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Abstract. We investigate the relation between thermalization following a
quantum quench and many-body localization in quasi-particle space in terms
of the long-time full distribution function of physical observables. In particular,
expanding on our recent work (Canovi et al 2011 Phys. Rev. B 83 094431),
we focus on the long-time behavior of an integrable XXZ chain subject to
an integrability-breaking perturbation. After a characterization of the breaking
of integrability and the associated localization/delocalization transition using
the level spacing statistics and the properties of the eigenstates, we study the
effect of integrability breaking on the asymptotic state after a quantum quench
of the anisotropy parameter, looking at the behavior of the full probability
distribution of the transverse and longitudinal magnetization of a subsystem.
We compare the resulting distributions with those obtained in equilibrium at an
effective temperature set by the initial energy. We find that, while the long-time
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distribution functions appear to always agree qualitatively with the equilibrium
ones, quantitative agreement is obtained only when integrability is fully broken
and the relevant eigenstates are diffusive in quasi-particle space.
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1. Introduction

The physics of thermalization in isolated quantum systems has a long and debated history.
Recent ground-breaking experiments on the non-equilibrium dynamics of low-dimensional
condensates [1–3] triggered a great deal of attention on this topic, which, up to then, was mostly
addressed as an academic question, in connection with the notion of quantum chaos [4–9]. The
demonstration of the lack of thermalization in two colliding bosonic clouds confined in a cigar-
shaped potential [3], and the attribution of this observation to quantum integrability, generated
a great deal of theoretical activity devoted to the study of the connections between integrability,
ergodicity and thermalization in strongly correlated quantum systems [10, 11]. The main focus
of efforts has been on the characterization of thermalization resulting from the simplest possible
non-equilibrium protocol: an abrupt change in time of one Hamiltonian control parameter, that
is, a quantum quench.

At long times after the quench, the lack of thermalization in an integrable system can
be seen as a consequence of the sensitivity to the specifics of the initial state, which are
encoded in the values of the constants of motion along the whole time evolution. Following the
prescriptions of Jaynes [12], this qualitative understanding was made rigorous by the proposal
for describing the steady state after a quench by means of a generalized Gibbs ensemble, which
keeps track of the initial value of all the non-trivial constants of motion [13]. The conditions
for applicability and the drawbacks of this approach have been extensively tested (see [10] and
references therein). If the system is in turn far enough from the integrable limit, thermalization
is expected in general to occur. This expectation is based on the eigenstate thermalization
hypothesis, stating that expectation values of few-body observables in a given eigenstate are
equal to thermal averages with the corresponding mean energy [4, 5], and it has been tested by
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means of several numerical techniques (see [10, 14] and references therein). The issue is still
under debate [15–17].

A natural scenario to describe the effects of integrability and its breaking on thermalization
is that of many-body localization. Building on a series of seminal papers in disordered electron
systems [18–20], the interplay between integrability breaking and many-body localization has
recently been studied in the context of thermalization [21–24]. In analogy to a construction
originally conceived for disordered electron systems, the quasi-particle space can be thought
of as a multidimensional lattice where each point is identified by the occupation of the various
quasi-particle modes. As long as states are localized in quasi-particle space, the system behaves
as integrable: any initial condition spreads into a few sites maintaining strong memory of the
initial state. Thermalization will not occur. At the same time, qualitative behavior of local and
non-local operators in the quasi-particle is naturally going to be different: locality in quasi-
particle space implies sensitivity to the localization/delocalization of states, while non-local
operators display always an effective asymptotic thermal behavior. Once a strong enough
integrability-breaking perturbation hybridizing the various states is applied, the consequent
delocalization in quasi-particle space will lead to thermalization. An initial state is allowed
to diffuse into all states in a micro-canonical energy shell generating a cascade of all possible
lower energy excitations.

