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Abstract
Wediscuss the hydrodynamic approach to the study of the time evolution—induced by a quench—of
local excitations in one dimension.We focus on interaction quenches: the considered protocol
consists of creating a stable localized excitation propagating through the system, and then operating a
sudden change of the interaction between the particles. To highlight the effect of the quench, we take
the initial excitation to be a soliton. The quench splits the excitation into two packetsmoving in
opposite directions, whose characteristics for short times can be expressed in a universal way.Our
treatment allows for the description of the internal dynamics of these two packets in terms of the
different velocities of their components.We confirmour analytical predictions through numerical
simulations performedwith theGross–Pitaevskii equation andwith theCalogeromodel (as an
example of long range interactions and solvable with a parabolic confinement). Through theCalogero
model we also discuss the effect of an external trapping on the protocol. The hydrodynamic approach
shows that there is a difference between the bulk velocities of the propagating packets and the velocities
of their peaks: it is possible to discriminate the two quantities, as we show through the comparison
between numerical simulations and analytical estimates.We show that our analytical results capture
with remarkable precision the findings of the numerical simulations also for intermediate times and
we provide predictions for the time at which the two packets becomes distinguishable. In the
realizations of the discussed quench protocol in a cold atom experiment, these different velocities are
accessible through differentmeasurement procedures.

1. Introduction

The outstanding performances ofmodern experiments in preparing and controlling setups of quantumgases
[1, 2] have promoted the study of out-of-equilibrium systems in ultracold gases as arguably one of themost
challenging topics in the field [3–18]. One of the reasons for the complexity of this challenge is due to the variety
of ways inwhich a system can be driven out of equilibrium and the difficulty in having a general guidance
principle to relate their phenomenologies.

Thus, over the years, the community has concentrated on a few protocols that have emerged to be
sufficiently clean and interesting. One question at the forefront has been under which conditions (and inwhich
sense) a system is able to reach an equilibrium, andwhether this equilibrium can showuniversal characteristics
such as thermalization [19–29]. Particularly useful in addressing such questions are setups based on cold atoms
[30–36].
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One of themost experimentally relevant protocols to study out-of-equilibriumdynamics and the issue of
thermalization is the quench protocol inwhich, typically, a systemdescribed by aHamiltonianH is prepared in
its ground state and then, at a givenmoment of time, is evolved using a differentHamiltonian ¢H [37]. The
questions usually askedwith quantumquenches refer to late times properties of the systems (andwhether the
unitary evolution can lead to something that can locally be described in a semi-classical way) [38–42].

Variations to the usual quench protocol have been considered typically in two forms: the initial state was
taken to be an excited state of the initial Hamiltonian [43], or the interactionwas changed only locally [44–48]. In
a recent work [35], we introduced a different protocol: we proposed to start with a local excitation and to let it
evolve after a global interaction quench. In order to isolate the effect of the quench on the dynamics, the initial
state is prepared as a solitonic excitation of the originalHamiltonian, that is, a state for which the one-particle
density profile evolves without (almost) changing its shape. This setup has themerit of being experimentally
feasible and of showing universal properties already at short times. In [35] it was also shown that, by changing the
underlying interaction during solitonmotion, the excitation breaks into two profiles: onemoving in the same
direction as the initial excitation, the other in the opposite. In a cold atom setup, such a quench can be triggered
through trapping orwith an externalmagnetic field [1] to induce a change in the scattering length and in the
speed of sound. The system is then allowed to evolve for short times after the quench and the velocities and
shapes of the two chiral profiles created by the quench can bemeasured either by direct imaging or reconstructed
by releasing the trap, through time-of-flightmeasurements.

Aswe are going to discuss in this paper, a convenient way to study the dynamics of a local excitation is to
employ a (non-linear) hydrodynamics description of the system in terms of the density and velocityfields.
Moreover, if the initial density profile is not a large perturbation over the background, velocities and shapes of
the transmitted and reflected profiles for short times after the quench can be expressed in a universal way, that is
independent from the details of the quench and of themicroscopic interaction [35]. The hydrodynamic
approach [49] is complementary to amicroscopic computation of the dynamics (when practically doable), and it
has the advantage thatmicroscopic details of the underlyingmodel enter as parameters of the hydrodynamic
equation (e.g., the sound velocity). It also provides a standard tool to study collective excitations and dynamical
properties in cold atom setups [50, 51] and it applies as well to higher dimensions: however in this paper, in line
with the topic of this Focus Issue andwith our choice to consider solitonic solutionswe limit ourself to one
dimensional systems and soliton excitations (in higher dimensions, solitonic states are stable only for limited
times and one needs to take into account the spreading and the excitations of thewave packet).We consider in
detail theGross–Pitaevskii (GP) equation, with δ-like interactions (which is relevant for the D1 Bose gases in the
limit of small interactions [50]), and theCalogeromodel, since it is exactly solvable also with in the presence of a
parabolic trapping potential [52–54].

The same quench setup has also been considered in [55–57]with a specific interest on integrable PDEs
describing the evolution of one dimensional systems and on the translation of the quench protocol in the
corresponding quantum inverse scattering problem. These papers signal the interest of the community in the
interaction quench.Wewould like to stress that the proposed quench protocol could be implemented relatively
easily in cold atoms experiments and that, by focusing on the short time universal dynamics, our predictions can
be tested directly in the laboratory, which should be contrastedwith typical large time results produced by other
approaches and protocols. Universal properties of short time out-of-equilibriumdynamics has been considered
in [35, 58–60].

In this work ourmain goal is to investigate in detail the hydrodynamic approach for the study of the
dynamics of solitonic excitations in one-dimensional systems, clarifying the hypothesis behind the derivations
based on the hydrodynamic approach and to discuss the possible experimental realization of the quench
protocol in cold atom systems. To the latter aim, we address an important issue related to themeasurability of
the chiral profiles generated by the quench and relevant for the cold atomphysical realizations. In fact, at the
quench time the transmitted and reflected profiles are perfectly overlapping and can be distinguished only after
they havemoved apart.While in time-of-flight experiments one need notwait this time, since the two profiles
have oppositemomentum, in a real imaging scenario (such as that we employ in our numerical experiments)
this waiting time can introduce additional effects.We analytically estimate this waiting time.Moreover, since the
two chiral profiles are not solitons of the post-quench system, the center-of-mass (average) velocity of each
profilemight be different from the velocity of its highest point.Wefind that in the hydrodynamic approach one
can naturally introduce both ‘bulk’ and ‘peak’ velocities of the transmitted and reflected packets: we provide
expressions for both quantities, andwe compare themwith our numerical simulations for theGP andCalogero
models.We also discuss the time scales relevant for the experimental realization of the proposed protocol and
the efficacy of our approximationwithin them.

The plan of the paper is as follows. In section 2we review the hydrodynamic approach to the description of
one dimensional cold atomic gases [51]. In section 3we analyze the quench protocol and derive the expressions
for the velocities and heights of the chiral profiles generated by the quench. In sections 3.1 and 3.2we compare
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the analytical prediction against our numerical simulations performed on the one-dimensional GP equation and
on theCalogeromodel. In section 4we discuss our results and comment on future perspectives. Finally, we
collect some useful (althoughmore technical) information in the appendices. Appendix A explains howwe can
extract an integrable dynamics out of a generic hydrodynamic system,while in appendix Bwe discuss themain
properties of the integrable core, theKorteweg–deVries (KdV) equation. In appendices Cwe discuss some
different versions of the D1 GP and their relation toKdV. Finally, in appendicesD and Ewe collect the basic facts
about the rational Calogeromodel and its version confined in a harmonic potential (also integrable).

