33 research outputs found

    Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions

    Get PDF
    The phenomenon of ion mobility (IM), the movement/transport of charged particles under the influence of an electric field, was first observed in the early 20th Century and harnessed later in ion mobility spectrometry (IMS). There have been rapid advances in instrumental design, experimental methods, and theory together with contributions from computational chemistry and gas-phase ion chemistry, which have diversified the range of potential applications of contemporary IMS techniques. Whilst IMS-mass spectrometry (IMS-MS) has recently been recognized for having significant research/applied industrial potential and encompasses multi-/cross-disciplinary areas of science, the applications and impact from decades of research are only now beginning to be utilized for "small molecule" species. This review focuses on the application of IMS-MS to "small molecule" species typically used in drug discovery (100-500 Da) including an assessment of the limitations and possibilities of the technique. Potential future developments in instrumental design, experimental methods, and applications are addressed. The typical application of IMS-MS in relation to small molecules has been to separate species in fairly uniform molecular classes such as mixture analysis, including metabolites. Separation of similar species has historically been challenging using IMS as the resolving power, R, has been low (3-100) and the differences in collision cross-sections that could be measured have been relatively small, so instrument and method development has often focused on increasing resolving power. However, IMS-MS has a range of other potential applications that are examined in this review where it displays unique advantages, including: determination of small molecule structure from drift time, "small molecule" separation in achiral and chiral mixtures, improvement in selectivity, identification of carbohydrate isomers, metabonomics, and for understanding the size and shape of small molecules. This review provides a broad but selective overview of current literature, concentrating on IMS-MS, not solely IMS, and small molecule applications. © 2012 Wiley Periodicals, Inc

    An Isolated Stellar-Mass Black Hole Detected Through Astrometric Microlensing

    Get PDF
    We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t_E ~ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462, in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of six years, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry shows a parallactic signature of the effect of the Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 +/- 1.3 M_Sun and a distance of 1.58 +/- 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic-disk stars at similar distances by an amount corresponding to a transverse space velocity of ~45 km/s, suggesting that the BH received a modest natal 'kick' from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial-velocity measurements of Galactic X-ray binaries, and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first ever for an isolated stellar-mass BH using any technique

    Sermones, conferencias y otras obras del Ilmo. Sr. Fenelau, arzobispo de Cambray

    No full text
    Feneláu, véase : Salignac de la Mothe-Fenela

    Systema theologicum ad mentem S. Anselmi ...

    No full text
    Sign.: \p8\s, 2 \p4\s, A-Z\p8\s, Aa-Ee\p8\s, Ff\p6\
    corecore