While this scenario appears physically sound, it does not give information on what is
the degree of sensitivity of the various physical quantities of a many-body quantum system
to integrability breaking and thermalization. This question is particularly important in view
of the fact that recent studies on the dynamics of quantum field theories lead to the proposal
of a dynamics of thermalization comprising two stages [25]: first the system decays to a so-
called pre-thermalized state, where the expectation value of certain macroscopic observables is
to a good approximation ‘thermal’, while the distribution function of the elementary degrees
of freedom is not [25–27]. At a second stage, when the energy is efficiently redistributed by
scattering processes, real thermalization eventually occurs. Pre-thermalization has been shown
to occur theoretically for quantum quenches in a variety of systems [26–32]. Moreover, the
study of pre-thermalization in weakly perturbed integrable systems has shed light on the nature
of the pre-thermalized state, which is nothing but a close relative of the non-thermal steady
state attained asymptotically by its integrable counterpart [29]. Signatures of pre-thermalization
have been observed in split one-dimensional condensates [33], which have been shown to
be characterized by an intermediate, pre-thermalized stationary state. The latter has been
investigated by studying the full probability distribution of the interference contrast [33, 34],
which turns out to have a closely thermal behavior, even though the distribution of quasi-
particles is non-thermal.

The purpose of this paper is to provide a detailed characterization of the effect of
integrability breaking on the asymptotic state after a quantum quench, not only by studying
the average expectation values of certain selected observables, but also focusing on their full
probability distribution function (FPDF), following the suggestions that were recently put
forward in [34]. We stress that the latter quantity is experimentally accessible by studying shot-
to-shot variations of a physically measurable observable, as has been performed for the FPDF
of matter-wave interference in a coherently split Bose gas [33]. In the first part, we introduce
our model and discuss the long-time limit of two kinds of observables, thus summarizing the
results contained in [22]; in the second part, we take a considerable step forward, by extending
the discussion to quantities which are closer to actual experiments [33] and clarifying more
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precisely to what extent thermalization takes place. We will show that, in the presence of many-
body localization, the entire probability distribution function describes a canonical distribution
of the degrees of freedom.

In particular, we consider a quantum XXZ spin-1/2 chain undergoing a sudden quench
of the anisotropy, in the presence of an integrability breaking term in the form of a random
transverse field. As the strength of the integrability-breaking term is cranked up, the many-
body level statistics has a well-defined transition from Poisson (integrable) to Wigner–Dyson
(WD; non-integrable), closely associated with the localized/diffusive character of eigenstates
in quasi-particle space [22]. Focusing on the asymptotic state attained after a quench from
the antiferromagnetic to the critical phase, we compute the FPDF of both transverse and
longitudinal magnetization densities in a given spatial interval by means of exact diagonalization
techniques. We compare the results with the FPDF of the same observables obtained in a
canonical ensemble, with an effective temperature fixed by the initial energy. We show that,
while for both weak and strong integrability breaking the FPDFs attained after a quench agree
qualitatively with those obtained in the corresponding canonical ensemble, full quantitative
agreement for the whole distribution is only obtained whenever the level statistics in the bulk of
the spectrum is of WD type, corresponding to diffusive eigenstates in quasi-particle space.

This paper is organized as follows. In section 2, we define the models and the details of
the quantum quench protocol. In the following two sections, we first discuss the spectrum of the
Hamiltonian, which provides insight into the localization/delocalization transition (section 3),
and then briefly discuss how the long-time asymptotics of different correlation functions is
affected by the localization/delocalization in many-body space (section 4), thus summarizing
the results of [22]. In section 5, we take a step further: we define the FPDF of the transverse
and longitudinal spin and discuss their behavior in the asymptotic long-time state attained after
a quench (diagonal ensemble). Finally, in section 6 we present our conclusions.

