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Abstract

We discuss the hydrodynamic approach to the study of the time evolution—induced by a quench—of
local excitations in one dimension. We focus on interaction quenches: the considered protocol
consists of creating a stable localized excitation propagating through the system, and then operating a
sudden change of the interaction between the particles. To highlight the effect of the quench, we take
the initial excitation to be a soliton. The quench splits the excitation into two packets moving in
opposite directions, whose characteristics for short times can be expressed in a universal way. Our
treatment allows for the description of the internal dynamics of these two packets in terms of the
different velocities of their components. We confirm our analytical predictions through numerical
simulations performed with the Gross—Pitaevskii equation and with the Calogero model (as an
example of long range interactions and solvable with a parabolic confinement). Through the Calogero
model we also discuss the effect of an external trapping on the protocol. The hydrodynamic approach
shows that there is a difference between the bulk velocities of the propagating packets and the velocities
of their peaks: it is possible to discriminate the two quantities, as we show through the comparison
between numerical simulations and analytical estimates. We show that our analytical results capture
with remarkable precision the findings of the numerical simulations also for intermediate times and
we provide predictions for the time at which the two packets becomes distinguishable. In the
realizations of the discussed quench protocol in a cold atom experiment, these different velocities are
accessible through different measurement procedures.

1. Introduction

The outstanding performances of modern experiments in preparing and controlling setups of quantum gases
[1, 2] have promoted the study of out-of-equilibrium systems in ultracold gases as arguably one of the most
challenging topics in the field [3—18]. One of the reasons for the complexity of this challenge is due to the variety
of ways in which a system can be driven out of equilibrium and the difficulty in having a general guidance
principle to relate their phenomenologies.

Thus, over the years, the community has concentrated on a few protocols that have emerged to be
sufficiently clean and interesting. One question at the forefront has been under which conditions (and in which
sense) a system is able to reach an equilibrium, and whether this equilibrium can show universal characteristics
such as thermalization [19-29]. Particularly useful in addressing such questions are setups based on cold atoms
[30-36].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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One of the most experimentally relevant protocols to study out-of-equilibrium dynamics and the issue of
thermalization is the quench protocol in which, typically, a system described by a Hamiltonian H is prepared in
its ground state and then, at a given moment of time, is evolved using a different Hamiltonian H "[37]. The
questions usually asked with quantum quenches refer to late times properties of the systems (and whether the
unitary evolution can lead to something that can locally be described in a semi-classical way) [38—42].

Variations to the usual quench protocol have been considered typically in two forms: the initial state was
taken to be an excited state of the initial Hamiltonian [43], or the interaction was changed onlylocally [44—48]. In
arecent work [35], we introduced a different protocol: we proposed to start with alocal excitation and to let it
evolve after a global interaction quench. In order to isolate the effect of the quench on the dynamics, the initial
state is prepared as a solitonic excitation of the original Hamiltonian, that is, a state for which the one-particle
density profile evolves without (almost) changing its shape. This setup has the merit of being experimentally
feasible and of showing universal properties already at short times. In [35] it was also shown that, by changing the
underlying interaction during soliton motion, the excitation breaks into two profiles: one moving in the same
direction as the initial excitation, the other in the opposite. In a cold atom setup, such a quench can be triggered
through trapping or with an external magnetic field [1] to induce a change in the scattering length and in the
speed of sound. The system is then allowed to evolve for short times after the quench and the velocities and
shapes of the two chiral profiles created by the quench can be measured either by direct imaging or reconstructed
by releasing the trap, through time-of-flight measurements.

As we are going to discuss in this paper, a convenient way to study the dynamics of a local excitation is to
employ a (non-linear) hydrodynamics description of the system in terms of the density and velocity fields.
Moreover, if the initial density profile is not a large perturbation over the background, velocities and shapes of
the transmitted and reflected profiles for short times after the quench can be expressed in a universal way, that is
independent from the details of the quench and of the microscopic interaction [35]. The hydrodynamic
approach [49] is complementary to a microscopic computation of the dynamics (when practically doable), and it
has the advantage that microscopic details of the underlying model enter as parameters of the hydrodynamic
equation (e.g., the sound velocity). It also provides a standard tool to study collective excitations and dynamical
properties in cold atom setups [50, 51] and it applies as well to higher dimensions: however in this paper, in line
with the topic of this Focus Issue and with our choice to consider solitonic solutions we limit ourself to one
dimensional systems and soliton excitations (in higher dimensions, solitonic states are stable only for limited
times and one needs to take into account the spreading and the excitations of the wave packet). We consider in
detail the Gross—Pitaevskii (GP) equation, with §-like interactions (which is relevant for the 1D Bose gases in the
limit of small interactions [50]), and the Calogero model, since it is exactly solvable also with in the presence of a
parabolic trapping potential [52—-54].

The same quench setup has also been considered in [55-57] with a specific interest on integrable PDEs
describing the evolution of one dimensional systems and on the translation of the quench protocol in the
corresponding quantum inverse scattering problem. These papers signal the interest of the community in the
interaction quench. We would like to stress that the proposed quench protocol could be implemented relatively
easily in cold atoms experiments and that, by focusing on the short time universal dynamics, our predictions can
be tested directly in the laboratory, which should be contrasted with typical large time results produced by other
approaches and protocols. Universal properties of short time out-of-equilibrium dynamics has been considered
in [35, 58-60].

In this work our main goal is to investigate in detail the hydrodynamic approach for the study of the
dynamics of solitonic excitations in one-dimensional systems, clarifying the hypothesis behind the derivations
based on the hydrodynamic approach and to discuss the possible experimental realization of the quench
protocol in cold atom systems. To the latter aim, we address an important issue related to the measurability of
the chiral profiles generated by the quench and relevant for the cold atom physical realizations. In fact, at the
quench time the transmitted and reflected profiles are perfectly overlapping and can be distinguished only after
they have moved apart. While in time-of-flight experiments one need not wait this time, since the two profiles
have opposite momentum, in a real imaging scenario (such as that we employ in our numerical experiments)
this waiting time can introduce additional effects. We analytically estimate this waiting time. Moreover, since the
two chiral profiles are not solitons of the post-quench system, the center-of-mass (average) velocity of each
profile might be different from the velocity of its highest point. We find that in the hydrodynamic approach one
can naturally introduce both ‘bulk’ and ‘peak’ velocities of the transmitted and reflected packets: we provide
expressions for both quantities, and we compare them with our numerical simulations for the GP and Calogero
models. We also discuss the time scales relevant for the experimental realization of the proposed protocol and
the efficacy of our approximation within them.

The plan of the paper is as follows. In section 2 we review the hydrodynamic approach to the description of
one dimensional cold atomic gases [51]. In section 3 we analyze the quench protocol and derive the expressions
for the velocities and heights of the chiral profiles generated by the quench. In sections 3.1 and 3.2 we compare

2



10P Publishing

NewJ. Phys. 18 (2016) 115003 F Franchini et al

the analytical prediction against our numerical simulations performed on the one-dimensional GP equation and
on the Calogero model. In section 4 we discuss our results and comment on future perspectives. Finally, we
collect some useful (although more technical) information in the appendices. Appendix A explains how we can
extract an integrable dynamics out of a generic hydrodynamic system, while in appendix B we discuss the main
properties of the integrable core, the Korteweg—de Vries (KdV) equation. In appendices C we discuss some
different versions of the 1D GP and their relation to KdV. Finally, in appendices D and E we collect the basic facts
about the rational Calogero model and its version confined in a harmonic potential (also integrable).

2. The hydrodynamic approach

All quantum systems at sufficiently low temperature acquire a collective behavior. In many such cases, the
expectation value of the particle density operator p (x) = > 6 (x — xj) becomes a smooth function and the
quantum fluctuations around it are negligible. When this happens, the system dynamics can be described with a
hydrodynamic approach [49]. In the following, we will primarily be interested in one dimensional systems with
one particle species without additional internal degrees of freedom, so that it is sufficient to introduce the scalar
density p (x, t) and velocity v (x, t) fields.

