83 research outputs found

    La Repubblica sulla riva del Po. Guastalla dalla liberazione al 1948

    Get PDF
    Attraverso le fonti orali, una ricostruzione della storia di una cittadina padana e delle sue campagne durante la Liberazione e il secondo dopoguerra, con l'avvio delle nuove forme di partecipazione civile democratich

    Dynamics of an inhomogeneous quantum phase transition

    Full text link
    We argue that in a second order quantum phase transition driven by an inhomogeneous quench density of quasiparticle excitations is suppressed when velocity at which a critical point propagates across a system falls below a threshold velocity equal to the Kibble-Zurek correlation length times the energy gap at freeze-out divided by â„Ź\hbar. This general prediction is supported by an analytic solution in the quantum Ising chain. Our results suggest, in particular, that adiabatic quantum computers can be made more adiabatic when operated in an "inhomogeneous" way.Comment: 7 pages; version to appear in a special issue of New J. Phy

    Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of z > 1 dynamical exponent

    Full text link
    We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z = 2. Just like in the case z = 1 considered in New J. Phys. 12, 055007 (2010) when a critical front propagates much faster than the maximal group velocity of quasiparticles vq, then the transition is effectively homogeneous: density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for z = 1, the inhomogeneous transition becomes adiabatic not below vq but a lower threshold velocity v', proportional to inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold v' is nonzero despite vanishing minimal group velocity of low energy quasiparticles. In the adiabatic regime below v' the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain.Comment: 10 pages, 6 figures, improved version accepted in NJ

    Many-body localization and thermalization in the full probability distribution function of observables

    Get PDF
    We investigate the relation between thermalization following a quantum quench and many-body localization in quasiparticle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)], we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability-breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long time distribution functions appear to always agree {\it qualitatively} with the equilibrium ones, {\it quantitative} agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.Comment: 18 pages, 11 figure

    Sea buckthorn bud extract displays activity against cell-cultured Influenza virus

    Get PDF
    Introduction: Vaccines and antiviral drugs are the most widely used methods of preventing or treating Influenza virus infection. The role of sea buckthorn (SBT) bud dry extract as a natural antiviral drug against Influenza was investigated. Methods: Influenza virus was cultured in the MDCK cell line, with or without SBT bud extract, and virus growth was assessed by HA and TCID50 virus titration in terms of cytopathic effect on cells. Several concentrations of extract were tested, the virus titer being measured on day 4 after infection. Results: After infection, the virus titer in the control sample was calculated to be 2.5 TCID50/ml; treatment with SBT bud extract reduced the virus titer to 2.0 TCID50/ml at 50 ÎĽg/ml, while the HA titer was reduced from 1431 (control) to 178. Concentrations lower than 50ÎĽg/ml displayed an inhibitory effect in the HA assay, but not in the TCID50 virus titration; however, observation of the viral cultures confirmed a slowdown of viral growth at all concentrations. Discussion: Natural dietary supplements and phytotherapy are a growing market and offer new opportunities for the treatment of several diseases and disorders. These preliminary experiments are the first to show that SBT bud extract is able to reduce the growth of the Influenza A H1N1 virus in vitro at a concentration of 50 ÎĽg/ml. This discovery opens up the possibility of using SBT bud extract as a valid weapon against Influenza and, in addition, as the starting-point for the discovery of new drugs

    Applicability of the generalized Gibbs ensemble after a quench in the quantum Ising chain

    Get PDF
    We investigate the out-of-equilibrium dynamics of the one-dimensional quantum Ising model after a sudden quench in the transverse magnetic field. While for a translationally invariant system the statistical description of the asymptotic order parameter correlations after the quench can be performed in terms of the generalized Gibbs ensemble, we show that a breaking of translational invariance, e.g. by perturbing the boundary conditions, disrupts its validity. This effect, which of course vanishes in the thermodynamic limit, is shown to be very important in the presence of disorder

    Localization and Glassy Dynamics Of Many-Body Quantum Systems

    Get PDF
    When classical systems fail to explore their entire configurational space, intriguing macroscopic phenomena like aging and glass formation may emerge. Also closed quanto-mechanical systems may stop wandering freely around the whole Hilbert space, even if they are initially prepared into a macroscopically large combination of eigenstates. Here, we report numerical evidences that the dynamics of strongly interacting lattice bosons driven sufficiently far from equilibrium can be trapped into extremely long-lived inhomogeneous metastable states. The slowing down of incoherent density excitations above a threshold energy, much reminiscent of a dynamical arrest on the verge of a glass transition, is identified as the key feature of this phenomenon. We argue that the resulting long-lived inhomogeneities are responsible for the lack of thermalization observed in large systems. Such a rich phenomenology could be experimentally uncovered upon probing the out-of-equilibrium dynamics of conveniently prepared quantum states of trapped cold atoms which we hereby suggest

    Hydrodynamics of local excitations after an interaction quench in 1D cold atomic gases

