3,244 research outputs found

    Models for the lithium abundances of multiple populations in globular clusters and the possible role of the Big Bang lithium

    Full text link
    Globular cluster stars show chemical abundance patterns typical of hot-CNO processing. Lithium is easily destroyed by proton capture in stellar environments, so its abundance may be crucial to discriminate among different models proposed to account for multiple populations. In order to reproduce the observed O-Na anticorrelation and other patterns typical of multiple populations, the formation of second generation stars must occur from the nuclearly processed stellar ejecta, responsible of the chemical anomalies, diluted with pristine gas having the composition of first generation stars. The lithium abundance in the unprocessed gas -which is very likely to be equal to the lithium abundance emerging from the Big Bang- affects the lithium chemical patterns among the cluster stars. This paper focuses on a scenario in which processed gas is provided by asymptotic giant branch (AGB) stars. We examine the predictions of this scenario for the lithium abundances of multiple populations. We study the role of the non-negligible lithium abundance in the ejecta of massive AGB (A(Li)~2), and, at the same time, we explore how our models can constrain the extremely large ---and very model dependent--- lithium yields predicted by recent super--AGB models. We show that the super--AGB yields may be tested by examining the lithium abundances in a large set of blue main sequence stars in wCen and/or NGC2808. In addition, we examine the different model results obtained by assuming for the pristine gas either the Big Bang abundance predicted by the standard models (A(Li)=2.6-2.7), or the abundance detected at the surface of population II stars (A(Li)=2.2-2.3). Once a chemical model is well constrained, the O--Li distribution could perhaps be used to shed light on the primordial lithium abundance

    Variations in the lithium abundances of turn off stars in the globular cluster 47 Tuc

    Get PDF
    aims: Our aim is to determine Li abundances in TO stars of the Globular Cluster 47 Tuc and test theories about Li variations among TO stars. method: We make use of high resolution (R~ 43000), high signal-to-noise ratio (S/N=50--70) spectra of 4 turn off (TO) stars obtained with the UVES spectrograph at the 8.2m VLT Kueyen telescope. results: The four stars observed, span the range 1.6<~A(Li)} <~ 2.14, providing a mean A(Li) = 1.84 with a standard deviation of 0.25 dex. When coupled with data of other two TO stars of the cluster, available in the literature, the full range in Li abundances observed in this cluster is 1.6<~A(Li)<~ 2.3. The variation in A(Li) is at least 0.6 dex (0.7 dex considering also the data available in the literature) and the scatter is six times larger than what expected from the observational error. We claim that these variations are real. A(Li) seems to be anti-correlated with A(Na) exactly as observed in NGC 6752. No systematic error in our analysis could produce such an anti-correlation. conclusions: Na production through p captures on 22Ne at temperatures in excess of 3x10^7 K and the contemporary Li destruction could result in this anti-correlation. However such nuclear processing cannot have taken place in the stars themselves, which do not reach such high temperatures, even at their centre. This points towards the processing in a previous generation of stars. The low N/O ratios in the observed stars and the apparent lack of correlation between N an Li abundances, place a strong constraint on the properties of this previous generation. Our results indicate a different behaviour among the Globular Clusters so far studied as far as the abundance patterns are concerned.Comment: recommended for publication in A&A by the managing associate Edito

    Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars

    Full text link
    A recent survey of a large sample of Galactic intermediate-mass (>3 Msun) asymptotic giant branch (AGB) stars shows that they exhibit large overabundances of rubidium (Rb) up to 100--1000 times solar. These observations set constraints on our theoretical notion of the slow neutron capture process (s process) that occurs inside intermediate-mass AGB stars. Lithium (Li) abundances are also reported for these stars. In intermediate-mass AGB stars, Li can be produced by proton captures occuring at the base of the convective envelope. For this reason the observations of Rb, Zr, and Li set complementary constraints on different processes occurring in the same stars. We present predictions for the abundances of Rb, Zr, and Li as computed for the first time simultaneously in intermediate-mass AGB star models and compare them to the current observational constraints. We find that the Rb abundance increases with increasing stellar mass, as is inferred from observations but we are unable to match the highest observed [Rb/Fe] abundances. Inclusion of a partial mixing zone (PMZ) to activate the 13C(a,n)16O reaction as an additional neutron source yields significant enhancements in the Rb abundance. However this leads to Zr abundances that exceed the upper limits of the current observational constraints. If the third dredge-up (TDU) efficiency remains as high during the final stages of AGB evolution as during the earlier stages, we can match the lowest values of the observed Rb abundance range. We predict large variations in the Li abundance, which are observed. Finally, the predicted Rb production increases with decreasing metallicity, in qualitative agreement with observations of Magellanic Cloud AGB stars. However stellar models of Z=0.008 and Z=0.004 intermediate-mass AGB stars do not produce enough Rb to match the observed abundances.Comment: 11 pages, 7 figures, accepted for publication on Astronomy & Astrophysic

