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Abstract Coronary heart disease (CHD) is the leading cause of death and disability worldwide. Despite current therapy, the
morbidity and mortality for patients with CHD remains significant. The most important manifestations of CHD arise
from acute myocardial ischaemia–reperfusion injury (IRI) in terms of cardiomyocyte death and its long-term conse-
quences. As such, new therapeutic interventions are required to protect the heart against the detrimental effects of
acute IRI and improve clinical outcomes. Although a large number of cardioprotective therapies discovered in pre-
clinical studies have been investigated in CHD patients, few have been translated into the clinical setting, and a sig-
nificant number of these have failed to show any benefit in terms of reduced myocardial infarction and improved
clinical outcomes. Because of this, there is currently no effective therapy for protecting the heart against the detri-
mental effects of acute IRI in patients with CHD. One major factor for this lack of success in translating cardiopro-
tective therapies into the clinical setting can be attributed to problems with the clinical study design. Many of these
clinical studies have not taken into consideration the important data provided from previously published pre-clinical
and clinical studies. The overall aim of this ESC Working Group Cellular Biology of the Heart Position Paper is to
provide recommendations for optimizing the design of clinical cardioprotection studies, which should hopefully
result in new and effective therapeutic interventions for the future benefit of CHD patients.
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1. Introduction
Coronary heart disease (CHD) is the leading cause of death and dis-
ability worldwide. According to the World Health Organisation
(WHO), each year CHD accounts for the deaths of 3.8 million men
and 3.4 million women. The global burden of CHD is projected to in-
crease from 47 million DALYs (disability-adjusted life years or ‘healthy
years of life lost’) in 1990 to �82 million DALYs in 2020.

Many of the major complications of CHD, such as myocardial in-
farction (MI) and heart failure, arise from the detrimental effects of
acute ischaemia–reperfusion injury (IRI) on the myocardium. As
such novel therapeutic interventions are required to protect the myo-
cardium against acute IRI in order to preserve cardiac contractile func-
tion, reduce the onset of heart failure, and improve clinical outcomes
in patients with CHD. In this article, the term ‘cardioprotection’ is
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used to refer specifically to the protection of the myocardium against
the detrimental effects of acute IRI. Over the years, the research field
of cardioprotection has consistently failed to produce any effective
therapeutic strategy for protecting the myocardium against acute IRI
in the clinical setting. The failure has not been due to a shortage of
potential cardioprotective strategies discovered in the pre-clinical ex-
perimental setting, but has been due to the inability to successfully
translate many of these promising therapies into interventions that ac-
tually improve patient outcomes, a topic of much discussion in the
recent literature.1– 4 In this regard, the overall aim of this ESC
Working Group Cellular Biology of the Heart Position Paper will be
to critically assess the translational process which takes place in the
transition from the bench to the bedside, and to suggest recommen-
dations for the future design of clinical cardioprotection studies,
which take into consideration the important findings from both pre-
clinical and clinical data in the research area of cardioprotection. Spe-
cifically, in this position paper we focus on the ways of optimizing the
design of the clinical studies for testing novel cardioprotective inter-
ventions in two major clinical settings of acute myocardial IRI: patients
presenting with an acute ST-segment elevation myocardial infarction
(STEMI), treated by either thrombolytic therapy or primary percutan-
eous coronary intervention (PPCI) and patients undergoing coronary
revascularization by coronary artery bypass graft (CABG) surgery. In
particular, we critically analyse the contributions of patient selection,
co-morbidities, concomitant medication, the timing of the therapeutic
intervention, and the endpoints used for assessing cardioprotection,
to the outcome of the clinical study. This should hopefully improve
the chances of successfully translating future cardioprotective strat-
egies for the benefit of CHD patients.

1.1 Major signalling pathways underlying
cardioprotection
Elucidation of the major signal transduction pathways underlying en-
dogenous cardioprotective strategies such as ischaemic precondition-
ing (IPC),5 ischaemic postconditioning (IPost),6,7 and remote
ischaemic conditioning (RIC),8,9 in which the heart is ‘conditioned’
either directly or indirectly by brief episodes of ischaemia and reper-
fusion, has identified two endogenous cardioprotective pathways, the
Reperfusion Injury Salvage Kinase (RISK)10,11 and the Survival Activat-
ing Factor Enhancement (SAFE) pathways.12– 15 These are recruited at
the time of myocardial reperfusion and mediate cardioprotection. The
RISK pathway includes the pro-survival kinase cascades MEK1/2-Erk1/
2 and PI3K-Akt, whereas the SAFE pathway is made up by the TNF-a
receptor and STAT3.14– 19 These two pathways relay the cardiopro-
tective signal underlying the ‘conditioning’ strategies mentioned
above, from cell membrane receptors to the mitochondria where
protective mechanisms subsequently occur such as mitochondrial
permeability transition pore (MPTP) inhibition,20– 23 mitochondrial
connexin-43 channel activation, and mitochondrial ATP-dependent
potassium channel opening.24 The elucidation of these cardioprotec-
tive signalling pathways in pre-clinical studies has been pivotal in iden-
tifying therapeutic targets for cardioprotection in the clinical setting.

2. Opportunities for cardioprotection
In this section, the major clinical settings in the which the CHD patient
is subjected to the detrimental effects of acute myocardial IRI and so

potentially benefit from novel cardioprotective strategies, are
reviewed.

2.1 Acute STEMI patients undergoing
myocardial reperfusion
The clinical scenario, which most typically represents a classical
example of acute myocardial IRI, is the patient presenting with an
acute STEMI, treated by either thrombolytic therapy or PPCI.

In-hospital mortality of unselected STEMI patients in the national
registries of the ESC countries varies between 6 and 14%.25 There
has been a reduction in both acute and long-term mortality following
STEMI, due to greater use of reperfusion therapy, PPCI,
anti-thrombotic therapy, and secondary prevention treatments, al-
though the number of patients developing heart failure has
increased.26 However, despite this, mortality post-STEMI remains sub-
stantial with �12% of patients being dead within 6 months,27 with an
increased mortality rate in higher-risk patients.28 In developed coun-
tries, �1–2% of the adult population suffer from heart failure, with
the prevalence increasing to ≥10% among persons 70 years of age
or older.29 Therefore, these data underscore the importance of disco-
vering novel therapeutic targets for protecting the heart against acute
IRI so as to limit the MI size, prevent the onset of heart failure, and
reduce cardiac mortality.

For patients presenting with an acute STEMI, early myocardial
reperfusion using either thrombolytic therapy or PPCI remains the
most effective treatment strategy for limiting the MI size, preserving
cardiac function, and reducing the onset of heart failure. Where facil-
ities are available, myocardial reperfusion by PPCI, as opposed to
thrombolysis, is the preferred therapeutic strategy. Vast improve-
ments have already been made in reducing the duration of acute myo-
cardial ischaemia (the chest pain onset to PPCI time) with improved
patient awareness (to reduce the time to first medical contact with
the emergency medical services), minimizing the transit time to the
PPCI centre, and reducing the door to PCI time at the PPCI
centre.30,31 Importantly, translation of such progress into improve-
ment in patient outcomes has been documented.32

Improvements in both anti-platelet and anti-thrombotic therapy
and advances in PCI technology to maintain the patency of the
infarct-related coronary artery have further optimized the process
of myocardial reperfusion. Although these therapeutic approaches
clearly protect the coronary vasculature and reduce the risk of coron-
ary re-thrombosis in PPCI patients, there is preliminary experimental
evidence suggesting that both anti-platelet and anti-thrombotic
therapy may actually confer direct protection on cardiomyocytes
against acute IRI (see later section).

Paradoxically, the process of myocardial reperfusion can itself
induce myocardial injury and cardiomyocyte death, a phenomenon
which has been termed ‘myocardial reperfusion injury’.7,33 The revers-
ible forms of myocardial reperfusion injury which include reperfusion
arrhythmias and myocardial stunning are usually short-lived and easily
managed.7,33 However, the irreversible forms of myocardial reperfu-
sion injury, which include microvascular obstruction (MVO) and
lethal myocardial reperfusion injury (‘reperfusion-induced necro-
sis’&rsquo;),34 contribute to the final myocardial infarct size and di-
minish the benefits of myocardial reperfusion in terms of
myocardial salvage.7,33 MVO describes the ‘inability to reperfuse a
previously ischemic region’.35 The underlying cause of MVO is
unclear although it has been attributed to capillary damage with
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impaired vasodilatation, external capillary compression by endothelial
cell and cardiomyocyte swelling, microembolization of friable material
released from the atherosclerotic plaque, platelet microthrombi, and
neutrophil adhesion and/or plugging.36– 40 Lethal myocardial reperfu-
sion injury refers to the reperfusion-induced death of cardiomyocytes
which were viable or reversibly injured at the end of ischaemia.7,33,34

The mechanisms underlying this form of cardiomyocyte death
are multiple and include oxidative stress, calcium overload, MPTP
opening, cardiomyocyte hypercontracture, apoptosis, necrosis,
necroptosis, and inflammation (reviewed in7,33,41).