Assuming Galilean invariance and locality, the most general hydrodynamic Hamiltonian reads [51]

2
(@p) ] O

H= fdx[— + pe(p) + Ap)—LE
where € (p) is the internal energy and A (p) is related to quantum pressure. We also assume that dissipative
effects can be neglected. The equations of motions can be obtained by remembering that the density and velocity
are conjugated fields [61, 62] satisfying

{pG), v(n)} = Oxb(x — ). @
They are the continuity and Euler equations [49]:
p+0o(v)=0 v+0A=0 (3

2
= ”7 +w(p) — A'(P)DYp)* — Alp) €

0% Jp
\/ﬁ b

where w(p) = 9,(pe (p)) is the specific enthalpy (which at zero temperature reduces to the chemical potential).

Under the foretold conditions, these equations are completely general: the functions ¢ (p) and A (p) encode
the specificity of the system under consideration. A discussion of how one can extract an integrable dynamics out
of a generic hydrodynamic system and the derivation of the KdV (used in the next section) is reported in
appendix A, and useful facts about the KdV are in appendix B.

Choosing

g 72

€= ——p, A= —, 5
Zmp 2m ©)

and combining the hydrodynamic fields into the complex field

U= Jﬁei%f v(dy (6)

the dynamical equations (3), (4) can be written as the single complex equation
. /? 5
1209 (x, t) = —%@x + g (x, DIF = py) pY(x, 1), (7)

which can be recognized as the 1D non-linear Schrodinger equation, aka the 1D GP equation (without the
external potential in (7)). In equation (7) p, is the density for x — oo. Details about the the non-linear
Schrodinger equation and its KdV reduction are in appendix C.

The GP equation has been routinely used in the last two decades to describe the dynamics of ultracold bosons
at T = 0[50].In 3D its validity stems from the fact that there is a condensate, whose macroscopic wavefunction
obeys the GP equation, from which one can derive hydrodynamic equations [50]. In 1D there is no condensate,
since there is actually a ‘quasi-condensate’ [63]: however, the GP gives a good description of experimental results
for small interactions (i.e., for the coupling constant of the Lieb-Liniger model, definedin (C1), y = =& < 1

[64]) and in particular of the—dark and bright—soliton dynamics observed in 1D experiments [65, 66] and of
shock waves [67]. When in 1D the coupling constant is not much smaller than 1, one can nevertheless use
hydrodynamic classical equations (as the ones given above) to study small deviations from equilibrium [68]. For
larger deviations one has to study the quantum dynamics directly using the Lieb—Liniger model (which might be
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at present rather challenging from the computational point of view) or resort to 1D mean-field effective
equations [69-72] from which hydrodynamic equations may be derived as above producing (time-dependent)
non-linear Schrodinger equations with suitable general non-linear terms € (p), the GP equation corresponding
to € (p) x p.Asdiscussed in [35] a good agreement is found between the hydrodynamic results and the GP
equation with a power-law € (p). We observe that such mean-field equations may fail in correctly describing
interference between wavepackets, as shown for the Tonks—Girardeau limit v — oo in [73]: in general one
expects anyway that the mean-field equations work better at short times with respect to long times. For instance,
the long-time fate of a soliton configuration due to classical to quantum crossover has been studied in [74].

3. The quench protocol

In this section we discuss in detail the quench protocol. The starting point is to prepare the system with a
localized excitation. In general, since such a state cannot be an eigenstate of a translational invariant system, in
time it would diffuse and disperse. However, it is an empirical observation that several systems abruptly taken
away from equilibrium, settle back in configurations displaying localized excitations that propagates for long
times without degrading significantly. Such behavior is that of a soliton (or trains of solitons) and itis a
manifestation of the emergent collective hydrodynamics ensuing in the system. True solitons are a characteristic
feature only of integrable differential equations [75]. Nonetheless, individual (or well separated) solitonic waves
are commonly observed in a variety of systems, including of course classical systems [76] and ultracold

systems [77].

For the quantum many-body Lieb—Liniger model of interacting bosons in 1D it is not obvious what is the
quantum content of the microscopical state that results into a soliton. It makes sense that it would contain a large
number of eigenstates such that the coherent dynamics prevents their macroscopic spreading, similarly to what
happens in quadratic theories for coherent states. Indeed, the construction of quantum states with one particle
density evolving in a solitonic way has not provided conclusive results so far [78—80], in the sense that it is not
clear what is the definition of a quantum dark soliton from the Bethe ansatz solution, and if the quantum dark
soliton may be defined at all (see however the very recent discussion in [81]).

In this work we do not try to solve this problem, but we hope that our analysis can contribute in this
direction. Our starting point is the empirical observation that solitonic configurations are commonly excited
(and manipulated) in cold atomic Bose [65, 66, 77, 82] and Fermi [83] systems and that they are best understood
in terms of an effective semi-classical hydrodynamical description of the system.

Once a solitonic excitation is created, its density profile will remain (approximately) constant and will only
translate in space at a constant velocity. In our quench protocol, at some time during the soliton evolution we
change the parameter g governing the interaction strength of the system to g’. This interaction quench modifies
the hydrodynamic equations so that the initial soliton cannot evolve unperturbed anymore. We aim at
describing the dynamics, and in particular the short time dynamics, of the soliton after the quench.

To qualitatively illustrate what happens after an interaction quench, we take as an example the GP
equation (7) and we change the interaction parameter gtoavalue g’ > g at the time t,. The sound velocity
changesfromc¢ = /gtoc’ = \/? (in units where 2 = m = p, = 1 where p, is the density for x — 00). Asthe
initial condition we take the gray soliton with velocity V[50, 84] reported in appendix C

Px, t=0)=1i v +  tanh vyex, (8)
c

where v = /1 — V2/c?. Asillustrated in figure 1 there is a time t, at which the soliton splits in two (more
precisely: at which a second minimum is seen), and a time #; in which another splits occurs and one of the two
packets in turn splits in two as well. We also define an intermediate time t;,, = (¢, + t3)/2. The numerical
values of the transmitted and reflected velocities are plotted in figure 2: these numerical values are obtained by
computing the velocities of the (transmitted and reflected) peaks from the peak positions around #,,, which
reduces numerical fluctuations (as we discuss later and show in figure 5, we verified that between t, and t5 the
peak velocities are rather stable, while close to t, and t; numerical fluctuations may be present).

In figure 2 we plot the analytical prediction ¢’/ ¢ obtained from a linear approximation (as discussed
below), where the 4 (—) is for the transmitted (reflected) components. The hydrodynamic approach we
introduce in the following reproduces the leading behavior and it is found to be able to reproduce deviations
from it. Itis also possible to use the hydrodynamic approach to discriminate the bulk and peak velocities: indeed,
from the hydrodynamic theory one has that for very short times after the interaction (well before ¢, where a
second minimum is observable) the transmitted and reflected packet move as transmitted and reflected solitons.
The numerical findings we present in the following confirm the validity of the hydrodynamic results up to the
time scale ;.
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Figure 1. Plot of the density |t (x, t)|? at 5 different times with g’/g = 20 and initial velocity V = 0.96¢ (with g=1and

/2= m = p, = 1). The interaction is suddenly changed at tq = 2 - 10~* very close to zero. The black line is the density at t = 0,and
the others are at the times t = #, (in which a second minimum emerges)—red; t = 2t,—green; t = tj,—magenta; t = f3 (in which
another minimum is seen in the transmitted packet)—blue. Numerical values are ¢, ~ 0.708, tj; ~ 8.219 and #3 ~ 15.729.
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Figure 2. Transmitted and reflected peak velocities as a function of ¢’ /¢ for the same parameters of figure 1. Dashed lines are the linear
predictions ¢’/ c respectively for the transmitted and reflected velocities. These velocities and the quantities plotted in figures 3, 4, 9,
10 are measured at t;,,, intermediate between the time at which the transmitted and reflected profiles are first distinguishable and the
time at which the transmitted profile further splits into two.

To set up the hydrodynamic approach for the propagation of the localized excitations after the interaction
quench, as we argued above we take the dynamics before the quench to be captured by the equations (3), (4),
where the hydrodynamic parameters w(p; g) and A (p; g) depend on a microscopical parameter g, setting the
strength of the inter-particle interaction. The shape of the initial soliton is set by the coupling g and by its velocity
V. The approach we develop in this section is independent from the microscopic details and it applies to general
1D systems with solitonic excitations, and it will be compared with numerical results in the next sections.