    Lithium during the AGB evolution in young open clusters of the Large Magellanic cloud

    Get PDF
    We present the results of mid-resolution spectroscopy in the LiI 6708 AA spectral region of Asymptotic Giant Branch (AGB) stars belonging to young open clusters of the Large Magellanic Cloud. Most stars belong to the clusters NGC 1866 and NGC 2031, which have an age of ~ 150 Myr. Lithium lines of different strength are detected in the spectra of stars evolving along the AGB, not always in agreement with theoretical predictions. We also analyze the infrared luminosities (ISOCAM data) of these stars, to discuss if their evolutionary phase precedes or follows the lithium production stage.Comment: 10 pages, 6 figure

    Models of hydrostatic magnetar atmospheres at high luminosities

    Get PDF
    We investigate the possibility of Photospheric Radius Expansion (PRE) during magnetar bursts. Identification of PRE would enable a determination of the magnetic Eddington limit (which depends on field strength and neutron star mass and radius), and shed light on the burst mechanism. To do this we model hydrostatic atmospheres in a strong radial magnetic field, determining both their maximum extent and photospheric temperatures. We find that spatially-extended atmospheres cannot exist in such a field configuration: typical maximum extent for magnetar-strength fields is ~10 m (as compared to 200 km in the non-magnetic case). Achieving balance of gravitational and radiative forces over a large range of radii, which is critical to the existence of extended atmospheres, is rendered impossible in strong fields due to the dependence of opacities on temperature and field strength. We conclude that high luminosity bursts in magnetars do not lead to expansion and cooling of the photosphere, as in the non-magnetic case. We also find the maximum luminosity that can propagate through a hydrostatic magnetar atmosphere to be lower than previous estimates. The proximity and small extent of the photospheres associated with the two different polarization modes also calls into question the interpretation of two blackbody fits to magnetar burst spectra as being due to extended photospheres.Comment: Accepted for publication in MNRAS. 14 pages, 6 figures, 2 table

    Individual Tree Detection in Large-Scale Urban Environments using High-Resolution Multispectral Imagery

    Full text link
    We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. We performed a thorough evaluation of our method, supported by a new dataset of over 1,500 images and almost 100,000 tree annotations, covering eight cities, six climate zones, and three image capture years. We trained our model on data from Southern California, and achieved a precision of 73.6% and recall of 73.3% using test data from this region. We generally observed similar precision and slightly lower recall when extrapolating to other California climate zones and image capture dates. We used our method to produce a map of trees in the entire urban forest of California, and estimated the total number of urban trees in California to be about 43.5 million. Our study indicates the potential for deep learning methods to support future urban forestry studies at unprecedented scales

    Baby-Led Weaning: The Evidence to Date

    Get PDF
    Purpose of ReviewInfants are traditionally introduced to solid foods using spoon-feeding of specially prepared infant foods.Recent FindingsHowever, over the last 10–15 years, an alternative approach termed ‘baby-led weaning’ has grown in popularity. This approach involves allowing infants to self-feed family foods, encouraging the infant to set the pace and intake of the meal. Proponents of the approach believe it promotes healthy eating behaviour and weight gain trajectories, and evidence is starting to build surrounding the method. This review brings together all empirical evidence to date examining behaviours associated with the approach, its outcomes and confounding factors.SummaryOverall, although there is limited evidence suggesting that a baby-led approach may encourage positive outcomes, limitations of the data leave these conclusions weak. Further research is needed, particularly to explore pathways to impact and understand the approach in different contexts and populations