2. The model

Throughout this paper we will consider a quantum quench described by a time-dependent
Hamiltonian:

H(t)≡H0[g(t)] +Hib, (1)

where

g(t)=

{
g0 for t < 0,

g for t > 0.
(2)

The HamiltonianH(t) is composed of an integrable partH0[g(t)] and an integrability-breaking
term given by Hib. Concerning the integrable part, we will consider the anisotropic spin-1/2
Heisenberg chain of length L (also called the XXZ model) with open boundary conditions:

H0(Jz)=

L−1∑
i=1

[
J
(
σ x

i σ
x
i+1 + σ y

i σ
y

i+1

)
+ Jzσ

z
i σ

z
i+1

]
, (3)

where σ αi (α = x, y, z) are the spin-1/2 Pauli matrices on site i , J is the planar xy-coupling,
while Jz is the nearest-neighbor anisotropy parameter in the z direction, which coincides with
the parameter g that will be quenched at time t = 0. In what follows, we take h̄ = kB = 1,
we adopt J = 1 as the energy scale and work in the zero total magnetization sector along
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the z-axis. This model is integrable by the Bethe ansatz [35]. The zero-temperature phase
diagram is characterized by three regions: a gapped ferromagnetic phase (Jz <−1), a gapped
antiferromagnetic phase (Jz > 1) and a gapless critical phase for −16 Jz 6 1. In this gapless
region, the critical exponents depend on Jz and the system is characterized by a quasi-long-
range order in the xy plane [36]. In the following, we break the integrability of the model by
applying a random magnetic field:

Hib =1

L∑
i=1

hiσ
z
i , (4)

where the quantities hi are randomly chosen in the interval [−1, 1].
We point out that the model described in equations (3) and (4) is equivalent to a system of

hard-core bosons, as one can show by applying the Jordan–Wigner transformation. Therefore
it is also interesting from an experimental perspective, since cold-atom gases in one dimension
and at low densities behave like impenetrable bosons [37].

After investigating the transition from integrability to non-integrability, we will address the
long-time behavior of the system following a sudden quench of Jz. In this context, knowledge
of a substantial part of the spectrum is required, making it necessary to resort to a standard
exact diagonalization technique. We will diagonalize Hamiltonian systems with up to 14 sites
and only consider the zero magnetization sector, thus working in Hilbert spaces with up to 3432
states.

The zero-temperature phase diagram of the XXZ model in the presence of disorder is
well established [38]. Much less is known at infinite temperature: the phase diagram has been
conjectured to be composed of two phases, a non-ergodic many-body localized phase (in real
space) at 1>1crit and an ergodic one at 1<1crit, where 1crit

∼ 6–8 at Jz = 1 [21, 39]. Our
results indicate the presence of a second non-ergodic localized phase (in quasi-particle space)
for 1≡1? close to zero that crosses over to the ergodic phase upon increasing 1. The fate of
this crossover in the thermodynamic limit and the eventual value of the critical 1? are yet to be
determined7.

As the strength of 1 is varied, the system deviates from integrability, as discussed
in more detail in section 3, where the spectrum and the properties of the eigenstates are
quantitatively investigated. Indeed, as the level statistics changes from Poissonian (typical of
integrable systems) to WD (characterized by the level repulsion of non-integrable systems), the
eigenstates are also modified. More specifically, when the system is integrable they are localized
in quasi-particle space, while they become diffusive as the system becomes non-integrable.
This transition affects the dynamics of the system. As summarized in section 4, there is a
connection between the onset of thermalization and the many-body localization transition of
the eigenstates (for further details, see [22]). Later we will go one step forward and investigate
how the localization/delocalization transition emerges in the FPDF of operators [25–27].

3. Spectral characterization of the integrability-breaking crossover

In this section, we follow the approach of [22] and consider the properties of the eigenvalues and
eigenvectors of the Hamiltonian in equation (1) for a fixed value of the anisotropy Jz = 0.5, and

7 While for the parameters used in this paper the low-lying eigenstates are localized in the thermodynamic limit,
in the following we consider system sizes smaller than the localization length.
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show that the integrability breaking is associated with a localization/delocalization transition in
quasi-particle space.