2. The hydrodynamic approach

All quantum systems at sufficiently low temperature acquire a collective behavior. Inmany such cases, the
expectation value of the particle density operator r d= å -ˆ ( ) ( )x x xj j becomes a smooth function and the
quantumfluctuations around it are negligible.When this happens, the systemdynamics can be describedwith a
hydrodynamic approach [49]. In the following, wewill primarily be interested in one dimensional systemswith
one particle species without additional internal degrees of freedom, so that it is sufficient to introduce the scalar
density r ( )x t, and velocity ( )v x t, fields.

AssumingGalilean invariance and locality, themost general hydrodynamicHamiltonian reads [51]

ò
r

r r r
r
r

= + +
¶( ) ( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥H x

v
Ad

2 4
, 1x

2 2

where r( ) is the internal energy and r( )A is related to quantumpressure.We also assume that dissipative
effects can be neglected. The equations ofmotions can be obtained by remembering that the density and velocity
are conjugated fields [61, 62] satisfying

r d= ¶ -{ ( ) ( )} ( ) ( )x v y x y, . 2x

They are the continuity and Euler equations [49]:

r r+ ¶ = + ¶ =˙ ( ) ˙ ( )v v0; 0 3
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º + - ¢ ¶ -
¶
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A A
2

, 4
2

2
2

where w r r r= ¶r( ) ( ( )) is the specific enthalpy (which at zero temperature reduces to the chemical potential).
Under the foretold conditions, these equations are completely general: the functions r( ) and r( )A encode

the specificity of the systemunder consideration. A discussion of howone can extract an integrable dynamics out
of a generic hydrodynamic system and the derivation of theKdV (used in the next section) is reported in
appendix A, and useful facts about theKdV are in appendix B.

Choosing

r= = ( ) g

m
A

m2
,

2
, 5

2

and combining the hydrodynamic fields into the complex field

òrY = ( )( )e 6
m v y yi d

x

the dynamical equations (3), (4) can bewritten as the single complex equation

y r y¶ Y = - ¶ + -( ) (∣ ( )∣ ) ( ) ( ) ⎧⎨⎩
⎫⎬⎭x t

m
g x t x ti ,

2
, , , 7t xx

2
2

0

which can be recognized as the D1 non-linear Schrödinger equation, aka the D1 GP equation (without the
external potential in (7)). In equation (7) r0 is the density for  ¥x . Details about the the non-linear
Schrödinger equation and its KdV reduction are in appendix C.

TheGP equation has been routinely used in the last two decades to describe the dynamics of ultracold bosons
atT=0 [50]. In D3 its validity stems from the fact that there is a condensate, whosemacroscopic wavefunction
obeys theGP equation, fromwhich one can derive hydrodynamic equations [50]. In D1 there is no condensate,
since there is actually a ‘quasi-condensate’ [63]: however, theGP gives a good description of experimental results
for small interactions (i.e., for the coupling constant of the Lieb–Linigermodel, defined in (C1), g =

r
1m g

2
0


[64]) and in particular of the—dark and bright—soliton dynamics observed in D1 experiments [65, 66] and of
shockwaves [67].When in D1 the coupling constant is notmuch smaller than 1, one can nevertheless use
hydrodynamic classical equations (as the ones given above) to study small deviations from equilibrium [68]. For
larger deviations one has to study the quantumdynamics directly using the Lieb–Linigermodel (whichmight be
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at present rather challenging from the computational point of view) or resort to D1 mean-field effective
equations [69–72] fromwhich hydrodynamic equationsmay be derived as above producing (time-dependent)
non-linear Schrödinger equationswith suitable general non-linear terms r( ) , theGP equation corresponding
to r rµ( ) . As discussed in [35] a good agreement is found between the hydrodynamic results and theGP
equationwith a power-law r( ) .We observe that suchmean-field equationsmay fail in correctly describing
interference betweenwavepackets, as shown for the Tonks–Girardeau limit g  ¥ in [73]: in general one
expects anyway that themean-field equations work better at short timeswith respect to long times. For instance,
the long-time fate of a soliton configuration due to classical to quantum crossover has been studied in [74].

3. The quench protocol

In this sectionwe discuss in detail the quench protocol. The starting point is to prepare the systemwith a
localized excitation. In general, since such a state cannot be an eigenstate of a translational invariant system, in
time it would diffuse and disperse. However, it is an empirical observation that several systems abruptly taken
away from equilibrium, settle back in configurations displaying localized excitations that propagates for long
timeswithout degrading significantly. Such behavior is that of a soliton (or trains of solitons) and it is a
manifestation of the emergent collective hydrodynamics ensuing in the system. True solitons are a characteristic
feature only of integrable differential equations [75]. Nonetheless, individual (orwell separated) solitonic waves
are commonly observed in a variety of systems, including of course classical systems [76] and ultracold
systems [77].

For the quantummany-body Lieb–Linigermodel of interacting bosons in D1 it is not obviouswhat is the
quantum content of themicroscopical state that results into a soliton. Itmakes sense that it would contain a large
number of eigenstates such that the coherent dynamics prevents theirmacroscopic spreading, similarly towhat
happens in quadratic theories for coherent states. Indeed, the construction of quantum states with one particle
density evolving in a solitonic way has not provided conclusive results so far [78–80], in the sense that it is not
clearwhat is the definition of a quantumdark soliton from the Bethe ansatz solution, and if the quantumdark
solitonmay be defined at all (see however the very recent discussion in [81]).

In this workwe do not try to solve this problem, butwe hope that our analysis can contribute in this
direction.Our starting point is the empirical observation that solitonic configurations are commonly excited
(andmanipulated) in cold atomic Bose [65, 66, 77, 82] and Fermi [83] systems and that they are best understood
in terms of an effective semi-classical hydrodynamical description of the system.

Once a solitonic excitation is created, its density profile will remain (approximately) constant andwill only
translate in space at a constant velocity. In our quench protocol, at some time during the soliton evolutionwe
change the parameter g governing the interaction strength of the system to ¢g . This interaction quenchmodifies
the hydrodynamic equations so that the initial soliton cannot evolve unperturbed anymore.We aim at
describing the dynamics, and in particular the short time dynamics, of the soliton after the quench.

To qualitatively illustrate what happens after an interaction quench, we take as an example theGP
equation (7) andwe change the interaction parameter g to a value ¢ >g g at the time tQ. The sound velocity

changes from =c g to ¢ = ¢c g (in units where r= = = m 10 where r0 is the density for  ¥x ). As the
initial conditionwe take the gray solitonwith velocityV [50, 84] reported in appendix C

y g g= = +( ) ( )x t i
V

c
cx, 0 tanh , 8

where g = - V c1 2 2 . As illustrated infigure 1 there is a time t2 at which the soliton splits in two (more
precisely: at which a secondminimum is seen), and a time t3 inwhich another splits occurs and one of the two
packets in turn splits in two aswell.We also define an intermediate time = +( )t t t 2int 2 3 . The numerical
values of the transmitted and reflected velocities are plotted infigure 2: these numerical values are obtained by
computing the velocities of the (transmitted and reflected) peaks from the peak positions around tint, which
reduces numericalfluctuations (as we discuss later and show in figure 5, we verified that between t2 and t3 the
peak velocities are rather stable, while close to t2 and t3 numerical fluctuationsmay be present).

Infigure 2we plot the analytical prediction ¢c c obtained froma linear approximation (as discussed
below), where the+ (−) is for the transmitted (reflected) components. The hydrodynamic approachwe
introduce in the following reproduces the leading behavior and it is found to be able to reproduce deviations
from it. It is also possible to use the hydrodynamic approach to discriminate the bulk and peak velocities: indeed,
from the hydrodynamic theory one has that for very short times after the interaction (well before t2 where a
secondminimum is observable) the transmitted and reflected packetmove as transmitted and reflected solitons.
The numericalfindings we present in the following confirm the validity of the hydrodynamic results up to the
time scale tint.