2.2 Patients undergoing cardiopulmonary
bypass surgery
Patients undergoing coronary revascularization by CABG surgery are
subjected to global acute myocardial IRI. When the aorta is clamped
prior to going onto cardiopulmonary bypass, the heart is made acutely
ischaemic and when the heart is taken off cardiopulmonary bypass and
the aorta is unclamped, the heart is subjected to acute myocardial
reperfusion injury. This global acute myocardial IRI contributes to
the peri-operative myocardial injury and infarction that occurs
during CABG surgery. The incidence and magnitude of peri-operative
myocardial injury and infarction can be measured using serum cardiac
enzymes such as CK-MB,42 Troponin-T,43 and Troponin-I44 and have
been linked to worse clinical outcomes post-surgery. Guidelines for
defining MI related to CABG have been recently published in the
‘Third universal definition of myocardial infarction’.45 Myocardial in-
farction related to CABG has been termed as Type 5 MI and has
been defined as an elevation of cardiac biomarker values .10 ×
99th percentile URL in patients with normal baseline cardiac Tropo-
nin values (,99th percentile URL), along with either (i) new patho-
logical Q-waves or new left bundle branch block (LBBB), or (ii)
angiographic documented new graft or new native coronary artery
occlusion, or (iii) imaging evidence of new loss of viable myocardium
or new regional wall motion abnormalities.45

Other factors that can result in peri-operative myocardial injury
during CABG surgery include coronary embolization, manual handling
of the heart, and inflammation.46,47 As such, the discovery of novel
cardioprotective strategies for minimizing this form of myocardial
injury and infarction during CABG surgery would be expected to pre-
serve cardiac function and improve clinical outcomes in this clinical
setting, particularly in those high-risk patients who are most vulner-
able to this form of myocardial injury and infarction.48 Any cardiopro-
tective intervention shown to be effective in the setting of CABG
surgery may also be expected to be beneficial in other surgical set-
tings in which the heart is subjected to acute global myocardial IRI,
such as in major vascular and intra-abdominal surgery. In these
latter settings, in which the pathophysiology of acute IRI is often
unclear (and which include low cardiac output, coronary spasm, re-
gional hypoperfusion, and so forth), additional studies are required
to determine the relative contributions of acute ischaemia and reper-
fusion to the damage which occurs during surgery, in order to opti-
mize cardiac protection.

2.3 Other opportunities for
cardioprotection
2.3.1 Cardiopulmonary resuscitation
In a cardiopulmonary arrest, the whole body including the heart
is subjected to acute global ischaemic injury. Successful

cardiopulmonary resuscitation (CPR) results in the restoration of
spontaneous circulation (ROSC) following the cardiac arrest which
then subjects the whole body and the heart to acute global reperfu-
sion injury. Following ROSC, the acute global myocardial IRI results in
myocardial necrosis and post-resuscitation myocardial dysfunction,
factors which, together with brain, kidney, and liver damage, are asso-
ciated with worse clinical outcomes post-arrest.

There is an opportunity to administer a therapeutic intervention
after the onset of cardiopulmonary arrest to minimize the acute
global ischaemic injury and protect the heart and other vital organs.
In this regard, a number of pre-clinical studies using animal models
of cardiac arrest have investigated the role of a variety of cardiopro-
tective interventions administered prior to cardiac arrest including
mechanical interventions (therapeutic hypothermia49) and pharmaco-
logical ones [b-adrenergic blockade,50 iNOS inhibition,51 KATP

channel activation,52 sodium-hydrogen ion exchanger inhibitor,53

erythropoietin,54 and cyclosporin-A (CsA)55].
Importantly, a therapeutic intervention applied to protect the heart

against acute IRI could also provide systemic organ-wide protection
against acute IRI, benefiting the post-cardiac arrest function of other
vital organs such as the brain, kidney, and liver. Clinical studies inves-
tigating novel cardioprotective strategies in the clinical setting of CPR
are yet to be undertaken.

2.3.2 Cardiac transplantation
Acute myocardial IRI sustained during cardiac transplantation is a
major cause of graft failure. In the setting of cardiac transplantation,
the donor heart is subjected to cold myocardial ischaemic injury at
the time of graft procurement, storage, and transportation, which
exacerbates the inflammatory response and the chance of rejection,
contributing to graft vasculopathy and failure.56 At the time of graft
implantation, injury to the graft is exacerbated by the acute global
myocardial reperfusion injury which occurs on reperfusion of the
graft.

There is an opportunity to administer a therapeutic intervention at
the time of graft procurement, storage, and transport to minimize the
cold ischaemic injury and protect the donor heart. Similarly, there is
an opportunity to administer a therapeutic intervention to the recipi-
ent to protect the donor heart against acute global myocardial reper-
fusion injury that occurs at the time of graft implantation. In this
regard, a number of pre-clinical studies have been published investi-
gating a variety of cardioprotective interventions applied to the
donor heart including pharmacological agents (adenosine analogue,
sodium–hydrogen exchange inhibition, KATP channel activation, silde-
nafil, PKC-d inhibition, and isoflurane) and mechanical interventions
(IPC, IPost, and RIC) (reviewed in56). So far, no clinical studies have
investigated cardioprotection in the setting of cardiac transplantation.

3. Optimizing the design of clinical
cardioprotection studies
The failure to translate novel cardioprotective strategies discovered in
pre-clinical studies into the clinical setting for patient benefit can be
attributed to a number of different factors, the majority of which
fall into three main categories: (i) the failure to develop a study inter-
vention for human use against validated targets; (ii) inadequate or in-
sufficient pre-clinical testing of the therapeutic intervention before
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clinical testing; and (iii) the design of the clinical cardioprotection
study.1,3,4,57,58

3.1 The study intervention
The first point to consider in planning a clinical trial on cardioprotec-
tion is the selection of the therapeutic intervention to be tested. Only
treatments providing consistent and robust benefit in pre-clinical
studies involving different models and laboratories should be consid-
ered. Although this may seem an obvious pre-requisite, the failure to
take this factor into consideration has led to a large number of nega-
tive clinical trials (see Table 1 for summary). This issue was discussed
in a recent NHLBI Workshop and resulted in the formation of the
CAESAR: NIH Cardioprotection Consortium, a network of research
laboratories which are using a variety of clinically relevant pre-clinical
animal MI models to test the efficacy of novel therapeutic agents to
ensure they confer consistent and robust cardioprotection before
entering the clinical arena.3,59

On the other hand, the translation to patients of pharmacological
treatments for which there is strong pre-clinical evidence is often
limited by the non-availability of drugs which can be used safely in
humans, or the lack of interest in myocardial reperfusion injury by
the companies who own these drugs. For example, pharmacological
approaches which have solid pre-clinical evidence, but which lack
drugs for human use are contractile blockers,60 calpain inhibitors,61

or particulate guanylate cyclase stimulators.62 Even treatments
which are available for human use have often been developed for
other actions, many of which are undesired when applied to reduce
reperfusion injury—an example of this is CsA, which was developed
as an immunosuppressant agent and has been used to prevent myo-
cardial reperfusion injury based on its effect on the MPTP (see
Table 2). Overcoming these limitations will require a change in the
perception of the pharmaceutical industry regarding the economic
potential of developing and testing treatments against myocardial
reperfusion injury.

Several of the failed study interventions listed in Table 1, including
anti-oxidants, calcium-channel antagonists, adenosine, and erythropoi-
etin had not shown conclusive cardioprotection in the pre-clinical
animal studies, which may in part explain why they failed in the clinical
setting. Another reason for the negative studies may be that many of
them were designed to target only one proponent of myocardial
reperfusion injury such as oxidative stress, calcium channel accumula-
tion, apoptosis, and inflammation (see Table 1).

3.2 Experimental animal MI models
Many of the experimental animal MI models used to investigate study
interventions in the pre-clinical setting do not adequately represent
the clinical setting of a patient presenting with an acute MI undergoing
myocardial reperfusion (for a summary of the major factors, see Sup-
plementary material online, Table S1). This topic has been discussed in
detail in several comprehensive reviews.1,3,4,57,58

3.3 Design of the clinical cardioprotection
study
It is essential that the design of the clinical cardioprotection study
takes into consideration the findings of previously published pre-
clinical and clinical studies.