3.1. Statistics of the energy level spacings

In finite-size systems, it is commonly believed that the statistical distribution of the energy
spacings of the quantum energy levels directly reflects the integrability properties of the
model [40]. In particular, an integrable quantum system is typically signaled by the presence
of a Poissonian statistics in the distribution of its level spacings {sn}, sn ≡ En+1 − En being the
spacing between two adjacent levels normalized to the average level spacing,

PP(s)= e−s. (5)

Physically, this means that the eigenvalues of the Hamiltonian within a given symmetry sector
are allowed to cluster. In contrast, for non-integrable systems, level crossing is inhibited.
The level statistics has a WD distribution, which embeds the level repulsion in a power law:
lims→0 PWD(s)∼ sγ . More precisely, when anti-unitary symmetry is preserved, as in the present
case, the statistics is described by a Gaussian orthogonal ensemble [41]:

PWD(s)=
πs

2
e−

πs2
4 . (6)

By tuning the parameter 1, the XXZ chain undergoes a transition from Poissonian to WD
statistics. In a finite-size system, this transition takes the form of a smooth crossover which
can be studied within a specific energy shell, by means of the following level spacing indicator
(LSI) [8]:

ηw(E)≡

∫ s0

0 [P[E,E+W ](s)− PP(s)] ds∫ s0

0 [PWD(s)− PP(s)] ds
, (7)

where P[E,E+W ](s) is the level statistics computed in the window [E, E + W ], while s0 is the first
intersection point of PP(s) and PWD(s).

In figure 1, we show the level spacing distribution function P(s) for the levels with an
excitation energy less than a given cutoff, i.e. E < Ec (see the caption of figure 1). We see that
for small1 the distribution is closer to an exponential, while for1= 1 it almost coincides with
a WD distribution, and it is shifted toward larger values of the spacings. In the inset of figure 1,
we show ηw for different intensities of the integrability-breaking perturbation. As the strength
of the integrability-breaking term increases, the LSI approaches values close to unity for1∼ 1.
At large values of 1� Jz, the system tends to another integrable limit [42, 43], indeed we can
see that ηw decreases again for 1& 1. We note that only the states in the middle of the band
display level repulsion (i.e. values of ηw closer to unity), while states in extreme regions of the
spectrum do not. This comes as a consequence of the two-body interaction of the system, as
opposed to the behavior that is typically observed in full random matrices [44].

3.2. Inverse participation ratio versus the number of available states

Along with the Poisson-to-WD transition of the level spacing statistics, the eigenvectors also
undergo a transition in their statistical properties. Indeed, when the level statistics is Poissonian
and1 is small, the eigenstates of the Hamiltonian are close to those of the integrable XXZ chain.
In other words, they are localized in quasi-particle space. In contrast, when the statistics is WD,
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Figure 1. The main panel: level spacing statistics for three values of1, computed
for levels with excitation energy E with respect to the ground state up to
the cutoff energy Ec = 20 in our units. The black dotted and dashed-dotted
lines show the Poisson (equation (5)) and the WD (equation (6)) distributions,
respectively. Inset: LSI as defined in equation (7), evaluated in a microcanonical
shell of width W = 2. Following standard techniques adopted in quantum
chaos [41], we performed an unfolding of the energy spectrum for each instance.
For both plots data are for L = 14 and averages are performed over 5000 disorder
instances.

the eigenstates are delocalized in quasi-particle space. This picture can be made quantitative by
using the inverse participation ratio (IPR) [45–50]. Given a pure state |ψ〉 and an arbitrary basis
{|n〉} with N elements, the IPR is defined as [41]8

ξ(|ψ〉)=

(
N∑

n=1

|〈n|ψ〉|
4

)−1

. (8)