The existence of a soliton is a strong indication that it is possible to isolate out of (3), (4) an integrable core,
with the remaining terms being negligible for a relatively long time. If the initial soliton has velocity V close to the
speed of sound c (so that its amplitude is also small compared to the background density p), it is known that the
hydrodynamics can be reduced to that of the integrable KdV. We outline the reduction of equations (3), (4) to
KdV in appendix A. This procedure, developed for cold atoms in [51], is at the heart of our analysis and thus in
the following we assume % ~ 1

The KdV is a chiral equation that reads

e F 8x[cui + %ui - aaiui] =0, 9)
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where ¢ = / p,wy is the sound velocity (wy = J,w| »,) and the nonlinear and dispersive coefficients are given by
(= £ + i , a= M
Po 9py 4c
Details on the derivation of the KdV equation in a generic hydrodynamic system are given in appendix A.

The =+ in (9) refers to the two chiralities of the waves while u (x, ) is approximately the density fluctuation
over thebackground u >~ p — p,. The KdV reduction neglects the interaction between the left and right moving
sectors. Due to locality, such approximation is violated only when the two chiral profiles overlap. However, since
they move with relative velocity of approximately 2c, such effects exists only for short times and hence can be
neglected [84].

Suddenly during the evolution of the soliton, we change the interparticle coupling to g’. Thus, after the
quench the hydrodynamic equations will change and the effective dynamics will be given by the KdV (9) with
modified parameters ¢/, o’ and a new speed of sound ¢’. This sudden change in the interaction is seen by the
soliton profile as a perturbation to which it reacts by splitting into a transmitted and reflected profile, exactly as it
would happen to alinear wave, in the presence of an obstacle, or if the sound velocity is suddenly changed.

Before the quench, the initial state can be approximated by the KdV soliton (B5)

(10)

u(x, t) =s(x — Vt). (11)
We make the ansatz that after the quench
u(x, t) = u,(x — Vit) + u, (x — Vi), (12)

thatis, we assume that the quench acts as an external force which splits the soliton into a transmitted and a
reflected profile and that, for short times after the quench, these bumps evolve with a given velocity, without
changing their shape significantly. If V > 0, the reflected velocity V; < 0 and the transmitted oneis V; > 0.
Imposing continuity of the solution and conservation of momentum at t = 0 we obtain

M(X, t) = R(V1 ‘/h ‘/t) S(x - ‘/rt) + T(V) ‘/r) ‘/t)s(x - \/tt)) (13)
with
ROV, V)= 2=V and TV, W V)= (14)
Vi—-V Vi—-V,

Note that, applying the same quench protocol to an initial sound wave moving at the pre-quench speed of
sound cwould yield transmitted and reflected waves moving at the post-quench sound speed £¢’. The above
formulae specialize for this case to

cd—c 1 c d4+c¢ 1 c
Rlinear = 2 = 5[1 - ?:ly and Tiinear = 2 = 5[1 + _:I (15)

The derivation of (13), (14) is completely general, based only on the ansatz that after the quench the soliton
splits into two chiral profiles, and does not depend on the dynamics. The laws governing the evolutions are
needed to determine the velocities of the two profiles.

We can estimate the profiles velocities by looking at the motion of their center-of-mass’

L (16)
x), = .
fudx
The velocities are thus
1 .
Vi = 01(X)u,, = m fx t, dx, (17)

where we used the fact that the denominator is the integral of motion I, (B8) and thus does not evolve with time.
We can trade the time derivative for a spacial one through the post-quench equation of motion (9):

!
Vir = i; fx 8x[c’ur,t + C—uft — a’@iur,t]dx, (18)
fu,,, dx 2

where the + (—) sign applies to the left (right) moving profile. We can now integrate by part (remembering that
atlarge distances the profiles decay to zero exponentially) to get

? We thank the referee for suggesting this approach.
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Vie=F (19)

Uyt dx ? Ut dx
J J

fl:c’ur,t + %u,z’t]dx ¢! f”rztdx
/ :
=Flc+ > L |
Note that this expression has a natural interpretation as the ratio between the first two integrals of motion (B8),
(B9), which can be interpreted as the mass and momentum. Indeed, in (B11) we show that this is the case for a
soliton:

2dx
h_¢ Js (20)

c—V=—

L 2 [lsldx

The integral of motions of the two profiles after the quench are determined immediately at their creation and,
remembering (13), are simple rescaling of the original ones:

_C/_|_C_/fur2dx __C/+R<_/f52dx

V= = , 21
2 f|u,|dx 2 f|s|dx
2 2
1 furdx 1| s*dx
Vt:c'—g—f;: c'—Tif . (22)
2 f|ut|dx 2 f|s|dx
We can now use (20) and (14) to get
Vo
V=t SV, 23)
CVi—y,
! —
Vt:c’fC—V Vr(ch). (24)
CVi—Vw
Solving this system we finally get
CI
Vi=—[c—nR(c—-V)]—, (25)
¢
C/
VrZ[C—UT(C—V)]?, (26)
where we introduced the universal parameter
14 22
c ¢ " dp
p=f o0 27)
¢ 14 =
c Op,
and where the T'and R are found consistently to be
RV | 28)
2 dnVv+A-nc
r=lliy eV | (29)
2 dnV+Ad—-—nc

We note that these expressions are completely universal. Equations (25)—(29) already appeared in [35] with a
different, more qualitative, derivation.

To further highlight the universality of equations (25)—(29), we can make everything dimensionless, by
measuring velocities in units of sound velocity. Thus, we introduce the reduced velocities:

_ / r_
V= ¢ V, v, = ﬂ, and v = C—Vt, (30)
c c c
and we write (25), (26) as
v c 1—v
vr=1n—1-— ——|, (31)
P 2[ d1—n 1/]
p=nllie e lzv (32)
e= 2 d1—nv|
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Hence, the solution immediately after the quench is

1 1—
ulx, t)=—|1— f_--r slx + (1 — y)t]
2 dl1—nv
TR PIVRCEE S A N p e (33)
2 dl1—-nv
The reflection and transmission coefficients are
R:ll_il_—y’ T:l]+£1_—y’ (34)
2 dl—nv 2 dl—nv
and the height of each chiral profile is
U, = RU, U, = TU, (35)

where Uis the height of the pre-quench soliton.

Since the chiral profiles are not solitons of the post quench dynamics, their shape will change during the
evolution, because different parts of each profile will move at different speeds. For short times after the quench,
we can take advantage of the fact that each of the reflected and transmitted profiles are similar to the original
soliton, just with a reduced height. Thus, we can use (B15) to estimate the velocities of the different parts:

Vi=—c + o v — (C’ _ ¢ a—/)ur(X), (36)
a R «

V= — o v+ (C’ S a—/)ut(x), (37)
«Q T «

where we used the fact that the width of both profilesis W = 2 % and their heightsare U, = %Rcu and
U = %Tcu. As a consistency check, we notice that the velocity at the average height of each profile

((um> = %UM) coincides with (31), (32). The velocities of the profile peaks are

Peak ¢ o
Ve = —¢ + 32-Rev — 2— ¢, (38)
¢ «
Ak ! a/
viek = ¢ — 32 Tew 4+ 2— c, (39)
¢ «
which, in terms of the reduced velocities (30) are
vk =3, 2Ly, = [3 - i]ur, (40)
B By
vPeak — 3, 1Ly, = [3 - 3]%, (41)
B Bt
where
QO / /
e A (42)
Qo o ¢ o
and
08, = RG, and B, = T0. (43)

The parameter 3, , characterizes whether the dynamics of the chiral profiles is dominated by the non-linear
term of the KdV (6,,, > 1), by the dispersive term (3, , < 1), orisin the solitonic regime of equilibrium
between the two (3., =~ 1). Equation (42) is obtained considering that before the quench the dimensionless

.. . . L . . .
ratio 9—4 in (B4) is close to unity, since we prepared the initial state in a solitonic state, and thus the soliton
parameter satisfy

¢ 1
=~ . (44)
a UwW?