4. Confounding factors in STEMI
cardioprotection studies
There currently exists no recognized effective therapeutic intervention
for protecting the cardiomyocyte from the detrimental effects of either
MVO or lethal myocardial reperfusion injury in acute MI patients. Over
the last two to three decades, a large number of therapeutic interven-
tions have been investigated as adjuncts to myocardial reperfusion.
However, the results from the majority of these studies have been
largely disappointing in terms of finding an effective therapy for redu-
cing myocardial reperfusion injury and improving clinical outcomes in
STEMI patients undergoing PPCI. Table 1 provides a summary of the
major clinical studies which have failed to demonstrate any benefit in
reperfused STEMI patients, and highlights some of the potential
reasons for their failure, many of which include not taking into
account confounding factors to cardioprotection.

A number of novel therapeutic interventions have been reported in
small proof-of-concept clinical studies to prevent lethal myocardial
reperfusion injury in STEMI patients undergoing PPCI (Table 2). These
include mechanical therapeutic strategies such as therapeutic hypother-
mia,63 therapeutic hyperoxaemia,64 IPost,65 RIC,66 and pharmacological
therapies such as atrial natriuretic peptide (ANP),67 CsA,68 and exena-
tide.69 Large multicentre clinical studies are now required to determine
whether these promising therapeutic interventions can actually improve
major clinical endpoints in STEMI patients treated by PPCI. In this regard,
for CsA, RIC, and IPost these studies are currently underway (see Sup-
plementary material online, Table S2).70,71

In addition to applying the cardioprotective strategy at the time of
PPCI to prevent lethal myocardial reperfusion injury, there is also the
opportunity of intervening at an earlier time-point, in the ambulance
while in transit to the PPCI centre, in order to protect against acute
myocardial ischaemic injury. This approach has recently been shown
to be beneficial in proof-of-concept clinical studies investigating
RIC and glucose–insulin–potassium therapy administered in the
ambulance66,72 and is currently being investigated using metoprolol
(Ibanez et al. METOCARD-CNIC NCT01311700). Table 3 provides
a summary of some of the major therapeutic interventions which
are currently being investigated as cardioprotective therapies for
reducing lethal myocardial reperfusion injury in PPCI patients.

Based on extensive experimental data, and the findings from recent
proof-of-concept clinical studies, particularly those which have inves-
tigated IPost in STEMI patients, our new understanding of the patho-
physiology of acute IRI now allows us to propose recommendations
for optimizing the design of clinical ‘cardioprotection’ trials. To in-
crease our capacity to successfully transfer basic science knowledge
into clinical practice for the patient’s benefit, one may consider two
distinct categories of confounding factors: (i) those factors which
can be controlled for, and (ii) those that cannot be controlled for
(see Figure 1). It is also important to realize that the confounding
factors will vary according to the clinical situation, i.e. they are not
the same for the STEMI and CABG setting.

4.1 Confounding factors which can be
controlled for
Some factors are known as major determinants of MI size and must
therefore be measured or taken into account in MI size reduction
studies. Not doing so will either decrease the statistical power of
the trial and/or result in a misinterpretation of the results, most
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Table 1 Clinical studies which have failed to demonstrate any beneficial effect in STEMI patients with a therapeutic
intervention administered at myocardial reperfusion

Clinical study Therapeutic intervention n,
number

Outcome Notes

Anti-oxidant therapy

EMIP-FR 2000106 IV bolus of trimetazidine given prior
to thrombolysis followed by 48 h
infusion

19 725 No difference in mortality at 35 days Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Magnesium

MAGIC107 IV bolus of magnesium given prior to
reperfusion followed by 24 h
infusion

6213 No difference in mortality at 30 days Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Glucose insulin potassium (GIK)
therapy

Mehta et al.,
CREATE-ECLA108

IV GIK infusion for 24 h started after
reperfusion in the majority of
cases

20 201 No difference in mortality at 30 days Anterior STEMI only: no
Only PPCI or thrombolysis: no
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Sodium–hydrogen ion exchange
inhibitors

Zeymer et al., ESCAMI109 Iv eniporide as a 10 min infusion
prior to PPCI or after
thrombolysis

2118 No difference in the MI size
(72 h AUC alph-ahydroxybutyrate
dehydrogenase)

Anterior STEMI only: no
Only PPCI or thrombolysis: no
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Nicorandil

Kitakaze et al., J-WIND-KTP67 Iv nicorandil bolus then 72 h
infusion started after reperfusion

545 No difference in the MI size
(72 h AUC total CK)
or 6 month LVEF

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: no

Anti-inflammatory agents

Armstrong et al., APEX-MI110 Iv pexelizumab bolus given prior to
PPCI followed by infusion for
24 h

5745 No difference in all-cause death at
30 days

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Atar et al., FIRE111 Iv FX06 bolus given prior to PPCI
and then repeated 10 min later

232 No difference in the MI size by CMR
at 5 days or 4 months

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Continued
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Table 1 Continued

Clinical study Therapeutic intervention n,
number

Outcome Notes

PKC-d inhibitor

Lincoff et al. 2011
PROTECTION-AMI,
Unpublished

Iv delcasertib infusion for 24 h
started prior to PPCI

1083 Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: yes
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Erythropoietin (EPO) Large animal studies inconclusive
Potential off-target effects

Voors et al., HEBE-III112 IV EPO epoetin-alpha 60 000 IU
after (within 3 h) PPCI

529 No difference in the LVEF at 6 weeks.
No difference in the MI size (AUC
CK-MB or TnT)
More major adverse cardiac

events occurred with EPO

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: no

Ott et al., REVIVAL-3113 IV EPO epoetin-beta 33 000 iU
immediately after PPCI repeated
24 and 48 h later

138 No difference in LVEF at 6 months
assessed by CMR. No difference in
the MI size (5 days and 6 month
CMR)

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: no

Ludman et al.114 IV EPO epoetin-beta 50 000 iU prior
to PPCI repeated 24 h later

52 No difference in the MI size at 3 days
using CMR and or 24 h AUC Trop
T. Doubling of incidence of MVO
on CMR

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Rao et al. 2011, REVEAL
NCT00378352

IV EPO epoetin-beta 60 000 iU
immediately after PPCI repeated
24 and 48 h later

138 No difference in the MI size on CMR
within 6 days and at 3 months

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: no

Atorvastatin*

Hahn et al.115 Oral atorvastatin 80 mg prior to
PPCI and 10 mg daily thereafter

173 No difference in the MI size at 5–14
days using SPECT

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Post et al., REPARATOR116 Oral atorvastatin 80 mg prior to
PPCI and daily thereafter

42 No difference in LVESI at 30 days Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Iron chelation

Chan et al.117 Iv bolus of desferoxamine given
prior to PPCI followed by 12 h
infusion

60 No difference in the MI size (48 h
AUC CK-MB and Trop I and
CMR). No difference in myocardial
salvage

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Continued
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often by concluding that the study is negative, thereby missing the op-
portunity for discovering new therapies for acute MI patients.

4.1.1 Patient selection
It must be appreciated that many of the clinical cardioprotection
STEMI studies often exclude the most ill STEMI patients—these
include those with critical life-threatening conditions such as cardiac
arrest, cardiogenic shock, severe ventricular arrhythmias, and co-
morbidities. In this regard, mechanical cardioprotective strategies,
such as RIC, may be particularly beneficial in this patient group, as
they have the potential to mediate multiorgan protection.