If a state is a superposition of nst basis states, the corresponding contribution to ξ is of the
order of nst. Interesting results emerge if one considers two different bases: (i) the ‘site basis’ or
‘computational basis’ of the eigenvectors of σ z

i with the constraint of zero total magnetization
and (ii) the ‘integrable basis’ of the eigenstates of the integrable model under investigation (the
XXZ chain with Jz = 0.5 and 1= 0). Given an eigenstate of H(Jz), we found that the IPR in
the integrable basis is of the order of unity if 1� Jz, and grows with increasing1. Eventually,
for large values of 1, the eigenstates of H(Jz) become diffusive superpositions, with random
phases and amplitudes, of the eigenstates of the integrable model. In contrast, in the site basis,
we found an opposite behavior, since the states of this basis approach the eigenstates of the
system at 1� Jz [22].

8 With this definition we fix the typo in [22], where there was a wrong factor 1/N in the definition. We remark
that the results shown in [22] are not affected by that mistake.
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Figure 2. IPR in the integrable basis ξI at 1= 0.1 (left panel) and at 1= 1
(right panel), as compared to the number of available eigenstates N in an energy
window of width W = 21. Data are for a chain of L = 14 sites. Average over
∼102 disorder realizations.

We can draw an intuitive picture of the localization/delocalization transition in quasi-
particle space by comparing the IPR in the integrable basis, in a given microcanonical shell,
with the number of available eigenstates N[E,E+W ] in the same shell. This is shown in figure 2.
The microcanonical shell has a width W = 21∼ V , where V is the typical matrix element of
the integrability-breaking perturbation. In quasi-integrable situations (1� 1, left panel), the
IPR is much lower than the available microcanonical states, thus meaning that the degree of
delocalization of the system is very low. In contrast, in a chaotic situation (1∼ 1, right panel),
the perturbation is able to hybridize nearly all the states in the microcanonical energy shell. We
point out that our approach has also recently been adopted to identify the emergence of chaos
in a very similar spin chain model [50, 51].

4. Long-time dynamics and observables

4.1. Energy scales involved in the quench

Let us now consider a sudden quench of the parameter g ≡ Jz, from Jz0 at time t 6 0 to Jz

at time t > 0, as in equation (2). We assume that the initial state |ψ0〉 of the system is the
ground state of H(Jz0). Since after the quench the Hamiltonian is time independent, the energy
is conserved and is given by E0 = 〈ψ0|H(Jz)|ψ0〉. For large values of Jz0, the ground state of the
Hamiltonian is the classical antiferromagnetic Néel state and the energy density E0/L converges
to a constant value, below the middle of the spectral band of the final Hamiltonian. This means
that the eigenstates ofH(Jz) involved in the time evolution of the system are only those lying in
the first half of the band. This is shown in figure 3, where the energy E0 after the quench from
an initial antiferromagnetic state (vertical lines) is compared with the number of available states
in a given microcanonical energy shell.
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Figure 3. The number of states in each microcanonical shell as compared to the
initial energy of the system. The energies in the x-axis have been rescaled on the
number L of sites, while the number of states N (E) is rescaled with the total
dimension of the Hilbert space in the zero magnetization sector d(L). Vertical
lines denote the energy E0(L) after the quench from an antiferromagnetic ground
state, obtained with Jz0 = 100 to Jz = 0.5 (the values of L in these vertical lines
increase from left to right). Different colors refer to different system sizes. We
used 1= 1 and W = 21. Averages have been performed over ∼ 103 random
instances of the magnetic field.

Following Rossini et al [52, 53], we then proceed to define an effective temperature
associated with the quench as the solution of the equality:

E0 ≡ 〈H(Jz)〉Teff = Tr[ρ(Teff)H(Jz)], (9)

where ρ(Teff) is the equilibrium density matrix at temperature Teff:

ρ(Teff)=
e−H(Jz)/Teff

Tr[e−H(Jz)/Teff]
. (10)

Equation (9) can be solved numerically for each realization of disorder and then averaged. As
shown in [22], the effective temperature increases with the quench strength |Jz − Jz0|, and tends
to saturate for large values of Jz, since the ground state approaches the antiferromagnetic Néel
state. As an example, for a system of L = 12 sites and a quench from Jz0 = 10 to Jz = 0.5
(which are the typical parameters we consider hereafter) the effective temperature at 1= 1.0 is
Teff = 3.4 ± 0.4 (units of J/kB), after averaging over 200 disorder instances.