    Lithium abundance in the globular cluster M4: from the Turn-Off to the RGB Bump

    Full text link
    We present Li and Fe abundances for 87 stars in the GC M4,obtained with GIRAFFE high-resolution spectra. The targets range from the TO up to the RGB Bump. The Li abundance in the TO stars is uniform, with an average value A(Li)=2.30+-0.02 dex,consistent with the upper envelope of Li content measured in other GCs and in the Halo stars,confirming also for M4 the discrepancy with the primordial Li abundance predicted by WMAP+BBNS. The iron content of M4 is [Fe/H]=-1.10+-0.01 dex, with no systematic offsets between dwarf and giant stars.The behaviour of the Li and Fe abundance along the entire evolutionary path is incompatible with models with atomic diffusion, pointing out that an additional turbulent mixing below the convective region needs to be taken into account,able to inhibit the atomic diffusion.The measured A(Li) and its homogeneity in the TO stars allow to put strong constraints on the shape of the Li profile inside the M4 TO stars. The global behaviour of A(Li) with T_{eff} can be reproduced with different pristine Li abundances, depending on the kind of adopted turbulent mixing.One cannot reproduce the global trend starting from the WMAP+BBNS A(Li) and adopting the turbulent mixing described by Richard et al.(2005) with the same efficiency used by Korn et al.(2006) to explain the Li content in NGC6397. Such a solution is not able to well reproduce simultaneously the Li abundance observed in TO and RGB stars.Otherwise, theWMAP+BBNS A(Li) can be reproduced assuming a more efficient turbulent mixing able to reach deeper stellar regions where the Li is burned. The cosmological Li discrepancy cannot be easily solved with the present,poor understanding of the turbulence in the stellar interiors and a future effort to well understand the true nature of this non-canonical process is needed.Comment: Accepted for publication in the MNRA

    The Palomar/Keck Adaptive Optics Survey of Young Solar Analogs: Evidence for a Universal Companion Mass Function

    Get PDF
    We present results from an adaptive optics survey for substellar and stellar companions to Sun-like stars. The survey targeted 266 F5-K5 stars in the 3Myr to 3Gyr age range with distances of 10-190pc. Results from the survey include the discovery of two brown dwarf companions (HD49197B and HD203030B), 24 new stellar binaries, and a triple system. We infer that the frequency of 0.012-0.072Msun brown dwarfs in 28-1590AU orbits around young solar analogs is 3.2% (+3.1%,-2.7%; 2sigma limits). The result demonstrates that the deficiency of substellar companions at wide orbital separations from Sun-like stars is less pronounced than in the radial velocity "brown dwarf desert." We infer that the mass distribution of companions in 28-1590AU orbits around solar-mass stars follows a continuous dN/dM_2 ~ M_2^(-0.4) relation over the 0.01-1.0Msun secondary mass range. While this functional form is similar to that for <0.1Msun isolated objects, over the entire 0.01-1.0Msun range the mass functions of companions and of isolated objects differ significantly. Based on this conclusion and on similar results from other direct imaging and radial velocity companion surveys in the literature, we argue that the companion mass function follows the same universal form over the entire range between 0-1590AU in orbital semi-major axis and 0.01-20Msun in companion mass. In this context, the relative dearth of substellar versus stellar secondaries at all orbital separations arises naturally from the inferred form of the companion mass function.Comment: Final version accepted by ApJ Supplements. 50 pages, including 12 tables + 16 figures. Version with full tables available at http://www.astro.sunysb.edu/metchev/PUBLICATIONS/cmf.pd

    High Resolution X-ray Spectroscopy of the Post-T Tauri Star PZ Tel

    Full text link
    We present an analysis of the Chandra High Energy Transmission Grating Spectrometer observation of the rapidly rotating P_(rot)=0.94 d post T Tauri (~20 Myr old) star PZ Telescopii, in the Tucana association. Using two different methods we have derived the coronal emission measure distribution, em(T), and chemical abundances. The em(T) peaks at log T = 6.9 and exhibits a significant emission measure at temperatures log T > 7. The coronal abundances are generally ~0.5 times the solar photospheric values that are presumed fairly representative of the composition of the underlying star. A minimum in abundance is seen at a first ionization potential (FIP) of 7-8 eV, with evidence for higher abundances at both lower and higher FIP, similar to patterns seen in other active stars. From an analysis of the He-like triplet of Mg XI we have estimated electron densities of ~10^(12)-10^(13) cm^(-3). All the coronal properties found for PZ Tel are much more similar to those of AB Dor, which is slightly older than PZ Tel, than to those of the younger T Tauri star TW Hya. These results support earlier conclusions that the soft X-ray emission of TW Hya is likely dominated by accretion activity rather than by a magnetically-heated corona. Our results also suggest that the coronae of pre-main sequence stars rapidly become similar to those of older active main-sequence stars soon after the accretion stage has ended.Comment: 15 pages, 8 Postscript figures, accepted for publication in Astrophysical Journa
    corecore