4.1.2 Choice of reperfusion strategy
One can hypothesize that the choice of reperfusion strategy between
PPCI and thrombolysis may impact on the severity of MVO and lethal
myocardial reperfusion injury experienced by the STEMI patients, and
therefore have an effect on the cardioprotective efficacy of the study
intervention. Pre-clinical data suggest that gradual or low-pressure
reperfusion can limit the MI size when compared with unimpeded
myocardial reperfusion.73– 75 In fact, this phenomenon76 underlies
the therapeutic basis of IPost, in which myocardial reperfusion
occurs in a stuttered manner as it is interrupted by short-lived epi-
sodes of myocardial ischaemia, which has been reported to improve
myocardial reperfusion, prevent endothelial dysfunction, reduce in-
flammation, attenuate apoptotic cell death, and limit MI size.6 There-
fore, in PPCI, where myocardial reperfusion occurs both abruptly and
completely, one may expect there to be a greater degree of myocar-
dial reperfusion injury when compared with thrombolysis, in which
myocardial reperfusion takes place more gradually and less complete-
ly. Furthermore, the precise time and adequacy of reperfusion are
unknown in patients treated with thrombolytic agents, uncertainties
which will make it difficult to have comparable control and treatment
groups. Alternatively, one should, however, acknowledge that previ-
ous trials directly comparing the efficacy of thrombolysis vs. PPCI in
STEMI patients have not established that any form of IRI (e.g. MI

size, clinical outcome) was significantly attenuated by thrombolysis
with respect to PPCI. Yet, one cannot rule out that study interven-
tions administered at the time of myocardial reperfusion may result
in different outcomes depending on whether PPCI or thrombolytic
therapy is employed to restore the coronary flow in the
infarct-related artery. Therefore, clinical cardioprotection studies of
STEMI patients should include only one of these two modes of reper-
fusion therapy, either thrombolysis or PPCI, as the myocardial reper-
fusion strategy. Interestingly, many of the early failed attempts to
reduce myocardial reperfusion injury in the clinical setting were
undertaken in the pre-PPCI era with the majority of patients receiving
thrombolytic therapy (Table 1). Whether a different outcome would
have been observed in the setting of PPCI is not known. On the other
hand, since PPCI is indeed poorly accessible in most non-Western
countries, it is important that cardioprotective interventions be
tested using the two different reperfusion strategies in separate
studies, To provide potential benefit in the largest possible number
of patients worldwide. However, it must be appreciated that myocar-
dial reperfusion by thrombolytic therapy is not the ideal model for in-
vestigating the efficacy of novel cardioprotective strategies in STEMI
patients because of the issues outlined above.

4.1.3 Timing the therapeutic intervention
Timing the administration of the therapeutic intervention in STEMI
patients undergoing myocardial reperfusion using either thrombolytic
therapy or PPCI is essential. The detrimental effects of myocardial
reperfusion injury occur in the first few minutes of myocardial reper-
fusion, with pre-clinical animal MI studies demonstrating that unless
the study intervention is administered prior to myocardial reperfu-
sion, it is ineffective.33 The failure to administer the study intervention
prior to myocardial reperfusion in some clinical studies may explain in
part some of the negative data shown in Table 1.

The study treatment may be administered at any time between first
patient contact and the time of reperfusion, provided the pharmaco-
kinetics of the drug allow sufficient delivery to the target organ as
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Table 1 Continued

Clinical study Therapeutic intervention n,
number

Outcome Notes

Ischaemic postconditioning

Tarantini et al.100 Four-60 s angioplasty balloon
inflations/deflations

78 Non-significant increase in the MI size
IPost protocol was delivered

within the stent, increasing the risk
of coronary microembolization

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Freixa et al.101 Four-60 s angioplasty balloon
inflations/deflations

79 Reduced myocardial salvage. No
difference in the MI size at 1 week
or 6 months by CMR.
IPost protocol delivered within the
stent, increasing the risk of
coronary microembolization

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Anterior STEMI only, only anterior STEMI patients included; only PPCI or thrombolysis, only either PPCI or thrombolysis patients included; AAR measured, area at risk measured;
collateral flow excluded, coronary collateralization to the AAR excluded; TIMI flow grade ,1, TIMI flow grade ,1 in the infarct-related artery prior to PCI; treatment prior to or at
reperfusion, study intervention given prior to or at reperfusion,*although oral atorvastatin was given prior to reperfusion, therapeutic levels would not have been achieved by this time.
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Table 2 Clinical studies which have demonstrated beneficial effects in STEMI patients with a therapeutic intervention
administered at myocardial reperfusion

Clinical study Therapeutic intervention n,
number

Outcome Notes

Atrial natriuretic peptide

Kitakaze et al.,
J-WIND-ANP67

IV carperitide 72 h infusion started
after reperfusion

569 15% reduction in 72 h AUC total CK and
2.0% absolute increase in the LVEF

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: no

Ischaemic postconditioning

Staat et al.65 Four-60 s angioplasty balloon
inflations/deflations

30 36%� in 72 h AUC CK
34%� in peak CK
MBG� 1.7–2.4

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Thibault et al.85 Four-60 s angioplasty balloon
inflations/deflations

38 41%� 72 h AUC CK-MB
39%� MI size at 6 months by SPECT
7%� EF by echo at 1year

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Lonborg et al.118 Four-30 s angioplasty balloon
inflations/deflations

118 No difference in troponin T or LVEF
19%� MI size at 3 months by CMR
31%� in the myocardial salvage index
Less heart failure

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Sorensson et al.119 Four-60 s angioplasty balloon
inflations/deflations

76 No difference in 48 h AUC CK-MB/TnT or
myocardial salvage by CMR at Day 7–9
Increase in myocardial salvage in

patients with large AAR (.30% of LV).

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Cyclosporin A

Piot et al.68 IV CsA (2.5 mg/kg) 10 min prior to
PPCI

58 44%�MI size (72 h AUC total CK)
20% �MI size (CMR in subset of 27

patients)
28% �MI size and smaller LVESV on

CMR at 6 months120

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: yes
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Therapeutic hypothermia

Gotberg et al.,63

RAPID-MI-ICE
Cooling by IV infusion of 1–2 L of

cold saline and central venous
catheter cooling with Philips
InnerCool RTx Endovascular
System prior to PPCI to achieve a
core body temperature of 358C

20 Significant reduction in the MI size as % of
AAR on CMR at 4 days 43% reduction in
peak and cumulative trop T release

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: Yes

Erlinge et al.,
CHILL-MI,
NCT01379261

Cooling by IV infusion of 1–2 L of
cold saline and central venous
catheter cooling with Philips
InnerCool RTx Endovascular
System prior to PPCI to achieve a
core body temperature of 358C

120 MI size (as a % of AAR) by CMR at 4 days Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: Yes

Continued
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soon as the myocardial blood flow is turned on again. This may
explain the negative results observed in clinical studies investigating
oral atorvastatin as a cardioprotective intervention in STEMI patients
(see Table 1). The study intervention may, for example, be adminis-
tered in the ambulance to the suspected STEMI patient while in
transit to the hospital. This therapeutic approach has been employed
with GIK therapy72 and RIC,66 and is currently being investigated for
metoprolol therapy. However, one specific limitation of this

treatment strategy is that a significant proportion of suspected
STEMI patients (perhaps 20–30%) will end up not having a diagnosis
of STEMI, and will have therefore received the therapeutic interven-
tion un-necessarily. The same problem applies to administering the
cardioprotective strategy on immediate arrival at the hospital. One
potential approach for selecting STEMI patients is to only select
patients for study after coronary angiography has taken place. This ap-
proach will also allow one to exclude those patients with TIMI.1
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Table 2 Continued

Clinical study Therapeutic intervention n,
number

Outcome Notes

Therapeutic hyperoxaemia

O’Neill et al.,64

AMIHOT I
IC hyperbaric hyperoxaemic

reperfusion started after PPCI and
continued for 90 min

269 No difference in primary endpoint (14 days
MI size by SPECT)

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Stone et al.,121

AMIHOT II
IC hyperbaric hyperoxaemic

reperfusion started after PPCI and
continued for 90 min

281 No adverse events
No difference in the MI size by SPECT

at 14 days or peak CK-MB or trop.
pooled analysis of AMIHOT I and II trials
suggested beneficial effects on the MI
size and MACE

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Remote ischaemic conditioning

Botker et al.66 Four 5-min inflations/deflations of an
upper arm cuff delivered in
ambulance by paramedics prior to
PPCI

142 Increase in the myocardial salvage index at
30 days. No difference in the MI size
(SPECT or Peak Trop). Ant STEMI
subgroup had greater myocardial
salvage, smaller MI size, and better LV
function at 3 days122

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Rentoukas et al.123 Three-4 min inflations/deflations of an
upper arm cuff delivered on arrival
at the hospital prior to PPCI

93 Better ST resolution and lower peak Trop
I. Synergistic effects with morphine

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Exenatide

Lonborg et al.69 IV infusion of exenatide started
15 min prior to PPCI for 6 h

107 Increase in the myocardial salvage index at
90 days by CMR. Reduced MI size as %
of AAR at 90 days by CMR. Patients
presenting with short ischaemic times
(≤132 min) had greater myocardial
salvage124

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Glucose insulin potassium (GIK) therapy

Selker et al.,
IMMEDIATE72

Iv GIK infusion for 12 h started by
paramedics in ambulance—prior to
reperfusion

357 No difference in progression to MI
Reduction in the MI size and less

in-hospital mortality and cardiac arrest

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Anterior STEMI only, Only anterior STEMI patients included, Only PPCI or thrombolysis: Only either PPCI or thrombolysis patients included, AAR measured: Area at risk measured;
Collateral flow excluded: Coronary collateralization to the AAR excluded; TIMI flow grade ,1, TIMI flow grade less than 1 in the infarct-related artery prior to PCI; Treatment prior to or
at reperfusion, Study intervention given prior to or at reperfusion.
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Table 3 Clinical studies investigating therapeutic interventions administered at myocardial reperfusion which have potential
promise in STEMI patients

Clinical study Therapeutic intervention n,
number

Outcome Notes

Adenosine

Garcia-Dorado et al.,60

PROMISE
Intracoronary adenosine 4 mg prior

to PPCI
201 MI size on CMR at 5–10 days.