    Get PDF
    We discuss the hydrodynamic approach to the study of the time evolution -induced by a quench- of local excitations in one dimension. We focus on interaction quenches: the considered protocol consists in creating a stable localized excitation propagating through the system, and then operating a sudden change of the interaction between the particles. To highlight the effect of the quench, we take the initial excitation to be a soliton. The quench splits the excitation into two packets moving in opposite directions, whose characteristics can be expressed in a universal way. Our treatment allows to describe the internal dynamics of these two packets in terms of the different velocities of their components. We confirm our analytical predictions through numerical simulations performed with the Gross-Pitaevskii equation and with the Calogero model (as an example of long range interactions and solvable with a parabolic confinement). Through the Calogero model we also discuss the effect of an external trapping on the protocol. The hydrodynamic approach shows that there is a difference between the bulk velocities of the propagating packets and the velocities of their peaks: it is possible to discriminate the two quantities, as we show through the comparison between numerical simulations and analytical estimates. In the realizations of the discussed quench protocol in a cold atom experiment, these different velocities are accessible through different measurement procedures. ArXI

    Adiabatic perturbation theory and geometry of periodically-driven systems

    Full text link
    We give a systematic review of the adiabatic theorem and the leading non-adiabatic corrections in periodically-driven (Floquet) systems. These corrections have a two-fold origin: (i) conventional ones originating from the gradually changing Floquet Hamiltonian and (ii) corrections originating from changing the micro-motion operator. These corrections conspire to give a Hall-type linear response for non-stroboscopic (time-averaged) observables allowing one to measure the Berry curvature and the Chern number related to the Floquet Hamiltonian, thus extending these concepts to periodically-driven many-body systems. The non-zero Floquet Chern number allows one to realize a Thouless energy pump, where one can adiabatically add energy to the system in discrete units of the driving frequency. We discuss the validity of Floquet Adiabatic Perturbation Theory (FAPT) using five different models covering linear and non-linear few and many-particle systems. We argue that in interacting systems, even in the stable high-frequency regimes, FAPT breaks down at ultra slow ramp rates due to avoided crossings of photon resonances, not captured by the inverse-frequency expansion, leading to a counter-intuitive stronger heating at slower ramp rates. Nevertheless, large windows in the ramp rate are shown to exist for which the physics of interacting driven systems is well captured by FAPT.The authors would like to thank M. Aidelsburger, M. Atala, E. Dalla Torre, N. Goldman, M. Heyl, D. Huse, G. Jotzu, C. Kennedy, M. Lohse, T. Mori, L. Pollet, M. Rudner, A. Russomanno, and C. Schweizer for fruitful discussions. This work was supported by AFOSR FA9550-16-1-0334, NSF DMR-1506340, ARO W911NF1410540, and the Hungarian research grant OTKA Nos. K101244, K105149. M. K. was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are pleased to acknowledge that the computational work reported in this paper was performed on the Shared Computing Cluster which is administered by Boston University's Research Computing Services. The authors also acknowledge the Research Computing Services group for providing consulting support which has contributed to the results reported within this paper. The study of the driven non-integrable transverse-field Ising model was carried out using QuSpin [185] - an open-source state-of-the-art Python package for dynamics and exact diagonalization of quantum many body systems, available to download here. (FA9550-16-1-0334 - AFOSR; DMR-1506340 - NSF; W911NF1410540 - ARO; K101244 - Hungarian research grant OTKA; K105149 - Hungarian research grant OTKA; DE-AC02-05CH11231 - Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab)https://arxiv.org/pdf/1606.02229.pd

    ANALISIS SISTEM PENGENDALIAN INTERN PENERIMAAN DAN PENGELUARAN KAS PADA PT. ASURANSI BRINGIN SEJAHTERA ARTAMAKMUR CABANG MEDAN

    Get PDF
    Penelitian ini bertujuan untuk mengetahui sejauh mana sistem pengendalian intern penerimaan dan pengeluaran kas yang dilakukan PT. Asuransi Bringin Sejahtera Artamamakmur Cabang Medan dalam menjalankan kegiatan usahanya guna mencapai tujuan perusahaan. Teori yang digunakan dalam penelitian ini adalah teori Mulyadi. Metode yang digunakan dalam penelitian ini adalah Penelitian Kualitatif, dengan teknik analisis data Deskriptif, yaitu dengan terlebih dahulu mengumpulkan data, mengklasifikasikan serta menafsirkan data sehingga dapat memberikan gambaran yang jelas mengenai masalah yang diteliti. Dalam pengumpulan data menggunakan teknik wawancara dan dokumentasi, dimana data yang diambil merupakan data primer yang berupa bukti catatan atau laporan historis yang telah tersusun dalam arsip yang dipublikasi maupun yang tidak dipublikasikan. Hasil penelitian ini menunjukan bahwa pengendalian intern penerimaan dan pengeluaran kas PT. Asuransi Bringin Sejahtera Artamakmur Cabang Medan belum sepenuhnya memenuhi unsur-unsur pengendalian intern, karena masih adanya beberapa hal yang tidak sesuai dengan teori yang ada. Diantaranya, masih ada perangkapan tugas yang dilakukan bagian kasir dengan bagian akuntansi. Demikian juga dalam hal pembagian tugas, dimana bagian kasir diberi tanggung jawab dalam hal penagihan premi, yang sebaiknya tugas ini bukan dipegang unit tersebut. Praktik-praktik ini ditakutkan akan mengurangi keakuratan pencatatan dan juga akan membuka peluang terjadinya penyelewengan terhadap kas yang mengakibatkan kerugian perusahaan. Hal ini juga akan mengurangi keefektifan dalam praktik kerja bagian kasir, karena terlalu banyak memegang fungsi
    • …
    corecore