estimation Using Intensity Flow Data

    Get PDF
    15 p.Background Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true reference information or ground truth. Methodology/Principal Findings In this study, we create flow vectors based on an ideal analytical vortex, and generate artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of magnetic resonance fluid motion estimation can be applicable practically. Conclusions/Significance The results of this work will allow us to progress further in the investigation of fluid motion prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging.Kelvin Kian Loong Wong, Richard Malcolm Kelso, Stephen Grant Worthley, Prashanthan Sanders, Jagannath Mazumdar, Derek Abbot

    Translating cardioprotection for patient benefit: Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology

    Get PDF
    Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise from acute myocardial ischaemia-reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term consequences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a significant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detrimental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardioprotective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these clinical studies have not taken into consideration the important data provided from previously published pre-clinical and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully result in new and effective therapeutic interventions for the future benefit of CHD patients

    Replicative Age Induces Mitotic Recombination in the Ribosomal RNA Gene Cluster of Saccharomyces cerevisiae

    Get PDF
    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells

    Garotas de loja, história social e teoria social [Shop Girls, Social History and Social Theory]

    Get PDF
    Shop workers, most of them women, have made up a significant proportion of Britain’s labour force since the 1850s but we still know relatively little about their history. This article argues that there has been a systematic neglect of one of the largest sectors of female employment by historians and investigates why this might be. It suggests that this neglect is connected to framings of work that have overlooked the service sector as a whole as well as to a continuing unease with the consumer society’s transformation of social life. One element of that transformation was the rise of new forms of aesthetic, emotional and sexualised labour. Certain kinds of ‘shop girls’ embodied these in spectacular fashion. As a result, they became enduring icons of mass consumption, simultaneously dismissed as passive cultural dupes or punished as powerful agents of cultural destruction. This article interweaves the social history of everyday shop workers with shifting representations of the ‘shop girl’, from Victorian music hall parodies, through modernist social theory, to the bizarre bombing of the Biba boutique in London by the Angry Brigade on May Day 1971. It concludes that progressive historians have much to gain by reclaiming these workers and the service economy that they helped create

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination
    • …
    corecore