4

New J. Phys. 18 (2016) 115003 F Franchini et al



To set up the hydrodynamic approach for the propagation of the localized excitations after the interaction
quench, as we argued abovewe take the dynamics before the quench to be captured by the equations (3), (4),
where the hydrodynamic parameters w r( )g; and r( )A g; depend on amicroscopical parameter g, setting the
strength of the inter-particle interaction. The shape of the initial soliton is set by the coupling g and by its velocity
V. The approachwe develop in this section is independent from themicroscopic details and it applies to general
D1 systemswith solitonic excitations, and it will be comparedwith numerical results in the next sections.

The existence of a soliton is a strong indication that it is possible to isolate out of (3), (4) an integrable core,
with the remaining terms being negligible for a relatively long time. If the initial soliton has velocityV close to the
speed of sound c (so that its amplitude is also small compared to the background density r0), it is known that the
hydrodynamics can be reduced to that of the integrable KdV.We outline the reduction of equations (3), (4) to
KdV in appendix A. This procedure, developed for cold atoms in [51], is at the heart of our analysis and thus in
the followingwe assume 1V

c
 .

TheKdV is a chiral equation that reads

z
a¶ + - ¶ =   ˙ ( )

⎡
⎣⎢

⎤
⎦⎥u cu u u

2
0, 9x x

2 2

Figure 1.Plot of the density y∣ ( )∣x t, 2 at 5 different times with ¢ =g g 20 and initial velocity =V c0.96 (with g= 1 and
r= = = m 10 ). The interaction is suddenly changed at = -·t 2 10Q

4 very close to zero. The black line is the density at t=0, and
the others are at the times =t t2 (inwhich a secondminimumemerges)—red; =t t2 2—green; =t tint—magenta; =t t3 (inwhich
anotherminimum is seen in the transmitted packet)—blue. Numerical values are »t 0.7082 , »t 8.219int and »t 15.7293 .

Figure 2.Transmitted and reflected peak velocities as a function of ¢c c for the same parameters of figure 1.Dashed lines are the linear
predictions  ¢c c respectively for the transmitted and reflected velocities. These velocities and the quantities plotted infigures 3, 4, 9,
10 aremeasured at tint, intermediate between the time at which the transmitted and reflected profiles are first distinguishable and the
time at which the transmitted profile further splits into two.
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where r wº ¢c 0 0 is the sound velocity (w w¢ º ¶r r∣0 0
) and the nonlinear and dispersive coefficients are given by

z
r r

a
r

º +
¶
¶

º
( )

( )c c A

c
,

4
. 10

0 0

0

Details on the derivation of theKdV equation in a generic hydrodynamic system are given in appendix A.
The±in (9) refers to the two chiralities of thewaveswhile ( )u x t, is approximately the density fluctuation

over the background r r-u 0 . TheKdV reduction neglects the interaction between the left and rightmoving
sectors. Due to locality, such approximation is violated onlywhen the two chiral profiles overlap. However, since
theymovewith relative velocity of approximately c2 , such effects exists only for short times and hence can be
neglected [84].

Suddenly during the evolution of the soliton, we change the interparticle coupling to ¢g . Thus, after the
quench the hydrodynamic equationswill change and the effective dynamics will be given by theKdV (9)with
modified parameters z ¢, a¢ and a new speed of sound ¢c . This sudden change in the interaction is seen by the
soliton profile as a perturbation towhich it reacts by splitting into a transmitted and reflected profile, exactly as it
would happen to a linear wave, in the presence of an obstacle, or if the sound velocity is suddenly changed.

Before the quench, the initial state can be approximated by theKdV soliton (B5)

= -( ) ( ) ( )u x t s x Vt, . 11

Wemake the ansatz that after the quench

= - + -( ) ( ) ( ) ( )u x t u x V t u x V t, , 12r r t t

that is, we assume that the quench acts as an external force which splits the soliton into a transmitted and a
reflected profile and that, for short times after the quench, these bumps evolve with a given velocity, without
changing their shape significantly. If >V 0, the reflected velocity <V 0r and the transmitted one is >V 0t .
Imposing continuity of the solution and conservation ofmomentum at t=0we obtain

= - + -( ) ( ) ( ) ( ) ( ) ( )u x t R V V V s x V t T V V V s x V t, , , , , , 13r t r r t t

with

=
-
-

=
-
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( ) ( ) ( )R V V V
V V

V V
T V V V
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V V
, , , and , , . 14r t

t

t r
r t

r

t r

Note that, applying the same quench protocol to an initial soundwavemoving at the pre-quench speed of
sound cwould yield transmitted and reflectedwavesmoving at the post-quench sound speed ¢c . The above
formulae specialize for this case to

=
¢ -

¢
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¢

= +
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2
1 , and

2

1

2
1 . 15linear linear

The derivation of (13), (14) is completely general, based only on the ansatz that after the quench the soliton
splits into two chiral profiles, and does not depend on the dynamics. The laws governing the evolutions are
needed to determine the velocities of the two profiles.

We can estimate the profiles velocities by looking at themotion of their center-of-mass9

ò
ò

á ñ = ( )x
x u x

u x

d

d
. 16u

The velocities are thus

òò
= ¶ á ñ = ˙ ( )V x

u x
x u x

1

d
d , 17r t t u

r t
r t,

,
,r t,

wherewe used the fact that the denominator is the integral ofmotion I0 (B8) and thus does not evolve with time.
We can trade the time derivative for a spacial one through the post-quench equation ofmotion (9):

òò
z

a=  ¶ ¢ +
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- ¢¶ ( )
⎡
⎣⎢

⎤
⎦⎥V

u x
x c u u u x

1

d 2
d , 18r t

r t
x r t r t x r t,

,
, ,

2 2
,

where the+ (−) sign applies to the left (right)moving profile.We can now integrate by part (remembering that
at large distances the profiles decay to zero exponentially) to get

9
We thank the referee for suggesting this approach.
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Note that this expression has a natural interpretation as the ratio between the first two integrals ofmotion (B8),
(B9), which can be interpreted as themass andmomentum. Indeed, in (B11)we show that this is the case for a
soliton:
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The integral ofmotions of the two profiles after the quench are determined immediately at their creation and,
remembering (13), are simple rescaling of the original ones:
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Wecannowuse (20) and (14) to get
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Solving this systemwefinally get
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wherewe introduced the universal parameter
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andwhere theT andR are found consistently to be
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Wenote that these expressions are completely universal. Equations (25)–(29) already appeared in [35]with a
different,more qualitative, derivation.