Ongoing study
Anterior STEMI only: no

Only PPCI or thrombolysis: yes
AAR measured: yes
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Bendavia (MTP)

Chakrabarti et al.,
EMBRACE,
NCT01572909

Bendavia at time of PPCI. 200 Primary endpoint is the MI size
(72 h AUC CK-MB)

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Impella 2.5

Moses et al., MINI-AMI,
NCT01319760

Impella 2.5 after PPCI for 24 h 50 Primary endpoint is the MI size at
3–5 days by CMR

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Insulin-like growth factor-1

Caplice et al., RESUS-AMI,
NCT01438086

Intracoronary rhIGF-1 (mecasermin) 45 Serum glucose and change in the
LVEF on CMR

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Mangafodipir (Teslascan)

Karlsson et al., MANAMI,
NCT00966563

Iv infusion over 2–5 min prior to
PPCI

20 The primary endpoint is the MI size
(Trop T/CK-MB)

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Melatonin

Dominguez-Rodrigeuz et al.,
MARIA, NCT00640094

Iv infusion at time of PPCI 272 The primary endpoint is the MI size
(72 h AUC
alpha-hydroxybutyrate
dehydrogenase)

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Halladin et al.,
NCT01172171

Intracoronary and iv infusion at time
of PPCI

60 The primary endpoint is the MI size
(CMR at 1 month)

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Nitric oxide (inhaled)

Continued
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Table 3 Continued

Clinical study Therapeutic intervention n,
number

Outcome Notes

Janssens et al., NOMI,
NCT01398384

Inhaled nitric oxide prior to PPCI 230 The primary endpoint is the MI size
as a % of LV at 3 days by CMR

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Nitrite (sodium)

Frennaux et al., NIAMI,
NCT01388504

Iv bolus of sodium nitrite given 5 min
prior to PPCI

200 The primary endpoint is the MI size
as a % of AAR at 10–14 days by
CMR

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Mathur et al., NITRITE-AMI,
NCT01584453

Intracoronary bolus of sodium nitrite
over 30–60 s at the time of PPCI

80 The primary endpoint is the MI size
(48 h Trop T AUC)

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

RIC and local IPost

Prunier et al., RIRE-1,
NCT01390142

Four 5-min inflations/deflations of
the upper arm cuff prior to PPCI
plus four-1min inflations/
deflations of angioplasty balloon
after PPCI

50 The primary endpoint is the MI size
(72 h CK-MB AUC) and MI size
at 3 months (CMR)

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Sevoflurane

Lavi et al., SIAMI,
NCT00971607

Inhaled sevoflurane during PPCI 50 The primary endpoint is the MI size
(serum biomarkers over 72 h).

Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

Thymosin Beta 4

Strobeck et al.,
NCT00378352

Iv injection of RGN-352 (Thymosin
Beta 4)

75 The primary endpoint is the MI size
on CMR at 28 days

Anterior STEMI only: yes
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: no
Treatment prior to or at

reperfusion: yes

TRO40303

Atar et al., MitoCare,
NCT01374321

Peripheral IV infusion of TRO40303
started at 5–15 min prior to PPCI

180 MI size (72 h AUC CK and Trop I) Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Metoprolol

Continued
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coronary flow in the infarct-related artery and significant coronary
collateralization to the area at risk (AAR) (Rentrop grade.1). The
obvious disadvantage of waiting until coronary angiography has
taken place is the limited time remaining to then administer the thera-
peutic intervention before myocardial reperfusion takes place.
Pharmacological study interventions should be administered either
using the iv or intracoronary route to ensure that therapeutic
concentrations of the study agent are achieved prior to myocardial
reperfusion. The intracoronary route will achieve higher local concen-
trations within the myocardium, which may allow a lower dose of the
drug to be used should the pharmacological agent have systemic
hemodynamic effects. In our future daily practice, it is likely that the
optimal timing of administration of a proven protective drug will
have to comply with its modalities of administration and its
pharmacokinetics.

4.1.4 Major determinants of MI size
For clinical cardioprotection trials investigating the MI-limiting effects
of a study intervention, it is essential to assess for the major determi-
nants of MI size in STEMI patients undergoing myocardial reperfusion.

4.1.4.1 Ischaemic time
The duration of acute myocardial ischaemia is a major determinant of
final MI size. In pre-clinical animal MI studies investigating novel thera-
peutic interventions the ischaemic time can obviously be chosen to
generate a relatively fixed MI size. However, in STEMI patients, the is-
chaemic time can vary between 0 to 12 h, depending on the chest pain
onset to reperfusion time, resulting in widely variable MI sizes. Myocar-
dial reperfusion accrues the most benefit in terms of myocardial salvage
in those patients presenting within 3 h of chest pain onset. Whether MI
size reduction with a study intervention is greater in patients presenting
early (within 3 h) or later (3 h and beyond) is not clear. Two clinical
studies have reported greater benefit with the pharmacological
agents adenosine or exenatide in terms of myocardial salvage in patients
presenting within 2–3 h of chest pain onset, suggesting that the former
may be true (see Table 2). Whether IPost or RIC is more beneficial
when administered to patients presenting with shorter or longer is-
chaemic times is not clear. One pre-clinical study suggests that IPost
was actually harmful if applied following a short episode of index ischae-
mia,77 suggesting that IPost may be more beneficial in patients with
longer ischaemic times. Moreover, laboratory studies suggest the rela-
tive importance of different mechanisms of reperfusion injury may
depend on the duration of ischaemia, with mitochondrial permeability
transition playing a more prominent role after prolonged ischaemia.78

However, it is important to consider that the benefit obtained in
terms of myocardial salvage does not necessarily result in patient
benefit expressed in terms of clinical outcomes. Although myocardial
salvage following a protective intervention may be greater in patients
reperfused within the first 3 h of onset of symptoms it is most likely
related to a reduction of the ischaemic damage that has developed
rapidly in the first hours of ischaemia. However, these patients
usually display small infarcts with good clinical prognosis, so that the
improved myocardial salvage may even not be clinically visible. On
the other end of the spectrum, one cannot exclude that even mild
myocardial salvage in patients with a prolonged (.6 h) ischaemic
insult may translate into a significant clinical benefit, including limita-
tion of adverse LV remodelling for example. Additional studies are
required to actually understand the impact of the ischaemia time on
IRI and clinical outcome.

4.1.4.2 The area at risk
The size of the AAR is a major determinant of the final MI size.79

Because of this, it is essential to take into account the size of the

Figure 1 Summary of confounding factors which impact on the
sensitivity to ischaemia–reperfusion injury (IRI) and the response
to the study intervention in STEMI patients. These can be divided
into those factors which can be controlled for and those factors
which cannot be controlled for when designing a clinical cardiopro-
tection STEMI study.
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Table 3 Continued

Clinical study Therapeutic intervention n,
number

Outcome Notes

Ibanez et al.,
METOCARD-CNIC,
NCT01311700

Iv metoprolol three-5 mg boluses
administered in ambulance prior to
PPCI

220 MI size (5–7 days by CMR) Anterior STEMI only: no
Only PPCI or thrombolysis: yes
AAR measured: no
Collateral flow excluded: no
TIMI flow grade ,1: yes
Treatment prior to or at

reperfusion: yes

Anterior STEMI only, only anterior STEMI patients included; only PPCI or thrombolysis, only either PPCI or thrombolysis patients included; AAR measured, area at risk measured;
collateral flow excluded, coronary collateralization to the AAR excluded; TIMI flow grade ,1, TIMI flow grade ,1 in the infarct-related artery prior to PCI; treatment prior to or at
reperfusion, study intervention given prior to or at reperfusion.
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AAR when assessing MI size reduction with novel therapeutic inter-
ventions in clinical studies. The ability to measure the AAR is particu-
larly important in STEMI patients, where the size of the AAR can vary
greatly (from 10 to 50% of the LV) depending on which the coronary
artery is involved (LAD, RCA, or Cx) and where along the vessel the
occlusion has occurred (proximal, mid-vessel, or distal).80 However,
in most clinical cardioprotection STEMI trials, the size of the AAR is
not measured. In clinical studies, the MI size can be expressed as a
percentage of the size of the AAR in a similar manner to the pre-
clinical studies. However, the more conventional approach is to calcu-
late the myocardial salvage index (MSI, which is defined as the size of
the AAR subtract MI size divided by size of the AAR).