Typically, large quenches g’ > g gives 3 > 1(see, for instance, (52)): we see that the peaks have reduced
velocities three times larger than the profile center-of-mass. For smaller quenches, dispersive effects will reduce
the peak speeds and we see that for 3, , < 1, z/fftak < U, Moreover, for (3, , < %, the peak starts moving
supersonically and thus we expect the profile to become unstable.

8
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Let us now consider the enthalpy w(p) in (4) to be a simple monomial, that is

w(p) = ¢@p Y, (45)
then
2=(r-Do@py ¢= (H s 1)1, and =1 (46)
2 Po
Hence
MZZF_ﬁ}:Zl_ 0@ | Rzlp_g}zll_ 0@ | )
2 ¢ 2 #(g") 2 ¢ 2 »(g")

-

V:Z[1+i]251+ At T:l[l—&-i]:ll—i— Q) (48)
2 7] 2 o) | 2 ] 2 o) |

Note that the reflection and transmission coefficients are the same of the linear process (15), although the
velocities are not.

3.1. Quench protocol for the Gross—Pitaevskii equation
To test the predictions based on the KdV universality, we performed some numerical simulations on physically
relevant systems. We consider cold atomic gases with local interaction described by the GP equation

}'ZZ
M&¢{——m+f@%% (49)
2m

where p(x, t) = [ (x, t)|?and f (p) = gp. To maintain our discussion more general we detail the derivation of
the hydrodynamic results for a general f (p), but we present numerical results for the GP equation (49) with
f (p) = gp.Numerical results for other choices of f (p) and in presence of a trapping potential presented in [35]
confirm the general validity of the hydrodynamic results for general GP equation with local interactions.
In one dimension, the GP equation reduces to (3), (4) with the ansatz (6). The hydrodynamic functions are
ﬁz

PR (50)

w(p) = &, and A=
m

By substituting the hydrodynamic parameters derived in appendices C into 3 for the GP equation we have

! ! !/
C—:C—: g_, and n=1. (51)
c ¢ Vg

Furthermore, remembering the definition (42) of the parameter  we find
\2
c
B (—) . (52)
c

Hence, quenching to stronger interactions (higher speed of sound) takes the dynamics to a non-linearity driven
regime, as we anticipated.
Using (47), (48) we get

v, =Ry, R:%[l — ], (53)

v, =T v,
For the peak velocities (40, 41) we have
2

c
erak:3yt_27V:_V
c

c

(56)

!

]. (54)

2 2

Peak c 3 c 4 c
v =3y, —-2—v=—v|l— — — ——|, 55
gl s ] -

42

37

:

In figure 3 we plot the reduced peak velocities measured during our numerical simulation of the GP equation
and compare them to both the prediction for the bulk (53), (54) and peak velocities (55), (56): it is clearly seen
that the numerical results discriminate between the two predictions and are rather in agreement with the
formulas for the peak velocities. We report in figure 3 numerical data for V= 0.96c and V = 0.9c¢: as expected,
numerical data for V= 0.9¢ are more distant from the analytical predictions, nevertheless the qualitative
properties of analytical results (as reduced reflected peak velocities smaller than the transmitted ones and both

W
| —
—
+

4
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3 c’/c 10

Figure 3. Points are reduced peak velocities in units of v versus ¢’ /c numerically computed from the GP equation: filled black circles
(V = 0.96¢) and black stars (V = 0.9¢) are the reflected velocities, empty red squares (V = 0.96¢) and red triangles down (V = 0.9¢)
are the transmitted ones. Solid lines are the analytical predictions (55), (56) for the reflected (black) and transmitted (red) reduced
peak velocities, while the dashed lines are the analytical predictions (53), (54) for the reflected (black) and transmitted (red) reduced
bulk velocities.

1 T ' T
~- . .. T
%‘—_ R

1 L 1

0 5 10

c’/c

Figure 4. Points are values of R (filled black circles for V = 0.96¢ and black stars for V' = 0.9¢) and T (empty red squares for
V' = 0.96¢ and red triangles down for V = 0.9¢) versus ¢’/c numerically computed from the GP equation. Solid lines are the
analytical predictions (53), (54) for Rand T.

distinct from and larger than bulk velocities) are again visible. While in terms of the reduced velocities the
behavior of the peak and the bulk is clearly distinguishable, in natural units the two are dominated by the sound
velocity drag. This is the reason for which the data plotted in figure 4 of [35] is well fitted by the bulk prediction as
well. In figure 4 we plot, again for V = 0.96¢ and V = 0.9, the analytical predictions for R and T from (53), (54)
and the numerical GP results: the agreement is excellent, even better than for the peak velocities.

The comparison of figures 3 and 4 shows that the hydrodynamic approach gives good results for both bulk
and peak velocities, and that the theory can discriminate between them. The data in these figures were taken at
time f;,,, defined as halfway between the time #, were the two profile become distinguishable after the quench and
the time #; where the transmitted profile further splits in two. The dynamics around #; is clearly beyond our
approximation scheme and its treatment requires a different approach, for instance that of [55], which we will
not pursue here. Nonetheless, we empirically notice from our numerical experiment that ¢; is more than one
order of magnitude greater than t,. Moreover, as figure 5 shows, the velocities remain approximately constant in
this (large) interval of time. The possibility of discriminating peak and bulk velocities is important for
experiments, where the bulk velocities could be measured with time-of-flight protocols while peak velocities
from in situ imaging of the density. Figure 5 guarantees that the results of these measurements is not expected to
vary significantly between t, and t;. With typical experimental parameters this means that the experiments

10
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Figure 5. Position of the transmitted (top) and reflected (bottom) peaks for g’ = 60 as a function of time ¢, obtained from the
numerical solution of the GP equation, with tbetween t, ~ 0.407 and #3 &~ 8.400 (V /c = 0.96). Inset: numerical estimate of the
transmitted (top) and reflected (bottom) peak velocities, as determined by using data spaced in time by At = 0.21 and using a spatial
grid with Ax = 0.07.

should be order of tens/hundreds on ms, which is in turn realistic. With the units 7 = m = p = 1for

V/c = 0.96wefindt, ~ 0.2-1and t; ~ 5-20 for g’ ~ 10-100. If one considers a confining frequency

wy ~ 27 - 10 Hz, measuring time in units of 1 /w, one has that 3 ~ 1-10 corresponds indeed to to

~10-100 ms. We also observe that a simple estimate of g gives with our units g ~ 1 for a transverse frequency of
few kHz and a number of particles of order of hundreds (as it is realistic for experiments in which one has many
1D tubes).

Using (13), we can estimate the time #, at which it is first possible to discern the existence of the two profiles.
The comparison with numerical results helps to quantitatively address the validity of the hydrodynamical
approach we are following. To do so, we search for the instant at which there is a flex point in (13), that is we look
for (x, t;) at which the first and second derivative of (13) vanish:

% = ZIRI( ) + TH( — P = 0, (57)
du = i[R(l -3¢0 - @)+ TA =30 —-pH] =0 (58)
dx2 W
where we introduced
q = tanh[(x — V;t)/ W], (59)
p = tanh[(x — V,t)/ W], (60)

with V; , given by (53), (54) and Wby (C7).
Once we determine the p and g that solves (57), (58), we have

= w v (arctanh g — arctanh p). (61)
t— Vr
Linear combinations of (57), (58) yield the simplified system of equations
Rq(1 — g’ + Tp(1 — p*) =0, (62)
p(l —3q%) —q(1 —3p*) =0. (63)

We can solve (63), for instance, as a quadratic equation in q. One solution is the trivial ¢ = p, which corresponds
to the equilibrium reached at x — £ 00 and is thus not the one we are looking for. The other solution is

1
= ——. 64
q > (64)
Substituting in (62) we have
1 2 4 6
[R — 9Rp? + 27Tp* — 27Tpf] = 0, (65)
27p3
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0 1 L 1

c’/c

Figure 6. Plot of the time , at which the second solitons appears as a function of ¢/ /c: Solid lines are the prediction (67) and dots are
obtained from the numerical solution of the GP equation for V' /¢ = 0.96 (black), 0.9 (red), 0.75 (green) from top to the bottom of the
figure. Inset: t, versus ¢’/c for V /¢ = 0.6 (blue) and 0.4 (magenta)—notice that the analytical blue and magenta solid lines are not
distinguishable on the scale of the figure.

which can be solved as a cubic equation in p*. The only real solution is

—1/3
/ —-1/3 / 12
pzzl 1+22/3(C_+1) |:(C__|_1)_|_ C__1:I
3 c c c?