To further highlight the universality of equations (25)–(29), we canmake everything dimensionless, by
measuring velocities in units of sound velocity. Thus, we introduce the reduced velocities:
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Hence, the solution immediately after the quench is
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The reflection and transmission coefficients are
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and the height of each chiral profile is

= = ( )U RU U TU, , 35r t

whereU is the height of the pre-quench soliton.
Since the chiral profiles are not solitons of the post quench dynamics, their shapewill change during the

evolution, because different parts of each profile willmove at different speeds. For short times after the quench,
we can take advantage of the fact that each of the reflected and transmitted profiles are similar to the original
soliton, just with a reduced height. Thus, we can use (B15) to estimate the velocities of the different parts:
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wherewe used the fact that thewidth of both profiles is = a
n

W 2
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and their heights are n=
z

U Rcr
3 and

n=
z

U Tct
3 . As a consistency check, we notice that the velocity at the average height of each profile
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3 , coincides with (31), (32). The velocities of the profile peaks are
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which, in terms of the reduced velocities (30) are
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The parameter br t, characterizes whether the dynamics of the chiral profiles is dominated by the non-linear
termof theKdV (b 1r t,  ), by the dispersive term (b 1r t,  ), or is in the solitonic regime of equilibrium
between the two (b 1r t,  ). Equation (42) is obtained considering that before the quench the dimensionless

ratio
W

W
z

a
in (B4) is close to unity, sincewe prepared the initial state in a solitonic state, and thus the soliton

parameter satisfy

z
a

( )
UW

1
. 44

2


Typically, large quenches ¢g g gives b 1 (see, for instance, (52)): we see that the peaks have reduced
velocities three times larger than the profile center-of-mass. For smaller quenches, dispersive effects will reduce
the peak speeds andwe see that for b < 1r t, , n n<r t r m,

peak
, .Moreover, for b <r t,

2

3
, the peak startsmoving

supersonically and thuswe expect the profile to become unstable.
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Let us now consider the enthalpy w r( ) in (4) to be a simplemonomial, that is
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Note that the reflection and transmission coefficients are the same of the linear process (15), although the
velocities are not.

3.1.Quench protocol for theGross–Pitaevskii equation
To test the predictions based on theKdVuniversality, we performed some numerical simulations on physically
relevant systems.We consider cold atomic gases with local interaction described by theGP equation

y r y¶ = - ¶ + ( ) ( ) ⎧⎨⎩
⎫⎬⎭m

fi
2

, 49t xx

2

where r y=( ) ∣ ( )∣x t x t, , 2 and r r=( )f g . Tomaintain our discussionmore general we detail the derivation of
the hydrodynamic results for a general r( )f , but we present numerical results for theGP equation (49)with

r r=( )f g . Numerical results for other choices of r( )f and in presence of a trapping potential presented in [35]
confirm the general validity of the hydrodynamic results for general GP equationwith local interactions.

In one dimension, theGP equation reduces to (3), (4)with the ansatz (6). The hydrodynamic functions are

w r
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By substituting the hydrodynamic parameters derived in appendices C into 3 for theGP equationwe have
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Furthermore, remembering the definition (42) of the parameter βwe find
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Hence, quenching to stronger interactions (higher speed of sound) takes the dynamics to a non-linearity driven
regime, aswe anticipated.

Using (47), (48)we get
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For the peak velocities (40, 41)we have
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Infigure 3we plot the reduced peak velocitiesmeasured during our numerical simulation of theGP equation
and compare them to both the prediction for the bulk (53), (54) and peak velocities (55), (56): it is clearly seen
that the numerical results discriminate between the two predictions and are rather in agreementwith the
formulas for the peak velocities.We report infigure 3 numerical data for =V c0.96 and =V c0.9 : as expected,
numerical data for =V c0.9 aremore distant from the analytical predictions, nevertheless the qualitative
properties of analytical results (as reduced reflected peak velocities smaller than the transmitted ones and both
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distinct from and larger than bulk velocities) are again visible.While in terms of the reduced velocities the
behavior of the peak and the bulk is clearly distinguishable, in natural units the two are dominated by the sound
velocity drag. This is the reason forwhich the data plotted infigure 4 of [35] is wellfitted by the bulk prediction as
well. Infigure 4we plot, again for =V c0.96 and =V c0.9 , the analytical predictions forR andT from (53), (54)
and the numerical GP results: the agreement is excellent, even better than for the peak velocities.

The comparison offigures 3 and 4 shows that the hydrodynamic approach gives good results for both bulk
and peak velocities, and that the theory can discriminate between them. The data in thesefigures were taken at
time tint defined as halfway between the time t2 were the two profile become distinguishable after the quench and
the time t3 where the transmitted profile further splits in two. The dynamics around t3 is clearly beyond our
approximation scheme and its treatment requires a different approach, for instance that of [55], whichwewill
not pursue here. Nonetheless, we empirically notice fromour numerical experiment that t3 ismore than one
order ofmagnitude greater than t2.Moreover, asfigure 5 shows, the velocities remain approximately constant in
this (large) interval of time. The possibility of discriminating peak and bulk velocities is important for
experiments, where the bulk velocities could bemeasuredwith time-of-flight protocols while peak velocities
from in situ imaging of the density. Figure 5 guarantees that the results of thesemeasurements is not expected to
vary significantly between t2 and t3.With typical experimental parameters thismeans that the experiments

Figure 3.Points are reduced peak velocities in units of ν versus ¢c c numerically computed from theGP equation: filled black circles
( =V c0.96 ) and black stars ( =V c0.9 ) are the reflected velocities, empty red squares ( =V c0.96 ) and red triangles down ( =V c0.9 )
are the transmitted ones. Solid lines are the analytical predictions (55), (56) for the reflected (black) and transmitted (red) reduced
peak velocities, while the dashed lines are the analytical predictions (53), (54) for the reflected (black) and transmitted (red) reduced
bulk velocities.

Figure 4.Points are values ofR (filled black circles for =V c0.96 and black stars for =V c0.9 ) andT (empty red squares for
=V c0.96 and red triangles down for =V c0.9 ) versus ¢c c numerically computed from theGP equation. Solid lines are the

analytical predictions (53), (54) forR andT.
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should be order of tens/hundreds onms, which is in turn realistic.With the units r= = = m 1 for
=V c 0.96 wefind ~ –t 0.2 12 and ~ –t 5 203 for ¢ ~ –g 10 100. If one considers a confining frequency

w p~ ·2 10 Hzx , measuring time in units of w1 x one has that ~ –t 1 103 corresponds indeed to to
~ –10 100 ms.We also observe that a simple estimate of g gives with our units ~g 1 for a transverse frequency of
few kHz and a number of particles of order of hundreds (as it is realistic for experiments inwhich one hasmany
D1 tubes).

Using (13), we can estimate the time t2 at which it isfirst possible to discern the existence of the two profiles.
The comparisonwith numerical results helps to quantitatively address the validity of the hydrodynamical
approachwe are following. To do so, we search for the instant at which there is a flex point in (13), that is we look
for ( )x t,2 2 at which thefirst and second derivative of (13) vanish:
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Rq q Tp p

d
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wherewe introduced

º -[( ) ] ( )q x V t Wtanh , 59r

º -[( ) ] ( )p x V t Wtanh , 60t

withVr t, given by (53), (54) andW by (C7).
Oncewe determine the p and q that solves (57), (58), we have
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V V
q parctanh arctanh . 61

t r
2

Linear combinations of (57), (58) yield the simplified systemof equations

- + - =( ) ( ) ( )Rq q Tp p1 1 0, 622 2

- - - =( ) ( ) ( )p q q p1 3 1 3 0. 632 2

Wecan solve (63), for instance, as a quadratic equation in q. One solution is the trivial q=p, which corresponds
to the equilibrium reached at  ¥x and is thus not the onewe are looking for. The other solution is

= - ( )q
p

1

3
. 64

Substituting in (62)wehave

- + - =[ ] ( )
p

R Rp Tp Tp
1

27
9 27 27 0, 65

3
2 4 6

Figure 5.Position of the transmitted (top) and reflected (bottom) peaks for ¢ =g 60 as a function of time t, obtained from the
numerical solution of theGP equation, with t between »t 0.4072 and »t 8.4003 ( =V c 0.96). Inset: numerical estimate of the
transmitted (top) and reflected (bottom) peak velocities, as determined by using data spaced in time byD =t 0.21 and using a spatial
grid withD =x 0.07.
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which can be solved as a cubic equation in p2. The only real solution is
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wherewe used the definitions of R T, in (53), (54) in terms of the quench strength ¢c

c
.