4.2. Asymptotics of observables

The connection between the localization/delocalization transition and the onset of
thermalization deeply affects the dynamics following the quantum quench. A possible way to
test this interplay is to compare the long-time behavior of the system with the thermal behavior
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squares) expectation values of the two-spin correlation function nx(k) (left panel)
and nz(k) (right panel) as a function of the momentum k. Data are for L = 12
and disorder intensity1= 0.4. Here and in the remaining figures we will always
perform a quench from Jz0 = 10 to Jz = 0.5.

at the effective temperature Teff. This can be done at different levels. The first possibility is to
take a traditional point of view and study the correlation functions of a given observable, as we
illustrate now. A second more general (to be discussed in the following) approach consists in
investigating directly the FPDF of selected observables.

Let us start by considering the two-spin correlation functions constructed as expectation
values of the following operators:

nαk ≡
1

L

L∑
j,l=1

e2π i( j−l)k/Lσ αj σ
α
l (α = x, z). (11)

The average value predicted by the canonical ensemble at temperature Teff is given by

nαTeff
(k)≡ 〈nαk 〉Teff = Tr[ρ(Teff) nαk ]. (12)

The asymptotic value after the quench is found from the diagonal ensemble [14, 54, 55]

nαQ(k)≡ lim
t→∞

〈ψ(t)|nαk |ψ(t)〉 =

∑
i

|ci |
2
〈φi |n

α
k |φi〉, (13)

where |ψ(t)〉 = e−iH(Jz)t |ψ0〉 is the state of the system at time t , while ci = 〈ψ0|φi〉 is the i th
component of the initial state |ψ0〉 in the basis of the eigenstates {|φi〉} of the final Hamiltonian
H(Jz). In figure 4, we compare the expectation values in the diagonal ensemble (black data) of
these operators with those predicted by the canonical ensemble at the temperature Teff (red data).
We have chosen 1= 0.4, so that the system is still close to integrability and one can appreciate
the discrepancies with the thermal behavior only for the correlator of σ z

k (right panel). On the
other hand, for σ x

k (left panel) quantitative agreement with the thermal ensemble is observed.
Note that the different behavior of the two observables is most visible at k = π , where the
system is less sensitive to boundary effects. As discussed in [22], the different behaviors of
these correlators at long times could be related to the different nature of the operators involved
in the low-energy limit [52, 53]. Indeed, in the low-energy limit [35], where the XXZ chain
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Figure 5. Residuals δnx
π (black curves) and δnz

π (red curves) between the
diagonal and the canonical ensemble predictions. Different symbols refer to
different system sizes, as depicted in the caption. Averages over 200 instances
are performed.

critical phase maps onto a Luttinger liquid and quasi-particles are approximately free bosons,
σ z

k turns out to be a local operator, coupling a finite number of quasi-particle states, while σ x
k

couples all the states and is thus non-local.
To be more quantitative, we define the absolute ‘residual’ of the operator nαk between the

diagonal and the canonical ensemble:

δnαk = |nαQ(k)− nαTeff
(k)|. (14)

In figure 5 we show such a quantity at k = π , as a function of 1. The residual for the non-local
operator, δnx

π , does not depend substantially on the strength of 1, nor on the size of the system.
In contrast, the residual of the local operator, δnz

π , decreases significantly as the system departs
from integrability and shows a minimum for 1̄= 1. For larger values of1 the residual δnz

π starts
to grow. This is consistent with the fact that for large values of1 the system approaches another
integrable limit. Moreover, the quantity δnz

π and in particular the position of the minimum 1̄

are size dependent. Given the numerical limitations of exact diagonalization, we cannot guess
what is the limit of 1̄(L) when L → ∞. The value 1̄ of the perturbation strength at which the
system is closer to a thermal behavior, at a given size, corresponds to the situation in which
delocalization in Fock space is most pronounced.