There are several different techniques available for estimating the
size of the AAR and calculating the MSI in STEMI patients undergoing
myocardial reperfusion (Supplementary material online, Table S3).81

The current gold standard method for measuring AAR is
99mTechnetium-Sestamibi single-photon emission tomography
(SPECT), with cardiac MRI emerging as a potential alternative ap-
proach, although both these imaging techniques have their drawbacks
(Supplementary material online, Table S3).58,82,83 With respect to the
potential use of cardiac MRI for delineating the AAR in STEMI patients
undergoing PPCI, the field is particularly controversial with several
issues of concern including the technical limitations surrounding
T2-weighted imaging84 and the possibility of the cardioprotective
intervention reducing the size of the AAR by decreasing the extent
of myocardial oedema.83

Previous clinical cardioprotection studies in STEMI patients suggest
that the patients most likely to benefit from a study intervention admi-
nistered as an adjunct to myocardial reperfusion are those presenting
with a large AAR (.30% of the LV—usually proximal LAD and RCA
STEMI patients).65,66,68,69,85 Therefore, in those clinical studies in
which all STEMI patients were included, irrespective of the size of
the AAR, there is a possibility that any cardioprotective effect asso-
ciated with the study intervention is diluted and this may account in
part for some of the negative clinical cardioprotection studies in
which all-STEMI patients were included (Table 1).86 Therefore, it is es-
sential that the AAR is measured when designing a clinical cardiopro-
tection study comprising STEMI patients.

4.1.4.3 Coronary collateralization to the area at risk
The presence of coronary collateralization to the AAR may provide
some residual blood flow to the ischaemic bed after a coronary
artery occlusion and reduce MI size.87 Therefore, collateral flow
needs to be measured in clinical studies when investigating
MI-reduction study interventions. About 15–20% of STEMI patients
will have significant coronary collateralization to the AAR.58 These
patients sustain smaller myocardial infarcts and have better clinical
outcomes, when compared with those patients with little collaterali-
zation. However, measuring collateral flow reliably in patients pre-
senting with a STEMI is challenging. At the time of coronary
angiography, the Rentrop grading system can be used to assess
whether significant coronary collateralization to the AAR is present,
and these patients should therefore be excluded from clinical cardio-
protection studies of STEMI patients, as they are less likely to benefit
from a study intervention. Including patients with significant coronary
collateralization to the AAR may in part explain the negative findings
of the clinical cardioprotection studies listed in Table 1.

4.1.4.4 Coronary artery flow prior to myocardial reperfusion
Because modern efficient anti-platelet and anti-thrombotic therapies
are instituted early, .40% of STEMI patients presenting to the hos-
pital will have spontaneously reperfused prior to PPCI and will
already have a significant coronary flow (TIMI flow .1) within the
culprit coronary artery.66 For these patients, in whom myocardial
reperfusion has already taken place, the prognosis is improved
when compared with those patients presenting with a fully occluded
culprit artery. For the study intervention to be effective against myo-
cardial reperfusion injury, it needs to be administered to the STEMI
patient while the culprit artery is still occluded and prior to myocar-
dial reperfusion. This would explain why STEMI patients presenting
with an occluded culprit artery accrued the most benefit in terms
of MI size reduction with RIC.66 On this basis, for clinical cardiopro-
tection studies, it is advisable to only include those STEMI patients
with an occluded culprit artery.

One may question whether these four major confounding factors
ought to be measured in clinical outcome studies. Here, the endpoint
is not MI size, but rather death, or hospitalization for heart failure for
example. In these trials, it remains essential not to include patients
who display a spontaneously re-opened coronary artery on admission
coronary angiography, since they have already undergone myocardial
reperfusion injury (before the protective intervention could be admi-
nistered). Not considering patients with visible collaterals should also
be recommended, as mentioned above. But, whether AAR is a strong
predictor of such clinical events remains to be demonstrated and
the recruitment of a large number of patients together with the ran-
domization process will balance between the placebo and the active
treatment group the distribution of ischaemia time and sizes of
AAR. Where it is difficult to perform such a large clinical study one
may consider stratifying the study with respect to the AAR. One
might yet want to include patients with large AAR (e.g. anterior
infarcts) who constitute the high-risk population which would
benefit the most, in terms of clinical outcome, of cardioprotective
interventions.

4.1.4.5 Endpoints of cardioprotection
For a clinical cardioprotection study in STEMI patients, it is essential to
choose study endpoints which are most relevant to the MI size limit-
ing effects of the study intervention being investigated. For
proof-of-concept clinical studies, this will most likely include end-
points of cardioprotection such as MI size (using either 48 h AUC
cardiac troponins or late gadolinium enhancement on cardiac MRI),
left ventricular systolic function, and indexed left ventricular
volumes. If the AAR is measured in the clinical study, then MI size
should take into account the size of the AAR, which will increase
the statistical power of the clinical trial for detecting a significant re-
duction in MI size, thereby reducing the number of patients required
for the study.

In terms of designing the larger clinical outcome studies, it is crucial
to choose major adverse cardiac events (MACEs) which are relevant
to the MI size limiting effects of the study intervention. In this regard,
the combined rates of cardiac death and hospitalization for heart
failure are most relevant to MI size limitation in STEMI patients as a
combined primary study endpoint, whereas rates of coronary revas-
cularization and non-fatal MI are less relevant and unlikely to be influ-
enced by a MI size limiting study intervention.
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4.2 Confounding factors which cannot be
controlled for
In CHD patients, there are a large number of confounding factors
which can potentially alter the sensitivity of the heart to acute IRI
and/or interfere with the efficacy of a particular cardioprotective
study intervention. A major cause of these confounding factors
relates to the fact that CHD is caused by or associated with known
cardiovascular risk factors and co-morbidities, including ageing, hyper-
tension, hyperlipidaemia, diabetes, left ventricular hypertrophy, heart
failure, and uraemia.88 Pre-clinical animal studies suggest that these
diseases and their pharmacological treatments induce fundamental
molecular alterations in the heart that can potentially affect the cyto-
protective signalling pathways, thereby affecting both the sensitivity to
IRI and the response to a particular cardioprotection strategy
(reviewed in88,89). Currently, most of the animal MI models which
are used to assess the efficacy of a novel cardioprotective strategy
use healthy juvenile animals which are free of any co-morbid
disease.1 Furthermore, pre-clinical studies have reported that human
atrial tissue harvested at time of cardiac bypass surgery from aged
patients90 and diabetic patients,91,92 were resistant to IPC applied ex
vivo in a model of simulated IRI. Large-scale cohorts of STEMI patients
are needed to analyse how much age, gender, co-morbidities, and
co-treatments may affect IRI and response to protective interventions.
In addition, it has to be taken into account that most patients display
several comorbidities. Specific analyses will then help adapt future
therapies to specific subgroups of patients.

Another major confounding factor for cardioprotection is con-
comitant medication, which patients are on for their cardiovascular
risk factor, co-morbid condition, or as part of the treatment of the
ongoing acute MI. These pharmaceutical agents have been shown in
pre-clinical and clinical studies to either block the cardioprotective
effect (for example, certain oral anti-diabetic sulphonylureas,
nitrates when nitrate tolerance develops, certain statins) or induce
cardioprotection themselves (for example, insulin and some anti-
diabetic medications, some statins, ACE-inhibitors, anti-platelet
agents, volatile anaesthetic agents, opioids, and so on (reviewed
in4,88,89,93 – 95). So far, the animal MI models which are used to
assess the efficacy of a novel cardioprotective strategy do not inves-
tigate the effect of concomitant medication. Treatment with oral
sulphonylureas such as glibenclamide96 and the anti-anginal agent,
nicorandil,97 also interferes with IPC protection in human atrial
tissue. With respect to concomitant anti-platelet therapy, there
is preliminary animal data suggesting that these agents may actually
confer direct protection against acute IRI,98,99 an observation
which is likely to have a significant impact on clinical cardio-
protection studies, as most CHD patients will be on anti-platelet
therapy.