Substituting this solution into (64) and both of them in (61) and further simplifying the resulting expression
wefind

=
-

+ + + +

+ + - +( )

( )

( )
( )t

W

V V

Q Q Q

Q Q Q2
ln

1 1

1 1
67

t r
2

2 3

2

2 3

2

where

º
¢
+

¢
- ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Q

c

c

c

c
1 . 68

2

2

2 3

We tested this prediction against our numerics, finding an excellent agreement and further supporting the
validity of our approximation scheme. The comparison is presented infigure 6. As the inset offigure 6 shows, it
is seen that the results are rather good also forV/c as low as 0.6 and 0.4, where theKdV approximation for the
GPE is not supposed to be reliable.

To quantitatively assess deviations from the prediction (67)we observe that the quantity t2 times

+ -( ) ·V c V c1 1 2 2 according equation (67) itself is independent from the initial velocity:
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Numerical results for =V c 0.96, 0.9, 0.75, 0.6, 0.4 are reported infigure 7: as expected, one sees that, while
for shallow initial solitons the agreement is excellent, by decreasing the initial velocity the agreement becomes
less satisfactory, although still acceptable.

To further showhowwell and for how long the approximations we used remain valid, we plot infigure 8 the
density r r- ( )x t,0 for different times between t2 and t3 from the numerical solution of theGP equation and
from theKdVhydrodynamic approach. It is seen that the analytical prediction is rather good almost all theway
to t3, even though approaching t3 it cannot reproduce the deformation needed to expel the third soliton.

Figure 6.Plot of the time t2 at which the second solitons appears as a function of ¢c c : Solid lines are the prediction (67) and dots are
obtained from the numerical solution of theGP equation for =V c 0.96 (black), 0.9 (red), 0.75 (green) from top to the bottomof the
figure. Inset: t2 versus ¢c c for =V c 0.6 (blue) and 0.4 (magenta)—notice that the analytical blue andmagenta solid lines are not
distinguishable on the scale of thefigure.
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3.2.Quench protocol for theCalogeromodel
In the previous sectionwe showed that numerical simulations strongly support our analytical analysis. In this
sectionwe perform an additional check, by employing theCalogeromodel. Details about theCalogeromodel, its
hydrodynamic description and its extension in the presence of an harmonic confinement are in appendices D
and E

The study of the interaction quench in theCalogeromodel allows several different points to be addressed.
First, we show that the universality of the quench protocol is robust, in that it applies also to long range
interactions such as that of the Calogeromodel. Additionally, we analyze the effect of an external potential and
thus of a non-constant background density. Finally, instead of simulating directly the hydrodynamic of the

Figure 7.Plot of t2 times + -( ) ·V c V c1 1 2 2 as a function of ¢c c : dots are from the numerical solution of theGP equation for
=V c 0.96 (black), 0.9 (red), 0.75 (green)with c=1, while the solid line is the analytical prediction (69). Inset: same plot for
=V c 0.6 (blue) and 0.4 (magenta).

Figure 8.Plot of the density r r- ( )x t,0 of themoving bump for the different times =t 0, 3, 6, 9, 12, 15 for ¢ =g 20 and
=V c 0.96 (here tQ= 0). The solid black lines are numerical results from theGP equation, while the red dashed ones (of course not

plotted at the initial time) are from the analytical prediction (13). For the considered parameters it is »t 0.7282 and »t 15.7493 .

13

New J. Phys. 18 (2016) 115003 F Franchini et al



model, we perform a (classical)Newtonian evolution for a system composed of a large number of particles and
extract the emerging collective behavior.Wewill see that the initial solitonwill split into a reflected and
transmitted density profile, showing an emergent wave behavior out of the individual particle dynamics.

TheCalogeromodel in an external harmonic potential is defined by theHamiltonian [85, 86]

å åw
l

= + +
-= ¹

( )
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( )
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m
p x

m x x

1

2 2
, 70

j

N

j j
j k j k1

2 2 2
2 2

2

with a dimensionless coupling constant λ.We can perform the numerical evolution in the classical limit (in the
quantumCalogeromodels the coupling undergoes the quantum shift l l l -( )12 ), which is integrable even
in the presence of an external parabolic potential.

Thismodel has a long-range (power-law) interaction and thus it lies in a different universality class,
compared to localmodels. At the same time, as it was recognized in [53], the potential r1 2 is also relatively short
ranged in one dimension (despite being power law). Thus, although such an interaction has not yet been realized
in cold atomic gases, thismodel provides a good platform to study systems beyond contact interaction, with the
additional benefit of being exactly solvable, evenwith an external confinement.

The abovemodel (equation (70))has been shown to admit soliton solutions in [52]. These are very special set
of positions andmomenta for each particle that collectively evolve as a robust bumpon top of a curved density
background (see appendix E).

Due to the power-law interaction, the hydrodynamic description of (70) is not theKdV, but a different
integrable equation, in the family of the Benjamin–Ono (BO) equation [87]. It differs from theKdVby its
dispersive term and by the fact that its solitons have longer (power-law) tails. Another difference is that this
system supports supersonic bright solitons, instead of the subsonic dark ones of localmodels [52].We collect in
appendicesD and E some useful information andnew results on themodel.

We can calculate the bulk velocities of the reflected and transmitted profiles by operating as before, through
the velocity of the center-of-mass of each. Solving the systemof equation (22) for this case yields the same results
as for theKdV,with h = 1. To take into account the supersonic nature of theCalogero excitations we define the
reduced velocities as

n n n= + = - ¢ + = ¢ +( ) ( ) ( ) ( )V c V c V c1 , 1 , 1 , 71r r t t

so that ν and nr t, are all positive. In terms of these, we have
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which coincideswith (53), (54).
The solitons inCalogero are Lorentzian (D9) andwe notice that their height andwidth do not depend on the

coupling λ. Hence, if βwas of the order of unity before the quench, after the quench br t, will be less than unity,
proportional to the coefficients R T, , due to the height reduction. Hence, for theCalogeromodel, after then
quenchwewill be inevitably in the dispersive regime.We can calculate the peak velocities using (D23), with

r t=a Rr 0 , r t=a Tt 0 :
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We see that the reflected peak alwaysmove slower than the speed of sound (n < 0r in our notations), while the
transmitted one remains supersonic only for ¢ <c c2 . This results is seemingly counterintuitive, since the profile
densities lie above the background and their bulk velocities are supersonics.While, in a non-linearity dominated
regime, the profile peakswouldmove faster than the bulk, we see that after the quench theCalogeromodel is in
the dispersive regime and thus the peaksmove even slower that speed of sound. Thus, while the bulk behavior of
the Calogero system after the quench follows the same universality of localmodels, the peak velocities belong to
a different universality.

In our numerical simulation, we used the results of [52], where it was shown that a systemonNCalogero
particles is dual to a systemofM interacting complex parameters, whereM counts the number of solitons in the
system. Thus, to a systemofN particle lying on the real axis and interacting through (70)we add a dual particle
z(t) (see appendix E)which draws an ellipse on the complex plane. The interaction of the dual variable with the
real particles induces a soliton in the latter and the soliton peak follows the projection of the zparticle on the real

14

New J. Phys. 18 (2016) 115003 F Franchini et al



axis. As explained in [52], a very useful property of this system is that, given an initial condition for the particle
position andmomenta, the configuration at any given time t can be found exactly by diagonalizing a certain
matrix system (by exploiting the Lax pair formulation of themodel). In this way, we have been able to set the
initial conditions of a soliton, to let it evolve for some time and to follow its evolution after the interaction
quench exactly.