5. Full probability distribution functions

The study of FPDFs of observables, instead of only their average value, has attracted much
interest, both theoretically [34, 56–58] and, very recently, experimentally [33]. Here we want
to study the probability distribution function of the transverse and of the longitudinal spin of a
subsystem S of size R 6 L .
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The xy transverse-spin magnitude of a subsystem S made of R spins is given by

(Ŝ⊥

R )
2
=

∣∣∣Ŝx
R + iŜy

R

∣∣∣2 =

∣∣∣∣∑
j∈S

(Ŝx
j + iŜy

j )

∣∣∣∣2
=

(∑
j∈S

σ +
j σ

−

j

)
+

( ∑
j<l∈S

(
σ +

j σ
−

l + σ−

j σ
+
l

) )
, (15)

where Sαi =
1
2σ

α
i is a spin operator on site i and direction α, while spins inside S are chosen

contiguously in the central portion of the total system and are identified by the indexes
j =

L
2 −

R
2 + 1, . . . , L

2 + R
2 . This is exactly the same quantity considered in [34], where the full

distribution of quantum noise in Ramsey interference experiments is studied in detail.
The z component of the spin for a subsystem of size R is given by

σ z
R ≡

∑
j∈S

σ z
j . (16)

Since the eigenvectors of σ z
R coincide with the states of the computational basis, the

computational cost of evaluating the probability distribution of this quantity is less than that
for (Ŝ⊥

R )
2.

5.1. Asymptotics of the full probability distribution functions

Similarly to what we have done in section 4.2 for the correlation functions, we now consider the
behavior of the FPDFs in the diagonal [14, 54] and in the canonical ensemble at the effective
temperature Teff, and compare the results.

The FPDF can be evaluated in the canonical ensemble at the effective temperature Teff

according to

Pα
Teff
(sR)=

∑
n

(
Tr
[
ρ(Teff)PαR,n

] )
δ(sR − sR,n)

=

∑
n

pαTeff
(sR,n) δ(sR − sR,n), (17)

where pαTeff
(sR,n)≡ Tr[ρ(Teff)PαR,n] denotes the thermal expectation value of the projector

PαR,n on a given eigenstate of σ αR (α = ⊥, z) corresponding to the eigenvalue sR,n (see the
correspondence to equation (12)). On the other hand, analogous to what we did in equation (13),
we define the FPDF in the diagonal ensemble as

Pα
Q (sR)=

∑
n

(∑
i

|ci |
2
〈φi |PαR,n |φi〉

)
δ(sR − sR,n)

=

∑
n

pαQ(sR,n) δ(sR − sR,n). (18)

The comparison between the two ensembles can be made quantitative by computing the
absolute difference (see equation (14))

δpα(sR,n)= |pαQ(sR,n)− pαTeff
(sR,n)|. (19)
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Figure 6. Probability distribution of the transverse spin p⊥(sR,n) for a system
of L = 12 sites and 1= 0.1. Different panels refer to different sizes of the
subsystem. Here and in the remaining figures, averages are performed over 500
disorder realizations.

The latter quantity depends on R and on the values of sR specific to each R. We may be interested
in comparing the FPDFs at different distances: in this case a useful quantity is the integrated
difference, which is given by

1pα(R)=

′∑
sR,n

δpα(sR,n)/ν(R), (20)

where
∑

′

sR,n
denotes the sum over the eigenvalues of σ αR compatible with the zero total

magnetization condition, and ν(R) is their number. In the following, we will average all these
quantities over disorder, and identify their uncertainty with the standard deviation. We are going
to show our results for a quench from Jz0 = 10 to Jz = 0.5 in a system with L = 12 spins.