1/3
/ -2/3 / 2
+ 23S 4 S|+ -1 | b (66)
c c c?

where we used the definitions of R, T in (53), (54) in terms of the quench strength <

C
Substituting this solution into (64) and both of them in (61) and further simplifying the resulting expression
we find

t w I+Q+Q +21+Q )
= n
- 11+ @ - 2a+0
where
, > 2/3
Q—{C—+ 6—21] . (68)
C C

We tested this prediction against our numerics, finding an excellent agreement and further supporting the
validity of our approximation scheme. The comparison is presented in figure 6. As the inset of figure 6 shows, it
is seen that the results are rather good also for V/caslow as 0.6 and 0.4, where the KdV approximation for the
GPE is not supposed to be reliable.

To quantitatively assess deviations from the prediction (67) we observe that the quantity £, times
a+v / ¢) - \J1 — V2/c? according equation (67) itself is independent from the initial velocity:

1+Q+Q +2a+
tz(l—&-z)x/cz—Vz :L/ln Q+Q }( Q). (69)
¢ 20 1+4Q+Q@ -F01+0Q

Numerical results for V/c = 0.96, 0.9, 0.75, 0.6, 0.4 are reported in figure 7: as expected, one sees that, while
for shallow initial solitons the agreement is excellent, by decreasing the initial velocity the agreement becomes
less satisfactory, although still acceptable.

To further show how well and for how long the approximations we used remain valid, we plotin figure 8 the
density p, — p(x, t) for different times between t, and #; from the numerical solution of the GP equation and
from the KdV hydrodynamic approach. Itis seen that the analytical prediction is rather good almost all the way
to t3, even though approaching #; it cannot reproduce the deformation needed to expel the third soliton.
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V /¢ = 0.6 (blue) and 0.4 (magenta).

1 Y g — :
N\
& N
~
RN N
b 1
NG T
N Q
i N
T + |
i
< <o L :
~
=~
+
i
NN
0 | ' |

5 10

Figure 7. Plot of t, times (1 + V / ¢) - 41 — V%/c? asafunction of ¢’/c: dots are from the numerical solution of the GP equation for
V /¢ = 0.96 (black), 0.9 (red), 0.75 (green) with ¢ = 1, while the solid line is the analytical prediction (69). Inset: same plot for
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Figure 8. Plot of the density p, — p (x, t) of the moving bump for the different times t = 0, 3, 6, 9, 12, 15for ¢’ = 20 and
V /¢ = 0.96 (here to = 0). The solid black lines are numerical results from the GP equation, while the red dashed ones (of course not
plotted at the initial time) are from the analytical prediction (13). For the considered parametersitis t, ~ 0.728 and t3 ~ 15.749.

3.2. Quench protocol for the Calogero model

In the previous section we showed that numerical simulations strongly support our analytical analysis. In this
section we perform an additional check, by employing the Calogero model. Details about the Calogero model, its
hydrodynamic description and its extension in the presence of an harmonic confinement are in appendices D

and E

The study of the interaction quench in the Calogero model allows several different points to be addressed.
First, we show that the universality of the quench protocol is robust, in that it applies also to long range
interactions such as that of the Calogero model. Additionally, we analyze the effect of an external potential and
thus of a non-constant background density. Finally, instead of simulating directly the hydrodynamic of the
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model, we perform a (classical) Newtonian evolution for a system composed of a large number of particles and
extract the emerging collective behavior. We will see that the initial soliton will split into a reflected and
transmitted density profile, showing an emergent wave behavior out of the individual particle dynamics.
The Calogero model in an external harmonic potential is defined by the Hamiltonian [85, 86]
2

H:—Li(kwh%+572—li— (70)
2m i bj ! 2m i (xj — x1)?

with a dimensionless coupling constant 4. We can perform the numerical evolution in the classical limit (in the

quantum Calogero models the coupling undergoes the quantum shift > — A (A — 1)), which is integrable even

in the presence of an external parabolic potential.

This model has along-range (power-law) interaction and thus it lies in a different universality class,
compared to local models. At the same time, as it was recognized in [53], the potential 1/72 is also relatively short
ranged in one dimension (despite being power law). Thus, although such an interaction has not yet been realized
in cold atomic gases, this model provides a good platform to study systems beyond contact interaction, with the
additional benefit of being exactly solvable, even with an external confinement.

The above model (equation (70)) has been shown to admit soliton solutions in [52]. These are very special set
of positions and momenta for each particle that collectively evolve as a robust bump on top of a curved density
background (see appendix E).

Due to the power-law interaction, the hydrodynamic description of (70) is not the KdV, but a different
integrable equation, in the family of the Benjamin—Ono (BO) equation [87]. It differs from the KdV by its
dispersive term and by the fact that its solitons have longer (power-law) tails. Another difference is that this
system supports supersonic bright solitons, instead of the subsonic dark ones of local models [52]. We collect in
appendices D and E some useful information and new results on the model.

We can calculate the bulk velocities of the reflected and transmitted profiles by operating as before, through
the velocity of the center-of-mass of each. Solving the system of equation (22) for this case yields the same results
as for the KdV, with = 1. To take into account the supersonic nature of the Calogero excitations we define the
reduced velocities as

V=cl+v), V= -+ ), Vi= 1+ ), (71)
so thatv and v, ; are all positive. In terms of these, we have
v, = Ry, v, = Tv, (72)
and
1 c 1 c
R==|[1-=| T==|1+<] 73
2 [ c’] 2 [ c’] (73)

which coincides with (53), (54).

The solitons in Calogero are Lorentzian (D9) and we notice that their height and width do not depend on the
coupling 4. Hence, if f was of the order of unity before the quench, after the quench [, ; will be less than unity,
proportional to the coefficients R, T, due to the height reduction. Hence, for the Calogero model, after then
quench we will be inevitably in the dispersive regime. We can calculate the peak velocities using (D23), with
a, = Rp,7,a, = Tp,T:

erak _ [CR _ 371'06{30]& = [4 — i]l/r = —[l + Zi]% (74)
7 R ¢

erak = [CT — 37‘1’0430]& = [4 — i]Vt = *I:l - 2£:|I/ . (75)
7 T ¢

We see that the reflected peak always move slower than the speed of sound (v < 0 in our notations), while the
transmitted one remains supersonic only for ¢/ < 2¢. This results is seemingly counterintuitive, since the profile
densities lie above the background and their bulk velocities are supersonics. While, in a non-linearity dominated
regime, the profile peaks would move faster than the bulk, we see that after the quench the Calogero model is in
the dispersive regime and thus the peaks move even slower that speed of sound. Thus, while the bulk behavior of
the Calogero system after the quench follows the same universality of local models, the peak velocities belong to
adifferent universality.

In our numerical simulation, we used the results of [52], where it was shown that a system on N Calogero
particles is dual to a system of M interacting complex parameters, where M counts the number of solitons in the
system. Thus, to a system of N particle lying on the real axis and interacting through (70) we add a dual particle
z(1) (see appendix E) which draws an ellipse on the complex plane. The interaction of the dual variable with the
real particles induces a soliton in the latter and the soliton peak follows the projection of the z particle on the real
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axis. As explained in [52], a very useful property of this system is that, given an initial condition for the particle
position and momenta, the configuration at any given time ¢ can be found exactly by diagonalizing a certain
matrix system (by exploiting the Lax pair formulation of the model). In this way, we have been able to set the
initial conditions of a soliton, to let it evolve for some time and to follow its evolution after the interaction
quench exactly.

In [54] the ground state of the quantum Calogero model in a harmonic potential was studied after a quench
and it was observed that the one-particle density starts oscillating and breathing. Such behavior is natural, since
after the quench the equilibrium particle distance increases and the trapping cannot compensate for this
repulsion. To neutralize this effect, it is thus important to quench at the same time both the interaction and the
external potential, so that the background density stays constant. We found that for the model (70) the trapping
has to be increased by the same amount of the interaction:

W= /\—,w. (76)
A
Once we are able to stabilize the background in this way, we perform the quench experiment and measure the
characteristics of the reflected and transmitted profiles.