In [54] the ground state of the quantumCalogeromodel in a harmonic potential was studied after a quench
and it was observed that the one-particle density starts oscillating and breathing. Such behavior is natural, since
after the quench the equilibriumparticle distance increases and the trapping cannot compensate for this
repulsion. To neutralize this effect, it is thus important to quench at the same time both the interaction and the
external potential, so that the background density stays constant.We found that for themodel (70) the trapping
has to be increased by the same amount of the interaction:

w
l
l
w¢ =
¢ ( ). 76

Oncewe are able to stabilize the background in this way, we perform the quench experiment andmeasure the
characteristics of the reflected and transmitted profiles.

To produce the initial soliton configuration, we specify a given complex number z and the initial value
problem for the position andmomentumof each particle in the system ( ( )x 0j , ( )p 0j ) is given by the following
equationswhich can be solved numerically:
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Having determined the initial values of ( )x 0j and ( )p 0j , the time dynamics of the systemofCalogero particles
after the quench can be computed by exploiting the Lax pair formalism, similarly towhatwas done in [52] to
study the dynamics of a harmonic Calogeromodel soliton.One introduces the followingN×Nmatrices:
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which depend on time through xj(t) and pj(t). It is straightforward to show that the equations ofmotion,
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are equivalent to the followingmatrix equations

+ =˙ [ ] ( )X M X Li , , 84

w+ = - ¢˙ [ ] ( )L M L Xi , 852

or equivalently

w= -  ¢  ˙ [ ] ( )L M L Li , i 86

written in terms of L andMmatrices usually referred to as a Lax pair.
One can thenwrite the solution of the harmonic Calogeromodel as an eigenvalue problem for amatrix

which can be explicitly constructed from the initial positions and velocities of the Calogero particles. Namely,
the particle trajectories are given by eigenvalues of the followingmatrix [88]

w
w

w= ¢ +
¢

¢( ) ( ) ( ) ( ) ( ) ( )Q t X t L t0 cos
1

0 sin , 87

where thematricesX(0) and L(0) are constructed using the initial conditions ( )x 0j , ( )p 0j from (77), (78) inserted
in the definitions (79), (80). It is worth pointing out that the above technique is non-iterative in time and hence
there is no numerical error accumulation.

In our numerical investigations, we used two different initial soliton velocities: onemoving 4% faster than
the speed of sound and one 7%. Infigure 9we present results for the reduced (reflected and transmitted) peak
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velocities for both cases.While the numerical results for the reflected peak velocities are clearly closer to the
analytical peak estimates than to the bulk ones, the agreement is less satisfactory for the transmitted peak
velocities (the 4%data are closer to the peak velocities, while the 7%data are almost in themiddle between the
peak and the bulk reduced velocities). Nevertheless, these data are clear evidence of the subsonic dynamics
predicted by the analytics above, while evidently the peculiarities of the Calogeromodel render the quantitative
comparisonmore troublesome. Infigure 10, we show the comparison between analytics (equation (73)) and
numerics for the reflected and transmitted heights (R T, ) for the cases of n = 4% and 7%. A remarkable
agreement between these analytical predictions and the numerical calculations performed on theCalogero
model is evident.

4.Discussion and conclusions

Wehave discussed a novel quench protocol, inwhich amoving, localized excitation reacts to a global interaction
quench.We focused on a special class of excitations, namely, soliton solutions, which are stable and
experimentally achievable in cold atomic systems aswell as in other relevant interacting low-dimensional

Figure 9.Plot of the reduced peak velocity in units of ν as obtained from the numerics: filled black circles (black stars) are the values of
reflected peak velocities for n = 0.04 (n = 0.07), while empty red squared (red stars) are the corresponding values for transmitted
peak velocity for n = 0.04 (n = 0.07). Solid lines corresponds to the analytical predictions (74) and (75), respectively for the reflected
(black) and transmitted (red) peak velocities. Dashed lines are the predictions for the bulk reflected (black) and transmitted (red) bulk
velocities according to (73).

Figure 10.Plot ofR (bottomblack) andT (top red) for the quenchedCalogeromodel showing the height of the reflected and
transmitted peaks as seen fromnumerics and their comparisonwith analytical calculations (equation (73)). Points are numerical
results: filled black circles (black stars) are the values ofR for n = 0.04 (n = 0.07), while empty red squared (red stars) are the
corresponding values forT again for n = 0.04 (n = 0.07).
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systems.We provided a general hydrodynamic framework describing the collective behavior of such systems.
Using this hydrodynamic description, we showed that the dynamics immediately after the quench is universal,
in that it does not depend on the details of themicroscopic interaction, but only onmacroscopic quantities, such
as the speed of sound before and after the quench.

The quench protocol can be seen as an initial value problem for the non-linear PDEof hydrodynamic type.
This has been the approach of [55–57] and is also common inmathematics. It is thus known that a generic initial
conditionwill eventually break into several components, eachmovingwith different velocities (see figure 1).
Under certain conditions, some of these components will be stable, while others (most of them)will disperse. In
[55] it was noted that, for the integrable non-linear Schrödinger, a quench that brings the new speed of sound to
be an integermultiple of the original onewill only generate a train of solitons (approximately half of them
moving in the same direction as the pre-quench soliton and the other halfmoving in the opposite direction) and
no dispersive soundwaves.

In our approachwe focused on short times after the quench and,making no assumptions on the integrability
of themodels, but using the structure of the initial condition provided by the quench protocol, we predict that
the initial excitationwill immediately break into two counter-propagating packets.While theywill eventually
break further, for a certain time the two chiral packets will retain the shape of the original excitation, but with
amplitudes reduced by a reflection and transmission coefficient. The universal formof these coefficients are
given in (28), (29), while the bulk velocities of the two profiles appear in (31), (32). It is also possible to express the
latter in dimensionless quantities as in (31), (32). These velocities aremeasurable in a time offlight experiments,
but in our numerical simulationwe employ a directmeasurement scheme. Thus, it is simpler tomeasure the
velocities of the peak of the profiles, which differ from the bulk (that is, center-of-mass) velocities because of the
internal redistribution of energies of the packets. The universal expressions for the peak velocities are given in
(40), (41). Infigures 3 and 4we plot the comparison between the analytical expressions and the numerical results
obtained through 1DGross–Pitaevskii equation, which show a good agreement for theR andT coefficients and
an acceptable agreement for the peak velocities. As reported in [35], when expressed in natural units, the
agreement between the analytical expressions and the numerical data for the velocities is excellent, although it is
hard to discriminate between peak and bulk predictions.We also addressed the experimental feasibility of the
proposed protocol: in (67)we analytically estimated the time at which the two-profiles dynamics becomes
discernible and show infigures 6, 7 its agreementwith the numerical data.We also argued thatmeasurements
can be performed reliably for around 10–100ms before intermediate-time effects should be taken into account.
Figure 5 shows that in this ‘short time’ dynamics window the profile velocities stay reasonably constant and
figure 8 that the analytical profiles are wellfitted by the numerical ones.

We also considered theCalogeromodel. Thismodel allows us to establish several relevant points. First of all,
we see that, despite the non-local nature of this interaction, the short times dynamics remain similar to the local
case andwe found that theR andT coefficients, as well as the bulk velocities of the chiral profiles, are given by the
same universal expression as before. The peak velocities, instead, follow a different universality which is
dominated by dispersive effects.While the solitons and the chiral profilesmove supersonically in theCalogero
case, the peak velocities are predicted to be subsonic. The agreement between the analytical expectations and the
numerical simulation are less satisfactory in this case, compared to the local interactions, but still support the
qualitative behavior derived analytically and the result for the subsonic peak velocities. In our numerical
simulations of theCalogero dynamics we employ a classical, Newtonian evolution of the particles and extracted
their collective behavior, whose agreementwith the hydrodynamic prediction is a further, somewhat
independent, proof of the solidity of our approach.