Whether these confounding factors can actually interfere with the
efficacy of a cardioprotective intervention or an endogenous cardio-
protective phenomenon in the clinical setting has only been investi-
gated directly in relatively few clinical studies (for a summary of the
major clinical studies, see Supplementary material online, Table S4).
None of these confounding factors was pre-specified but all were
investigated as retrospective post hoc subgroup analyses. In a recent
retrospective analysis of proof-of-concept IPost trials, Roubille
et al.93 reported that clopidogrel administered before PCI may
indeed be a confounder both for sensitivity to IRI and response to
angioplasty postconditioning in STEMI patients. This may in part

explain some of the recently published clinical studies which failed
to demonstrate any cardioprotective effect with IPost.100,101

5. Confounding factors in CABG
cardioprotection studies
A number of different therapeutic interventions have been investi-
gated in the setting of CABG and major vascular surgery, with
many of them failing to report any beneficial effects on peri-operative
myocardial injury/infarction or clinical outcomes (Table 4). Recently,
several proof-of-concept clinical trials have reported cardioprotective
effects with therapeutic strategies including RIC, IPost, glucose–
insulin–potassium (GIK) therapy and volatile anaesthetics (Table 5).
However, even with RIC, not all clinical studies have been positive,
an issue which is discussed in a later section.102 Whether RIC can
improve clinical outcomes in patients undergoing CABG surgery is
unknown, and is currently being investigated in two ongoing large
multicentre randomized clinical trials such as the ERICCA
(NCT01247545)103 and RIPHeart trials (NCT01067703).104 Large
multicentre clinical trials are required to investigate whether GIK or
volatile anaesthetics can improve clinical outcomes in patients
undergoing CABG surgery.

5.1 Patient selection
The heterogeneity of patients undergoing cardiopulmonary bypass
surgery and the number of confounding factors which can potentially
interfere with cardioprotection make patient selection for clinical car-
dioprotection studies in CABG patients quite challenging. The type of
surgery is clearly important, with patients undergoing CABG alone
very different from patients undergoing valve surgery. For example,
the myocardium of patients with severe aortic stenosis or aortic re-
gurgitation may be significantly hypertrophied, the presence of
which may impact on the cardioprotective effect of a study interven-
tion. For patients undergoing CABG surgery, it must be acknowledged
that direct injury to the myocardium during surgery can happen and
may contribute to cardiac enzyme release; this has to be taken into
account when interpreting the results. Therefore, it may be advisable
to select patients undergoing either CABG alone or valve surgery
alone in a clinical cardioprotection study.

Of course the type of surgery will impact on the aortic cross-clamp
time (the duration of acute global myocardial ischaemia) with longer
cross-clamp times in patients undergoing more complex surgery (for
example, CABG+valve surgery). This would be another reason for
separating CABG alone patients from valve surgery patients in clinical
cardioprotection studies.

Whether a patient has stable CHD or unstable CHD may also
affect the response of the myocardium to the study intervention. Un-
stable patients may be sicker and have experienced episodes of chest
pain at rest, which may have inadvertently preconditioned the myo-
cardium against acute IRI.105 Therefore, for clinical cardioprotection
studies it would be advisable to recruit either stable or unstable
patients. Specifically, it is important in either stable or unstable
patients to exclude patients who have experienced anginal symptoms
in the 24 h prior to surgery, to exclude the confounding effect of IPC.
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5.2 Peri-operative factors
5.2.1 Concomitant medication
A wide variety of pharmacological agents used during cardiopulmon-
ary bypass surgery may interfere with the cardioprotective efficacy of
a study intervention. Volatile anaesthetic agents (such as isoflurane
and sevoflurane) and the iv anaesthetic agent, propofol, have been
reported to either confer cardioprotection themselves or interfere
with RIC cardioprotection (see Table 5). Furthermore, the use of iv
GTN, nitroprusside, and opioid analgesics may also interfere with
the cardioprotective effects of a study intervention. However, it
may be difficult to standardize the anaesthetic regimen and concomi-
tant medication in clinical cardioprotection studies given the variations
in practice. Providing the study is adequately powered and properly
randomized these confounding factors should distribute themselves
equally between the study intervention and control treatment
groups. Where it is difficult to perform such a large clinical study
one may consider stratifying the study with respect to these con-
founding factors.

5.2.2 Myocardial preservation strategy
During cardiopulmonary bypass surgery, it is essential to create a
blood-free and motionless operative field, in order to improve visibil-
ity, facilitate the surgical procedure and prevent air-embolism. This is
achieved by cross-clamping the aorta (to isolate the heart from the

systemic circulation) and inducing electrochemical cardiac arrest (to
stop the heart beating) using cardioplegic solution, respectively. The
choice of myocardial preservation strategy (blood cardioplegia, crys-
talloid cardioplegia, or cross-clamp fibrillation) may impact on the car-
dioprotective efficacy of the study agent, but again providing the study
is adequately powered and properly randomized this should not be a
major issue.

5.3 The therapeutic intervention
In clinical cardioprotection studies in cardiopulmonary surgery, there
is the opportunity to apply the study intervention at several different
time-points: either before CABG surgery begins (prior to acute myo-
cardial ischaemia), by adding a pharmacological intervention to the
cardioplegic solution after aortic cross-clamping (after the onset of
acute myocardial ischaemia), or at the time of aortic declamping (at
the time of myocardial reperfusion). It is important to ensure that
the time elapsed between administering the preconditioning study
intervention and the time of aortic declamping (acute myocardial
reperfusion injury) does not exceed the 2–3 h, as this corresponds
to the cardioprotective window of protection elicited by IPC.

5.4 Endpoints to assess cardioprotection
For a clinical cardioprotection study in CABG patients, it is essential
to choose study endpoints which are most relevant to the cardiopro-
tective effects of the study intervention being investigated. For
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Table 4 Clinical studies which have failed to demonstrate any beneficial effect in CABG patients with a cardioprotective
intervention

Clinical study Therapeutic
intervention

n, number Primary outcome Notes

Sodium-hydrogen ion
exchange inhibitors

Boyce et al.,
GUARDIAN125

Oral cariporide or placebo
prior to surgery

1477, CABG Less CK-MB release
25% �risk of death and non-fatal MI at

36 days
Beneficial effect maintained at 6 months
post-surgery

Mentzer et al.,
EXPEDITION126

Oral cariporide or placebo
prior to surgery

5761, CABG Reduction in the primary endpoint of death
and MI
However, increase in mortality due to

cerebrovascular events

Off-target cerebral effects

Acadesine

Mangano et al.127 Acadesine given as IV
infusion and in the
cardioplegic solution

2695, CABG No difference in the primary endpoint of
cardiac death, MI, or stroke at 4 days

No difference in peri-operative MI (PMI),
but in the 100 patients who did have a
PMI (3.7%) patients, acadesine reduced
patient death

Newman et al.,
RED-CABG128

Acadesine given as IV
infusion and in
cardioplegic solution

3080, CABG No difference in the primary endpoint of
all-cause mortality, non-fatal stroke, or
severe left ventricular dysfunction at
Day 28

Trial stopped early because of futility
analysis indicating a very low likelihood of
a statistically significant efficacious
outcome

Pexelizumab

Verrier et al.,
PRIMO-CABG129

IV pexelizumab bolus prior
to CABG followed by
24 h infusion

2476, CABG Non-significant reduction in the primary
combined 30-day endpoint of death and
non-fatal MI

Only targets the anti-inflammatory
component of acute IRI

Smith et al.,
PRIMO-CABG2130

IV pexelizumab bolus prior
to CABG followed by
24 h infusion

4254, CABG No difference in the primary combined
30-day endpoint of death and non-fatal
MI

Only targets the anti-inflammatory
component of acute IRI

MI, myocardial infarction; TnI, Troponin I; TnT, Troponin T; h, hours.
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Table 5 Clinical studies investigating therapeutic interventions which have shown benefit in the setting of cardiac bypass or
major vascular surgery

Clinical study Therapeutic intervention n, number,
surgery

Primary outcome Notes

Positive studies Remote ischaemic conditioning

Cheung et al.131 Four 5-min inflations/deflations of
thigh cuff

37 children,
CHD

43% reduction in 72 h
AUC TnT

Reduced ventilation time and
inotrope requirements

Hausenloy et al.132 Three 5-min inflations/deflations of
the upper arm cuff

58 adults, CABG 43% reduction in 72 h
AUC TnT

Ali et al.133 Clamping of the right common iliac
artery for 10 min followed by
clamping of the left common iliac
artery for 10 min