To produce the initial soliton configuration, we specify a given complex number z and the initial value
problem for the position and momentum of each particle in the system (x;(0), p; (0)) is given by the following
equations which can be solved numerically:

N
wxj=A Yy, L A[ ! + ! _), (77)
k=1(k=j) Xj — Xk 2\xj—z Xj—Z
A 1 1
p =i — - | (78)
2 .Xj — Z x]‘ — Z

Having determined the initial values of x; (0) and p, (0), the time dynamics of the system of Calogero particles
after the quench can be computed by exploiting the Lax pair formalism, similarly to what was done in [52] to
study the dynamics of a harmonic Calogero model soliton. One introduces the following N x N matrices:

Xij = bjjxis (79)
. i
[* =L+ iw'X, whereLj=p,&j+ (1 — &) , (80)
Xi — Xj
N 1 1
My= N6 Y ——— (1 -5 , (81)
’ ]1:;@ (xi — x1)° 7 — x)?
which depend on time through x;(#) and pj(¥). It is straightforward to show that the equations of motion,
X; = pj, (82)
N
B =~ — 2L S - (83)
OXj k1 ey (X — Xk)
are equivalent to the following matrix equations
X +i[M, X] =L, (84)
L+i[M, L] =-u'X (85)
or equivalently
L* = —i[M, [¥] + i'L* (86)

written in terms of L and M matrices usually referred to as a Lax pair.

One can then write the solution of the harmonic Calogero model as an eigenvalue problem for a matrix
which can be explicitly constructed from the initial positions and velocities of the Calogero particles. Namely,
the particle trajectories are given by eigenvalues of the following matrix [88]

Q(t) = X (0)cos(w't) + L/ L(0)sin(w't), (87)
w

where the matrices X(0) and L(0) are constructed using the initial conditions x; (0), p; (0) from (77), (78) inserted
in the definitions (79), (80). It is worth pointing out that the above technique is non-iterative in time and hence
there is no numerical error accumulation.

In our numerical investigations, we used two different initial soliton velocities: one moving 4% faster than
the speed of sound and one 7%. In figure 9 we present results for the reduced (reflected and transmitted) peak
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Figure 9. Plot of the reduced peak velocity in units of  as obtained from the numerics: filled black circles (black stars) are the values of
reflected peak velocities for v = 0.04 (v = 0.07), while empty red squared (red stars) are the corresponding values for transmitted
peak velocity for v = 0.04 (v = 0.07). Solid lines corresponds to the analytical predictions (74) and (75), respectively for the reflected
(black) and transmitted (red) peak velocities. Dashed lines are the predictions for the bulk reflected (black) and transmitted (red) bulk
velocities according to (73).
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Figure 10. Plot of R (bottom black) and T (top red) for the quenched Calogero model showing the height of the reflected and
transmitted peaks as seen from numerics and their comparison with analytical calculations (equation (73)). Points are numerical
results: filled black circles (black stars) are the values of R for v = 0.04 (v = 0.07), while empty red squared (red stars) are the
corresponding values for T'again for v = 0.04 (v = 0.07).

velocities for both cases. While the numerical results for the reflected peak velocities are clearly closer to the
analytical peak estimates than to the bulk ones, the agreement is less satisfactory for the transmitted peak
velocities (the 4% data are closer to the peak velocities, while the 7% data are almost in the middle between the
peak and the bulk reduced velocities). Nevertheless, these data are clear evidence of the subsonic dynamics
predicted by the analytics above, while evidently the peculiarities of the Calogero model render the quantitative
comparison more troublesome. In figure 10, we show the comparison between analytics (equation (73)) and
numerics for the reflected and transmitted heights (R, T') for the cases of v = 4% and 7%. A remarkable
agreement between these analytical predictions and the numerical calculations performed on the Calogero
model is evident.

4, Discussion and conclusions

We have discussed a novel quench protocol, in which a moving, localized excitation reacts to a global interaction
quench. We focused on a special class of excitations, namely, soliton solutions, which are stable and
experimentally achievable in cold atomic systems as well as in other relevant interacting low-dimensional
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systems. We provided a general hydrodynamic framework describing the collective behavior of such systems.
Using this hydrodynamic description, we showed that the dynamics immediately after the quench is universal,
in that it does not depend on the details of the microscopic interaction, but only on macroscopic quantities, such
as the speed of sound before and after the quench.

The quench protocol can be seen as an initial value problem for the non-linear PDE of hydrodynamic type.
This has been the approach of [55-57] and is also common in mathematics. It is thus known that a generic initial
condition will eventually break into several components, each moving with different velocities (see figure 1).
Under certain conditions, some of these components will be stable, while others (most of them) will disperse. In
[55] it was noted that, for the integrable non-linear Schrodinger, a quench that brings the new speed of sound to
be an integer multiple of the original one will only generate a train of solitons (approximately half of them
moving in the same direction as the pre-quench soliton and the other half moving in the opposite direction) and
no dispersive sound waves.

In our approach we focused on short times after the quench and, making no assumptions on the integrability
of the models, but using the structure of the initial condition provided by the quench protocol, we predict that
the initial excitation will immediately break into two counter-propagating packets. While they will eventually
break further, for a certain time the two chiral packets will retain the shape of the original excitation, but with
amplitudes reduced by a reflection and transmission coefficient. The universal form of these coefficients are
given in (28), (29), while the bulk velocities of the two profiles appear in (31), (32). Itis also possible to express the
latter in dimensionless quantities as in (31), (32). These velocities are measurable in a time of flight experiments,
but in our numerical simulation we employ a direct measurement scheme. Thus, it is simpler to measure the
velocities of the peak of the profiles, which differ from the bulk (that is, center-of-mass) velocities because of the
internal redistribution of energies of the packets. The universal expressions for the peak velocities are given in
(40), (41). In figures 3 and 4 we plot the comparison between the analytical expressions and the numerical results
obtained through 1D Gross—Pitaevskii equation, which show a good agreement for the R and T coefficients and
an acceptable agreement for the peak velocities. As reported in [35], when expressed in natural units, the
agreement between the analytical expressions and the numerical data for the velocities is excellent, although it is
hard to discriminate between peak and bulk predictions. We also addressed the experimental feasibility of the
proposed protocol: in (67) we analytically estimated the time at which the two-profiles dynamics becomes
discernible and show in figures 6, 7 its agreement with the numerical data. We also argued that measurements
can be performed reliably for around 10-100 ms before intermediate-time effects should be taken into account.
Figure 5 shows that in this ‘short time” dynamics window the profile velocities stay reasonably constant and
figure 8 that the analytical profiles are well fitted by the numerical ones.

We also considered the Calogero model. This model allows us to establish several relevant points. First of all,
we see that, despite the non-local nature of this interaction, the short times dynamics remain similar to the local
case and we found that the R and T coefficients, as well as the bulk velocities of the chiral profiles, are given by the
same universal expression as before. The peak velocities, instead, follow a different universality which is
dominated by dispersive effects. While the solitons and the chiral profiles move supersonically in the Calogero
case, the peak velocities are predicted to be subsonic. The agreement between the analytical expectations and the
numerical simulation are less satisfactory in this case, compared to the local interactions, but still support the
qualitative behavior derived analytically and the result for the subsonic peak velocities. In our numerical
simulations of the Calogero dynamics we employ a classical, Newtonian evolution of the particles and extracted
their collective behavior, whose agreement with the hydrodynamic prediction is a further, somewhat
independent, proof of the solidity of our approach.

Finally, the Calogero model remains integrable even in the case of an external harmonic potential. Thus, by
including the effect of the trap, we established that by simultaneously quenching the interaction between the
particles and the external field, it is possible to keep the background density fixed and isolate the quench
dynamics of the soliton. We believe that this observation is applicable to the experimental realization of the
protocol and give us insights on how to deal with the external trapping. It would be in our opinion an interesting
future work to study the quench dynamics for fermionic systems with long-range couplings or interactions to
study the effect of non-trivial Fermi surfaces [89] and the effect of long-rangedness on the formation and
propagation of shock-waves [90].