In figure 6–8, we show the probability distribution of the transverse spin (Ŝ⊥

R )
2 at 1= 0.1,

0.5 and 1.0, respectively. In all the cases, the distribution functions have qualitatively the same
pattern in both the diagonal and the canonical ensemble. But when disorder is small, e.g. for
1= 0.1 in figure 6, there is a visible discrepancy. Increasing the intensity of the disorder,
quantitative agreement is established, until for 1= 1, that is, where the system is furthest from
integrability, the two distributions perfectly overlap (figure 8). The discrepancy between the two
distributions is quantified by means of the integrated difference 1p⊥ defined in equation (20),
which also allows us to compare the distributions for different values of R. The results are
shown in figure 9. The common feature of all values of R is that, when the disorder intensity is
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Figure 9. Integrated difference of the transverse spin 1p⊥(R) for a system of
L = 12 sites.

small, i.e. 1� Jz, the discrepancy 1p⊥ is larger and more sensitive to the size of R than that
for bigger 1 values. However, it is not clear from our results what the dependence on R should
look like in the thermodynamic limit. Unfortunately, with our simulations we can only work
with very small sizes of L , such that the smallest R is only one order of magnitude less than L .

In figure 10 we show the FPDF of the longitudinal spin σ z
R in the diagonal and the canonical

ensemble for a system of L = 12 sites and R = 6. The constraint
∑

j σ
z
j = 0 allows only some

eigenvalues of σ z
R, so when the size of the subsystem increases from R = L/2 to L progressively

less values of sR are permitted. For this reason we choose R = 6, which is the case with the
maximum number of eigenvalues allowed by the symmetries. We observe that in all cases there
is a maximum at sR = 0, which is the most sensitive point of the variation of1. For odd R (data
not shown) there are instead two symmetrical eigenvalues, sR = ±1, where the function has two
maxima and which are most suitable for checking the dependence against1. From figure 10 we
see that at small values of 1 there is a difference at sR = 0 between the two ensembles, while
the FPDFs almost coincide for 1∼ 1. The scenario is similar to that of (S⊥

R )
2.

In figure 11 we show the integrated difference1pz. We see a slight dependence on whether
R is even or odd. Namely, the discrepancy between the ensembles at small values of 1 is
more pronounced for even values of R than for odd R. This effect is more visible for small
values of 1. For even values of R the difference 1pz has its smallest value at 1= 1, while
for odd values of R the minimum is at 1∼ 0.5. Looking at the error bars, we see that both pz

and 1pz are generally characterized by larger fluctuations with respect to the transverse spin,
perhaps because the spectrum of σ z

R has higher degeneracy with respect to (S⊥

R )
2. However, the

error bars, both for the transverse and the longitudinal spin, are proportional to the disorder
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intensity. As we have already pointed out for the transverse spin, we cannot fully characterize
the dependence of 1pz on R, because we have too small systems. Intuitively, what we can
expect is that the constraint on the total magnetization

∑
j σ

z
j = 0 should relate the situations

where the subsystem has R and L − R sites, respectively. On a qualitative level, this is also
suggested by the panels of figure 11.

6. Conclusions

In this paper, we have analyzed the connection between thermalization and many-body
localization. We studied the long-time behavior of an XXZ spin-1/2 chain following a quantum
quench, when integrability is broken by a random magnetic field. In particular, we addressed the
issue of pre-thermalization, not only looking at the behavior of average values of observables,
but also looking at their FPDF. We found qualitative agreement between the FPDF in the
asymptotic state and that predicted by a thermal distribution in the whole range of disorder
intensity we considered. Nevertheless, the situation where the two FPDFs are quantitatively
indistinguishable occurs only when the system is furthest from integrability, that is, when the
eigenstates are diffusive superpositions in quasi-particle space.
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