82 adults, AAA 98% reduction in 7 days
AUC Trop I

Less acute kidney injury

Venugopal et al.134 Three 5-min inflations/deflations of
the upper arm cuff

45 adults, CABG 42% reduction in 72 h
AUC TnT

Wagner et al.135 Three 5-min inflations/deflations of
the upper arm cuff 18 h prior to
surgery

67 adults,
CABG+AVR

Reduction in peak Trop-I
at 8 h

First demonstration of delayed RIC in
this clinical setting
St Thomas’ crystalloid cardioplegia

Thielmann et al.136 Three 5-min inflations/deflations of
the upper arm cuff

53 adults, CABG 45% reduction in 72 h
AUC TnI

Bretschneider crystalloid cardioplegia
used

Li et al.137 Three 5-min inflations/deflations of
the upper arm cuff after aortic
cross-clamp

82, valve surgery
only

Reduction in peak TnT at
30 min

First demonstration of delayed RIC in
this clinical setting
However, when RIC protocol

delivered prior to CABG surgery,
no difference in peak Trop T

Choi et al.138 Three 10-min inflations/deflations of
thigh arm cuff

76, valve surgery Reduction in peak
CK-MB at 24 h

Wu et al.139 Three 5-min inflations/deflations of
the upper arm cuff with
two-10 min inflations/deflations of
thigh cuff

75, MVR Reduced peak TnI at 6,
12, 24, 48, 72 h

RIC of arm did not reduce TnI
First demonstration that

combining arm and leg RIC more
effective that arm alone

Kottenberg et al.140 Three 5-min inflations/deflations of
the upper arm cuff

72 adults, CABG 50% reduction in 72 h
AUC TnI with
Isoflurane but not
Propofol.

Bretschneider crystalloid cardioplegia
used

Xie et al.141 Three 5-min inflations/deflations of
the upper arm cuff

73 adults, valve
surgery

43% reduction in 72 h
AUC TnI

Heusch et al.18 Three 5-min inflations/deflations of
the upper arm cuff

23 adults, CABG A significant reduction in
72 h AUC TnI

Bretschneider crystalloid cardioplegia
used

Negative studies Remote ischaemic conditioning

Rahman et al.142 Three 5-min inflations/deflations of
the upper arm cuff

162 adults,
CABG

No difference in 48 h
AUC TnT

RIC protocol administered at the time
of the surgical incision
IV GTN given to all patients
Sevoflurane and propofol both

used for maintenance anaesthesia

Li et al.137 Three 5-min inflations/deflations of
the upper arm cuff

82, valve surgery
only

No difference in peak
TnT at 30 min

Isoflurane and propofol both used for
maintenance anaesthesia
However, when RIC protocol

delivered after aortic cross-clamp
there was a significant reduction in
peak Trop T

Karuppasamy et al.143 Three 5-min inflations/deflations of
the upper arm cuff

53 adults, CABG No difference in 48 h
AUC TnI or CK-MB

Isoflurane and propofol both used for
maintenance anaesthesia

Wu et al.139 Three 5-min inflations/deflations of
the upper arm cuff

75, MVR No different in peak
Trop I

RIC did not reduce TnI unless except
for combined arm and leg RIC

Luchinetti et al.144 Four 5-min inflations/deflations of
thigh cuff

57, CABG No difference in hsTnT Propofol used during induction and
isoflurane used for maintenance
anaesthesia

Young et al.145 Three 5-min inflations/deflations of
the upper arm cuff

96 adults, CABG Higher plasma levels of
hsTnT at 6 and 12 h
with RIC

RIC protocol administered at the time
of surgical incision
Isoflurane and propofol both used
for maintenance anaesthesia

Continued
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proof-of-concept clinical studies, this will most likely include surrogate
endpoints of cardioprotection such as the magnitude of peri-operative
myocardial injury (using 72 h AUC cardiac troponins), inotrope
requirements, and left ventricular systolic function (which should be
measured both acutely and also after 3–4 months to allow for any re-
covery of LV contractile function from the effects of CABG surgery).
In the recently published ‘Third Universal Definition of Myocardial In-
farction’,45 MI associated with CABG has been arbitrarily defined as an
elevation of cardiac biomarker values .10 × 99th percentile URL in
patients with normal baseline Troponin values (,99th percentile
URL), associated with either (i) new pathological Q-waves or new
LBBB or (ii) angiographic documented new graft or new native coron-
ary artery occlusion or (iii) imaging evidence of new loss of viable
myocardium or new regional wall motion abnormality.

In CABG patients, where vital organs other than the heart are also
subjected to acute IRI, there is an opportunity to investigate whether
the study intervention can also confer protection against the detri-
mental effects of IRI in the lung (measure the ventilation time),
brain (assess cognitive function), and kidney (incidence of acute
kidney injury).

Once the proof-of-concept clinical study has demonstrated a bene-
ficial effect with a particular study intervention with respect to surro-
gate endpoints of cardioprotection, the next objective is to determine
whether the study intervention can actually improve clinical outcomes
in cardiopulmonary bypass surgery patients as evidenced by reducing

MACEs. When designing the larger clinical outcome studies, it is pref-
erable to choose MACEs which are most relevant to the cardiopro-
tective effects of the study intervention. Combined rates of cardiac
death and hospitalization for heart failure may be the most relevant
for CABG patients as a combined primary study endpoint, whereas
rates of coronary revascularization, non-fatal MI, and stroke may be
less relevant and unlikely to be influenced by a cardioprotective inter-
vention, but these data can be used to assess the safety of the study
intervention.

6. Summary and conclusions
Previous attempts to protect the heart against the detrimental effects
of acute IRI in patients with CHD have been largely disappointing.
One major contributing factor for this failure to translate cardiopro-
tective interventions discovered in animal studies into the clinical
setting can be attributed to problems with the clinical study design.
In this ESC Working Group Cellular Biology of the Heart Position
Paper, we provide recommendations to help optimize the design of
clinical cardioprotection studies in STEMI and CABG patients (see
Tables 6 and 7), which take into account the experience from previ-
ously published pre-clinical and clinical data. The hope would be to
improve the translation of cardioprotective strategies into the clinical
setting for the benefit of CHD patients.
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Table 5 Continued

Clinical study Therapeutic intervention n, number,
surgery

Primary outcome Notes

Lomivorotov et al.146 Three 5-min inflations/deflations of
the upper arm cuff

80 adults, CABG No difference in Trop I
or CK-MB

Isoflurane and propofol both used for
maintenance anaesthesia
Improved cardiac index

Ischaemic postconditioning

Luo et al.147 2 × 30 s cycles of aortic
cross-clamping

24 children,
CHD

Reduction in TnI and
CK-MB at 4 h
post-IPost

First study to show efficacy with IPost
in cardiac bypass surgery

Luo et al.148 3 × 30 s cycles of aortic
cross-clamping

50 adults, AVR Reduction in CK-MB but
not TnI

IPost also resulted in a reduction in
inotrope requirement

Li et al.149 2 × 30 s cycles of aortic
cross-clamping

99 children,
CHD

Reduction in TnI at 4 h
post-IPost

IPost also resulted in a 44% reduction
in ventilation time and 40%
reduction in inotrope requirement

Glucose insulin potassium (GIK) therapy

Ranasinghe et al.150 Iv GIK given prior to CABG surgery
until 6 h after aortic clamp removal
plus or minus IV T3 (given on
removal of aortic clamp for 6 h)

440 adults,
CABG

Both GIK and T3 therapy
increased cardiac
index, and reduced
TnI at 6 and 12 h

Inhaled anaesthetics

Symons and Myles151,
Meta-analysis of 27 studies

Isoflurane, sevoflurane, desflurane
and enflurane

2979, CABG Better LV function
Less inotropes
Lower Trop I levels

Shorter duration of mechanical
ventilation
Shorter hospital stay

Yu and Beattie152,
Meta-analysis of 32 studies

Sevoflurane, desflurane 2841, CABG Less TnI at 6, 12, 24, and
48 h

Landoni et al.153, Meta-analysis
of 21 studies

Sevoflurane, desflurane 1922, CABG Decreased incidence and
magnitude of PMI
Shorter ITU and

hospital stay

Less inotrope and ventilation
requirements
A reduction in mortality

AVR, aortic valve replacement; CHD, congenital heart disease surgery; PMI, peri-operative MI; MI, myocardial infarction; MVR, mitral valve replacement, TnI, Troponin I; TnT, Troponin T;
h, hours.
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