We collected in the appendices some old and new results concerning the dynamics of solitons in non-linear
and cold atom systems. There, we explained how the dynamics of shallow profiles can always be captured by the
KdV equation and in particular how does this work for the GP equation (and its generalizations). We also
considered the solitons for system of Calogero type and discussed their behavior in the presence of an external
trap. In this case, the soliton changes its shape during the evolution, because the background density is also
changing. We derived the expression for the soliton velocity on such background and showed that it decreases
moving toward the edges of the systems as the soliton width is also simultaneously decreasing. Such behavior
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contradicts the common wisdom valid in traditional, translational invariant case of constant background
(namely, the notion that thinner solitons move faster).

The realizations of low dimensional bosonic gases along with cutting edge technologies available for their
manipulation (e.g., the generation of solitons, the induction of interaction quenches, and the observation of the
subsequent time dynamics) stimulates the development of theoretical tools to interpret these data. We believe
that our work paves the path for new experiments. While we assume a cold atomic gas realization as the natural
setting to implement our quench protocol, we should stress that it may be realizable in non-linear optical
experiments as well, where the non-linear Schrédinger equation and non-linear PDE are ubiquitous.

Future directions of investigations include studying the consequences of having multiple local excitations
(corresponding to multi-soliton profiles) and their subsequent behavior and interactions after the quench. Also
systems with multiple species (for e.g, two types of bosons) are realized in low-dimensional cold atomic
experiments [91-93] and therefore, investigating the possible mapping to multiple coupled copies of chiral
differential equations (for e.g, coupled KdV equations) could be timely and important. Two-component Bose
gases may be used for guided matter-wave interferometry [94] and it would be interesting to study applications
of the soliton dynamics controlled by interaction quenches to matter-wave interferometry. Understanding the
interplay between chiral differential equations could shine light on the complex dynamics of multi-species
systems.

Clearly, we think that the comparison of our theoretical results with experimental findings would be very
interesting and this will provide input to improve our modeling. A more ambitious future direction would be to
study quenches of excited states of quantum systems in regimes where they do not admit a hydrodynamic
description and to discuss the behaviour of quantum states that in the hydrodynamical regime behaves like a
soliton.
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Appendix A. Universality of the KdV equation

The existence of solitons has been foremost an empirical observation [76]. It then took a while to realize that
solitons appear as solutions of integrable differential equations. The reason for which solitonic waves can
propagate in actual physical systems is that under general assumptions it is possible to isolate an integrable core
in the dynamics, while the rest of the terms can often be neglected up to a given time scale. The typical
appearance of this ‘non-linear universality’ is the emergence of the KdV equation as the integrable core of local
fluid for shallow waves [76].

In [51] the standard derivation of KdV in classical fluids was reproduced to extend it to the hydrodynamic
treatment of cold quantum systems. We review in this appendix their approach, to set the notations that we used
in the body of this work.

Our starting point are the continuity and Euler equations (3), which assume no dissipation. The results are
not modified qualitatively, as long as dissipative effects enter linearly. We introduce the following notations

Ap = A(py), (AD)
wo = w(py)» (A2)
E,=x=Ec, (A3)

with respect to the equilibrium density p,. We want to describe long wave excitations on top of the constant
background density p,. Thus we are looking for solutions in the form

p(x) t) = Po + 5Pa (fa’ t), (A4)
v(x, 1) = (€, 1)y (A5)

where o = = indicates the wave chirality and where we anticipated the fact that small waves will move with
velocities close to the sound speed.
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The perturbative expansion is based on a counting scheme with formal counting parameter €. We introduce
the expansion of velocity and density fields as

Spi(Es 1) = €2 (€L, €) + €e'pl (€, € + .. (A6)
Sva(€y, 1) = e (e, €3) + el (el ) + ... (A7)
We substitute this ansatz into (3), (4) and collect terms ~ ¢ and ~¢>. At cubic order we get
!/
w
v = 4[7%1 (A8)
and the consistency
2 = pywp (A9)
At the next order, we can combine the two hydrodynamical equations to get
Uy F Cuiaxui + a@iui =0, (A10)
where we introduced
A=, (A1)
! n
c=[30 , @oko) e, O (A12)
2¢ 2¢ Po Op
o= ﬂ. (A13)
4c

We also used the identity (A9) so that

! " n
dc _ Wy | WoPy € Wo Py

8—p0_2c 2c _Z_po 2

(Al4)

Shifting (A10) back from the reference frame moving with the sound velocity to the laboratory frame, we
have (9).

In this derivation we considered separately the two chiral sectors. A generic initial condition, however, will
consist of both chiralities and, in principle, one should take into account the interaction between them.
However, these effects can be neglected since, due to locality, the two sectors interact only when they are
overlapping, but this happens for a short time, as they pass through each other with a relative velocity of
approximately 2c.

We have thus shown that the dominant non-linear contributions to the dynamics of shallow, long waves in a
generic one-component hydrodynamic system (3) is given by (9), which is known as the integrable KdV
equation.

Appendix B. Generalities on KdV

The non-linear term ¢ in the KAV (9), pushes the different parts of u (x, t) to move with different velocities, so
that small perturbations over the background move close to the speed of sound, while the parts more distant
from the asymptotic equilibrium p, move with higher 6V This term tends to generate a shock-like profile, as the
tip of u moves faster than the base. The dispersive, @, term, instead, redistributes the kinetic energy within the u
profile and effectively lead to a broadening of the u profile.

We can introduce two time scales capturing the effective strength of these two terms

Qo = aW=3, (B1)
Qe = UW, (B2)

where Wis the typical width of the disturbance over the background and U'is its typical size (note that U has the
unit of an inverse length, as it describes the height of a density bump). There are three possible regimes

Qy <K Q(, Qo > Q(: and Q( ~ Q. (B3)

Physically, they correspond to a regime of dominant non-linearity (true non-linear KdV dynamics), dominant
dispersion with linear evolution (dispersive waves) and solitonic (equilibrium between non-linearity and
dispersion). The dimensionless ratio

Q

2 Sywe (B4)
Qq «

distinguish the non-linear (% > 1), the dispersive (% < 1), and the solitonic regimes (% ~ 1).
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The KdV supports true solitons which keep a perfect equilibrium between the non-linear and dispersive
effect and thus propagate without changing their shape. The solitons can be both bright (density higher than
background) or gray (a depletion in density). In fact, (A10) is invariant under the simultaneous reversal of the
sign and chirality of 13 — —u. The single (dark) soliton solutions has the form

fi:Fé‘Vt]

B
W (BS)

s(&., t) = —U cosh™? [
where 6V = ¢ — V isthe velocity of the soliton (in the sound velocity frame). The height and width of the

depletion depend on the soliton velocity as
[a
W=2|—, B6
oV (B6)

3%
U=3—. (B7)

¢

The first integrals of motions are
Iy=n— gfu(g, 1HdE = —2(UW = —12JadV, (B8)
_a (Ll _2oprw— —
L= ¢ [J16 ndg = ZCUW = —oV m, (B9)
= 2 [ _ 4 spwe sy

L=¢ f[aug(f, ) + S € t)]dg_ 15@“ UW = 56V 1, (B10)

where we rescaled everything by the right factors of £, which sets the scale of the amplitude wave, see (9).
We note that the soliton velocity can be found as the ratio between its momentum I; and its ‘mass’ I

S5 det
[ude”

as can be expected by averaging the nonlinear term in the KdV (A10), see also the comment after (B15).

In section 3 we considered the evolution of an initial condition which is functionally the same as the soliton
(B5), but not necessarily with the correct parameters U, W of a soliton. The different parts of the KAV equation
give:

§V =(

(B11)

_ 2U sinh[(x — Vi)/ W]

Uy = , (B12)
W cosh®[(x — Vt)/W]
1= —Vu,, (B13)
4 3u

We notice that for an inverse cosh square initial condition every term in the KdV is proportional to its space
derivative. Hence, we have

4o 12«
cuy + CUily — Qg = [c— W2 + (C— 2)u(x— Vt)]ux. (B15)
Forasoliton, UW? = 2% and the terms multiplying u, become a constant, which equals the soliton velocity.