Finally, the Calogeromodel remains integrable even in the case of an external harmonic potential. Thus, by
including the effect of the trap, we established that by simultaneously quenching the interaction between the
particles and the externalfield, it is possible to keep the background density fixed and isolate the quench
dynamics of the soliton.We believe that this observation is applicable to the experimental realization of the
protocol and give us insights on how to deal with the external trapping. It would be in our opinion an interesting
futurework to study the quench dynamics for fermionic systemswith long-range couplings or interactions to
study the effect of non-trivial Fermi surfaces [89] and the effect of long-rangedness on the formation and
propagation of shock-waves [90].

We collected in the appendices some old and new results concerning the dynamics of solitons in non-linear
and cold atom systems. There, we explained how the dynamics of shallow profiles can always be captured by the
KdV equation and in particular howdoes this work for theGP equation (and its generalizations).We also
considered the solitons for systemofCalogero type and discussed their behavior in the presence of an external
trap. In this case, the soliton changes its shape during the evolution, because the background density is also
changing.We derived the expression for the soliton velocity on such background and showed that it decreases
moving toward the edges of the systems as the solitonwidth is also simultaneously decreasing. Such behavior
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contradicts the commonwisdomvalid in traditional, translational invariant case of constant background
(namely, the notion that thinner solitonsmove faster).

The realizations of low dimensional bosonic gases alongwith cutting edge technologies available for their
manipulation (e.g., the generation of solitons, the induction of interaction quenches, and the observation of the
subsequent time dynamics) stimulates the development of theoretical tools to interpret these data.We believe
that our work paves the path for new experiments.While we assume a cold atomic gas realization as the natural
setting to implement our quench protocol, we should stress that itmay be realizable in non-linear optical
experiments as well, where the non-linear Schrödinger equation and non-linear PDE are ubiquitous.

Future directions of investigations include studying the consequences of havingmultiple local excitations
(corresponding tomulti-soliton profiles) and their subsequent behavior and interactions after the quench. Also
systemswithmultiple species (for e.g, two types of bosons) are realized in low-dimensional cold atomic
experiments [91–93] and therefore, investigating the possiblemapping tomultiple coupled copies of chiral
differential equations (for e.g, coupledKdV equations) could be timely and important. Two-component Bose
gasesmay be used for guidedmatter-wave interferometry [94] and it would be interesting to study applications
of the soliton dynamics controlled by interaction quenches tomatter-wave interferometry. Understanding the
interplay between chiral differential equations could shine light on the complex dynamics ofmulti-species
systems.

Clearly, we think that the comparison of our theoretical results with experimental findingswould be very
interesting and this will provide input to improve ourmodeling. Amore ambitious future directionwould be to
study quenches of excited states of quantum systems in regimeswhere they do not admit a hydrodynamic
description and to discuss the behaviour of quantum states that in the hydrodynamical regime behaves like a
soliton.
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AppendixA.Universality of theKdV equation

The existence of solitons has been foremost an empirical observation [76]. It then took awhile to realize that
solitons appear as solutions of integrable differential equations. The reason for which solitonic waves can
propagate in actual physical systems is that under general assumptions it is possible to isolate an integrable core
in the dynamics, while the rest of the terms can often be neglected up to a given time scale. The typical
appearance of this ‘non-linear universality’ is the emergence of theKdV equation as the integrable core of local
fluid for shallowwaves [76].

In [51] the standard derivation of KdV in classical fluidswas reproduced to extend it to the hydrodynamic
treatment of cold quantum systems.We review in this appendix their approach, to set the notations that we used
in the body of this work.

Our starting point are the continuity and Euler equations (3), which assume no dissipation. The results are
notmodified qualitatively, as long as dissipative effects enter linearly.We introduce the following notations

r= ( ) ( )A A , A10 0

w w r= ( ) ( ), A20 0

x =  ( )x ct, A3

with respect to the equilibriumdensity r0.Wewant to describe longwave excitations on top of the constant
background density r0. Thuswe are looking for solutions in the form

r r dr x= + a a( ) ( ) ( )x t t, , , A40

d x= a a( ) ( ) ( )v x t v t, , , A5

where a =  indicates thewave chirality andwherewe anticipated the fact that small waveswillmovewith
velocities close to the sound speed.
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The perturbative expansion is based on a counting schemewith formal counting parameter ò.We introduce
the expansion of velocity and density fields as

dr x r x r x= + + ¼     ( ) ( ) ( ) ( )     t t t, , , A62 0 3 4 1 3

d x x x= + + ¼     ( ) ( ) ( ) ( )     v t v t v t, , , A72 0 3 4 1 3

We substitute this ansatz into (3), (4) and collect terms~ 3 and~ 5. At cubic order we get

w
r=

¢
  ( )v

c
A80 0 0

and the consistency

r w= ¢ ( )c . A92
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At the next order, we can combine the two hydrodynamical equations to get
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Shifting (A10) back from the reference framemovingwith the sound velocity to the laboratory frame, we
have (9).

In this derivationwe considered separately the two chiral sectors. A generic initial condition, however, will
consist of both chiralities and, in principle, one should take into account the interaction between them.
However, these effects can be neglected since, due to locality, the two sectors interact only when they are
overlapping, but this happens for a short time, as they pass through each other with a relative velocity of
approximately c2 .

We have thus shown that the dominant non-linear contributions to the dynamics of shallow, longwaves in a
generic one-component hydrodynamic system (3) is given by (9), which is known as the integrable KdV
equation.

Appendix B.Generalities onKdV

The non-linear term ζ in theKdV (9), pushes the different parts of ( )u x t, tomovewith different velocities, so
that small perturbations over the backgroundmove close to the speed of sound, while the partsmore distant
from the asymptotic equilibrium r0 movewith higher dV . This term tends to generate a shock-like profile, as the
tip of umoves faster than the base. The dispersive, α, term, instead, redistributes the kinetic energy within the u
profile and effectively lead to a broadening of the u profile.

We can introduce two time scales capturing the effective strength of these two terms

aW =a
- ( )W , B13

zW =z
- ( )UW , B21

whereW is the typical width of the disturbance over the background andU is its typical size (note thatUhas the
unit of an inverse length, as it describes the height of a density bump). There are three possible regimes

W W W W W ~ Wa z a z z a ( ), and . B3 

Physically, they correspond to a regime of dominant non-linearity (true non-linear KdVdynamics), dominant
dispersionwith linear evolution (dispersive waves) and solitonic (equilibriumbetween non-linearity and
dispersion). The dimensionless ratio

z
a

W

W
=z

a
( )UW B42

distinguish the non-linear
W

W
z

a( )1 , the dispersive
W

W
z

a( )1 , and the solitonic regimes ~W

W
z

a( )1 .
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TheKdV supports true solitonswhich keep a perfect equilibriumbetween the non-linear and dispersive
effect and thus propagate without changing their shape. The solitons can be both bright (density higher than
background) or gray (a depletion in density). In fact, (A10) is invariant under the simultaneous reversal of the
sign and chirality of  -u u. The single (dark) soliton solutions has the form

x
x d

= -
- ( ) ( )

⎡
⎣⎢

⎤
⎦⎥s t U

Vt

W
, cosh , B52 

where d = -V c V is the velocity of the soliton (in the sound velocity frame). The height andwidth of the
depletion depend on the soliton velocity as

a
d

= ( )W
V

2 , B6

d
z

= ( )U
V

3 . B7

Thefirst integrals ofmotions are
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wherewe rescaled everything by the right factors of ζ, which sets the scale of the amplitudewave, see (9).
We note that the soliton velocity can be found as the ratio between itsmomentum I1 and its ‘mass’ I0:
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as can be expected by averaging the nonlinear term in theKdV (A10), see also the comment after (B15).
In section 3we considered the evolution of an initial conditionwhich is functionally the same as the soliton

(B5), but not necessarily with the correct parametersU W, of a soliton. The different parts of the KdV equation
give:
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Wenotice that for an inverse cosh square initial condition every term in theKdV is proportional to its space
derivative. Hence, we have
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For a soliton, = a
z

UW 2 12 and the termsmultiplying ux become a constant, which equals the soliton velocity.

For genericU andW, the termswithin parenthesis give the velocity of each part of the profile.
Note that the center-of-mass of a profile of the type (B5), that is the height at which the profile has equal area

above and below it, is at a third of its total amplitude. In fact the velocity at =u U 3 from (B15) is - =zc U V
3

,

that is, the bulk velocity of the profile.

AppendixC. The non-linear Schrödinger equation and its KdV reduction

The non-linear Schrödinger equation (NLSE) is characterized by the dynamical equation (7). In one dimension,
the asymptoticmodulus of thefield rY =¥∣ ( )∣x tlim ,x

2
0, which defines the (asymptotic) density of particle,

helps in defining the dimensionless parameter
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which controls the effective strength of the interaction. In theweakly interacting limit g 1 , theNLSE captures
the dynamics of the Lieb–Linigermodel, describing an integrable systemof one dimensional bosonswith contact
interaction (see the discussion in section 2).

From (5)we can extract the phenomenological parameters of theKdV as
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TheNLSE is also integrable and its single (dark) soliton solutions is [50, 84]
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Wenotice that theNLSE soliton has the same functional form as that of the KdV (B5), withwidth and height
given by
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wherewe expanded for soliton velocities close to the speed of sound and found consistencywith (B6), (B7).
We conclude this section observing that with a power-lawnon-linearity theNLSE reads
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If theNLSE is intended tomimic 2-body interactions, this generalization considers κ-body contact interaction,
i.e. a term y

k
k∣ ( )∣x t,

g

2
2 in theHamiltonian. The hydrodynamic parameters are in this case

w r r= k-( ) ( )g

m
, C101

= ( )
A

m2
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2

2

for whichwefind that the corresponding KdVhas
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1
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=
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AppendixD. Calogeromodel

TheCalogeromodel [85, 86] is defined by theHamiltonian

å å l
= +

-= ¹ ( )
( )

H
m

p
m x x

1

2 2
, D1

j

N

j
j k j k1

2
2 2

2
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with a dimensionless coupling constant λ. The hydrodynamic description of thismodel has parameters [51]

w r
l

pr pr= +( ) ( ) ( ) ⎡
⎣⎢

⎤
⎦⎥m

1

2
, D2x

H
2 2

2
2

r
l

=( ) ( )
A

m2
, D3

2 2

2

where the superscriptH stands for theHilbert transform:

p
=

-⨍( ) ( ) ( )f x
f y

y x
y

1
d . D4H

Due to the long-range nature of theCalogero interaction, its hydrodynamic description does not reduce to a
KdV equation, but is given by the so-called double Benjamin–Ono [87], which, for small (chiral) profiles reduces
to the usual Benjamin–Ono equation

z a + + =[ ( ) ] ( )u c u uu u 0, D5t x x BO xx
H

with parameters
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m

, D60

z
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c
2

2
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0

a
l

pr
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m

c

2 2
. D8BO

0

The one-soliton density profile [95] for the rational Calogero is
r t

pr t
=

- +[ ( )]
( )s

x Vt
, D9C

0

0
2 2

where

t =
-

( )c

V c
. D10

2

2 2

Note that for thismodel, the soliton is bright (positive density displacement) and hence its velocity >V c is
supersonic. The height andwidth of (D9) are given by

r
t

r= = - ( )
⎛
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Let us again consider the evolution of an initial profile like (D9), but with generic parameters, such as

pr
=

- +[ ( )]
( )u
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x Vt b
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0
2 2

Wehave
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Hence, the velocity of each part of the profile can be read from the BO equation as

z a a
pr

z a
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We see that for a soliton ( r=a b0 ) the termproportional to u vanishes and the solitonmoveswith velocity

+( )c 1
b

1

2
, or

=
-

( )b
c

V c

1

2
, D18

which reproduces (D10) only to leading order in d = -V V c. Thus, we notice amismatch between the
parameters of the soliton supported by (D5) and those of the trueCalogero soliton (D9), (D10), which is
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propagated by the double BO. In the limit of small dV the two approach, in the sameway as theKdV is a valid
approximation to a local hydrodynamics only for shallowwaves.

Similarly towhatwe did for theKdV, we can find the velocity of the profile (D13) from the conserved
quantities, as in (B11).We have

ò r
= ( )u x
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b
d , D19

0
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4
. D20

2 2

0
3

Hence, the average height of the profile (D13) is

ò
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and its bulk velocity is
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2
. D22av
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Equation (D13) becomes a soliton of (D5) for r=a b0 and in that case (D22) correctly reproduces (D18). The
velocity (D22) coincides with the velocity at the center-of-mass, calculated from (D17) at the height (D21), since
at this height the dispersive effects are perfectly balanced and cancel out.

The center-of-mass velocity can be comparedwith the velocity at the peak by setting t=u a 2 in (D17)
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Appendix E.Harmonic calogeromodel

TheCalogero interaction remains integrable evenwhen an external harmonic potential is applied, as in (70).
Most of what is valid for the rational case considered above remains valid, but the background density is nownot
constant and follows the famous semicircle law [52]

r
w
pl

l
w

= - º( ) ( )x R x R
N

, where
2

. E10
2 2

Thus, the speed of sound is not a constant, since it depends on the local density, and is given by

plr w= = -( ) ( ) ( ) 
c x

m
x

m
R x . E20

2 2

Wenotice that the speed of sound at the center of the trap (x= 0) is

lw= ( )c N2 , E3

and it decreases aswemove from the center.
The soliton solutions of the harmonicmodel were found recently [52]. They can be thought of as

‘Lorentzians’-like (D13) that live on top of the background density (E1):

r r
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where

= +( ) ( ) ( ) ( )z t x t y ti E61 1

is an external parameter that drives the soliton as it traces an ellipse in the complex plane (see also [52] for further
details on the external parameter whichwe dub as dual variable)

w
w

w= + -w( ) ( ) [ ( ) ( )] ( )z t z
t

P X0 e
sin

0 i 0 . E7ti

Here z(0) is the initial position of z1 in the complex plane and = å =X xj
N

j1 , = å =P pj
N

j1 are the center-of-mass
and the totalmomentumof the system at t=0.Without loss of generality, we can take =( )z b0 i with >b 0 as
initial condition, which also givesX=0. The equation of the ellipse in this case is
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åw
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We see that the initial value b uniquely characterizes the soliton. Combining equations (E4) and (D10), the
soliton velocity at the center is given by

p r
l
w

= + = +
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( )V c
b

c
b N

1
1

0
1

1

2
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The soliton velocity changes as itmoves away from the center (i.e, as a function of time). Since the soliton
follows the external complex parameter z(t), its velocitymatches that of the real part of the dual variable z(t):

å l
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+
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⎣
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x b
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By inspection of equations (E9) and (E10)we get,

l
w

w= +( ) ( ) ( )V t c
b N

t1
1

2
cos . E11

As one can notice from the above equation, the soliton velocity decreases as itmoves away from the center. It is
alsoworthwhile noticing that the solitonwidth, ( )y t1 , also decreases. Therefore, we have a scenariowhere a
soliton ismoving slower, as it becomes thinner. Inflat background, thinner solitonsmove faster and thus we see
that the interesting interplay between the non-constant background and the solitonmoving on top it contradicts
the commonwisdomvalid in constant background.
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