For generic Uand W, the terms within parenthesis give the velocity of each part of the profile.

Note that the center-of-mass of a profile of the type (B5), that is the height at which the profile has equal area
above and below it, is at a third of its total amplitude. In fact the velocityat u = U/3 from (B15)is ¢ — %U =V,
that is, the bulk velocity of the profile.

Appendix C. The non-linear Schrédinger equation and its KdV reduction

The non-linear Schrodinger equation (NLSE) is characterized by the dynamical equation (7). In one dimension,
the asymptotic modulus of the field lim,_, . o |V (x, t)|* = p,, which defines the (asymptotic) density of particle,
helps in defining the dimensionless parameter

s
I

, (CDH

2
1l
SNE
(=)
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which controls the effective strength of the interaction. In the weakly interacting limit v < 1, the NLSE captures
the dynamics of the Lieb-Liniger model, describing an integrable system of one dimensional bosons with contact
interaction (see the discussion in section 2).

From (5) we can extract the phenomenological parameters of the KdV as

7
T = o0, (2)
m
A 3¢
= —_= | — = —— = -, C3
¢ 2\ mp, mZﬁ 2 pg (€3)

= = (C4H

The NLSE is also integrable and its single (dark) soliton solutions is [50, 84]

Voo V2 v?2
bx, t) = Jp—o{? —i1 - = tanh[(x — V1) %(1 - 7)%]}. (C5)

2 2
Sp(x 1) = 19, D = py = —(1 - %) P cosh{(x 10 (1 - ‘Z—]pol (C6)

We have

We notice that the NLSE soliton has the same functional form as that of the KdV (B5), with width and height

given by
1 c
—— + .., Cc7
P\ 276V ©n

V? oV
U:(l = )pONZ— Po + - (C8)

where we expanded for soliton velocities close to the speed of sound and found consistency with (B6), (B7).
We conclude this section observing that with a power-law non-linearity the NLSE reads

i20,V(x, t) = {f—zaxx + gl (x, t)|2(’{1)}1/)(x, t). (C9)
m

Ifthe NLSE is intended to mimic 2-body interactions, this generalization considers x-body contact interaction,
ie.a term = |1/J (x, t)|** in the Hamiltonian. The hydrodynamlc parameters are in this case

w(p) = =p", (C10)

P (C11)

for which we find that the corresponding KdV has

—1 r—1

c— (k )gpo ; (C12)

m

Kk — D)gpt—?
<:m+1/( V8P, :/c—l-li’ C13)
2 m 2 pg

2

o= Sfmz' (C14)

Appendix D. Calogero model

The Calogero model [85, 86] is defined by the Hamiltonian

2
H= —Zp L - (1)

2m 5 (xj — x1)?
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with a dimensionless coupling constant A. The hydrodynamic description of this model has parameters [51]

2)2
oo = 22 Lmpp 4 ol (D2)
m- L2
2N
A(p) = W, (D3)

where the superscript H stands for the Hilbert transform:
1
e = L L0 g, (D4)
) y—x

Due to the long-range nature of the Calogero interaction, its hydrodynamic description does not reduce to a
KdV equation, but is given by the so-called double Benjamin—Ono [87], which, for small (chiral) profiles reduces
to the usual Benjamin—Ono equation

ue £ ¢ty + Quuy + apo ()] = 0, (D5)
with parameters
A
C=—Pop (D6)
m
(=l _ 2 (D7)
m Po
2
apo = -~ = — (D8)
2m  2mp,

The one-soliton density profile [95] for the rational Calogero is
[mp(x — VO + 72

Sc (D9)
where

c2

V2 2
Note that for this model, the soliton is bright (positive density displacement) and hence its velocity V > c is
supersonic. The height and width of (D9) are given by

T =

(D10)

2
v="0 - po(% - 1), (d11)
T ¢
T 1
W= — = —, (D12)
mp, U

Let us again consider the evolution of an initial profile like (D9), but with generic parameters, such as
a

u= . D13
[7potx — VOP + b7 (B13)
We have
a(x — Vi)
uy = —2(mpy)* , (D14)
PO (rpyx — VOT + b2
(ue)? = 7r,00(l _ 4 u)ux. (D16)
b a
Hence, the velocity of each part of the profile can be read from the BO equation as
47p,b
ctty 4 Cuty + apo () = [c + ago % + (C — apo—22 )u] Uy (D17)
a

We see that for a soliton (a = p,b) the term proportional to u vanishes and the soliton moves with velocity
1
c (1 + E)’ or
1
2V —¢
which reproduces (D10) only to leading order in 6V = V — c. Thus, we notice a mismatch between the
parameters of the soliton supported by (D5) and those of the true Calogero soliton (D9), (D10), which is

(D18)
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propagated by the double BO. In the limit of small 6V the two approach, in the same way as the KdV is a valid
approximation to alocal hydrodynamics only for shallow waves.

Similarly to what we did for the KdV, we can find the velocity of the profile (D13) from the conserved
quantities, asin (B11). We have

Juae=-"2, (D19)
Pob
2 2
5 ax= (D20)
2 4p,b?
Hence, the average height of the profile (D13) is
[ dx
2 a
u D21
=T (021)
and its bulk velocity is
Vw=c+ C{u) =c|1+ a_|. (D22)
2p,b

Equation (D13) becomes a soliton of (D5) for a = p,b and in that case (D22) correctly reproduces (D18). The
velocity (D22) coincides with the velocity at the center-of-mass, calculated from (D17) at the height (D21), since
at this height the dispersive effects are perfectly balanced and cancel out.

The center-of-mass velocity can be compared with the velocity at the peak by setting u = a/72in (D17)

TPy 2a 3
= c[l + PG - E] (D23)

3
ypeak — ¢4 C% — ago

Appendix E. Harmonic calogero model

The Calogero interaction remains integrable even when an external harmonic potential is applied, as in (70).
Most of what is valid for the rational case considered above remains valid, but the background density is now not
constant and follows the famous semicircle law [52]

po(x) = Y IR 42, where R= M (ED)
A w
Thus, the speed of sound is not a constant, since it depends on the local density, and is given by
c(x) = z7r)\p0 (x) = zw\/R2 — x2. (E2)
m m

We notice that the speed of sound at the center of the trap (x = 0) is
¢ = 2N, (E3)

and it decreases as we move from the center.
The soliton solutions of the harmonic model were found recently [52]. They can be thought of as
‘Lorentzians’-like (D13) that live on top of the background density (E1):

1 n(®)

= 1 E

px, 1) = py(x) + T mOF 1520 (E4)
» (1)

1) = — ) E5

DT TP 0 =
where

z(t) = x(t) + iy () (E6)

is an external parameter that drives the soliton as it traces an ellipse in the complex plane (see also [52] for further
details on the external parameter which we dub as dual variable)

2(1) = z(0)e + 29T 1p 0y — iwx (0)]. (E7)
w
Here z(0) is the initial position of z; in the complex planeand X = JN:1 xp P=3 ]N: | p;are the center-of-mass
and the total momentum of the system att = 0. Without loss of generality, we can take z (0) = ibwith b > 0O as
initial condition, which also gives X = 0. The equation of the ellipse in this case is
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z(t) = ibcos(wt) — b|1 + ézj:ﬁ sin(wt), (E8)

We see that the initial value b uniquely characterizes the soliton. Combining equations (E4) and (D10), the
soliton velocity at the center is given by

V:cl—l—#:cl—&—lfi. (E9)
Tbp,(0) \ b\ 2wN

The soliton velocity changes as it moves away from the center (i.e, as a function of time). Since the soliton
follows the external complex parameter z(1), its velocity matches that of the real part of the dual variable z(#):

A
Vi)=|14+ > ———|bcos(wt). E10)
i R (
By inspection of equations (E9) and (E10) we get,

(E11)

As one can notice from the above equation, the soliton velocity decreases as it moves away from the center. It is
also worthwhile noticing that the soliton width, y, (¢), also decreases. Therefore, we have a scenario where a
soliton is moving slower, as it becomes thinner. In flat background, thinner solitons move faster and thus we see
that the interesting interplay between the non-constant background and the soliton moving on top it contradicts
the common wisdom valid in constant background.
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