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ABSTRACT
We investigate the possibility of Photospheric Radius Expansion (PRE) during magnetar
bursts. Identification of PRE would enable a determination of the magnetic Eddington limit
(which depends on field strength and neutron star mass and radius), and shed light on the burst
mechanism. To do this we model hydrostatic atmospheres in a strong radial magnetic field,
determining both their maximum extent and their photospheric temperatures. We find that
spatially extended atmospheres cannot exist in such a field configuration: typical maximum
extent for magnetar-strength fields is ∼10 m (as compared to 200 km in the non-magnetic
case). Achieving balance of gravitational and radiative forces over a large range of radii,
which is critical to the existence of extended atmospheres, is rendered impossible in strong
fields due to the dependence of opacities on temperature and field strength. We conclude that
high-luminosity bursts in magnetars do not lead to expansion and cooling of the photosphere,
as in the non-magnetic case. We also find the maximum luminosity that can propagate through
a hydrostatic magnetar atmosphere to be lower than previous estimates. The proximity and
small extent of the photospheres associated with the two different polarization modes also call
into question the interpretation of two blackbody fits to magnetar burst spectra as being due
to extended photospheres.

Key words: stars: atmospheres – stars: magnetars – X-rays: bursts.

1 IN T RO D U C T I O N

Photospheric Radius Expansion (PRE) events can occur during
bursts on neutron stars when the luminosity of the object reaches
the Eddington Luminosity, i.e. where the radiation force balances
the gravitational one:

LEdd ≡ 4πGM∗c
κTh

, (1)

(where M∗ is the stellar mass and κTh the Thomson scattering opac-
ity) and the large radiation pressure forces the atmosphere to expand
outwards. For the hydrogen atmosphere of a 1.4 M� neutron star,
LEdd = 1.8 × 1038 erg s−1, while for a helium atmosphere it is twice
that value. As a result, the photosphere moves to a much larger
radius, corresponding to a drop in temperature T. For a neutron star
with a modest magnetic field (up to ∼1012 G), Compton scattering
dominates the opacity in the atmosphere and various relativistic ef-
fects allow the atmosphere to expand up to hundred kilometres, so
that the temperature of the expanded photosphere drops out of the X-
ray range altogether (Hoffman et al. 1978; Paczyński & Anderson

� E-mail: T.vanPutten@uva.nl

1986). The hallmark of PRE in neutron stars is thus a ‘double-
peaked’ structure in the X-ray light curve of a burst, in which the
flux increases to a maximum and then drops sharply (indicating the
blackbody temperature has decreased), before rising again steeply
to a slightly larger maximum as the bolometric luminosity drops
again and the photosphere contracts (Paczyński 1983).

PRE is characteristically seen in Type I X-ray bursts from accret-
ing neutron stars, in which the build-up of accreted material leads
to a thermonuclear explosion on the surface of the star, causing a
huge increase in luminosity. PRE bursts have typically been used
to constrain the mass and radius of the neutron star, thus poten-
tially constraining the equation of state of dense matter (e.g. Damen
et al. 1990; Galloway et al. 2003; Özel, Güver & Psaltis 2009; Özel,
Baym & Güver 2010; Steiner, Lattimer & Brown 2010; Suleimanov,
Poutanen & Werner 2011). However, PRE is generically driven by
high luminosities, irrespective of the underlying energy source. This
has led to the recent suggestion that it might also happen in bright
bursts from magnetars (Watts et al. 2010) – isolated neutron stars
with dipole magnetic fields above ∼1013 G – whose bursts (which
occur over a wide range of luminosities) are thought to be pow-
ered by large-scale reconfiguration of the decaying magnetic field
(Thompson & Duncan 1995). Watts et al. (2010) argued that ob-
serving PRE in magnetar bursts could put interesting constraints on

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversiteit van A

m
sterdam

 on July 2, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Magnetar atmosphere models 1399

the emission mechanism, magnetic field strength and mass–radius
relationship for magnetars.

The suggestion that PRE might happen in magnetar bursts was
motivated by the 2008 August observation of a large (LX ∼ 7 ×
1039 erg s−1) burst from SGR 0501+4516, which showed a double-
peaked light curve similar to those seen in Type I X-ray bursts. In
their paper on this burst, Watts et al. (2010) laid out several criteria
required for PRE to occur, and argued that they were in general
met for magnetar bursts. For PRE to occur in a neutron star, the
flux must be emitted from an optically thick region, the radiation
pressure must be sufficient to overcome gravity and other confining
forces, the emitting region must remain optically thick during the
expansion (so that the emission remains close to blackbody and
effective temperature decreases with increasing photosphere radius)
and the opacity must increase with distance from the star. The last
point is slightly subtle: in order for the photosphere to expand,
the luminosity L must remain close to the critical luminosity (Lcr)
needed to balance radiation pressure with the confining forces.1

However, both these quantities are modified differently by the strong
gravitational field, so that L/Lcr ∝ 1 + z, where z is the gravitational
redshift. To ensure that this quantity does not decrease with radius,
which would make expansion impossible (Paczyński & Anderson
1986), the opacity (which determines Lcr) must therefore increase
with radius. In Type I X-ray bursts, this is affected by the Klein–
Nishina corrections which reduce the Thomson cross-section at high
temperatures close to the stellar surface.

The presence of a magnetar-strength magnetic field complicates
the hydrostatic expansion of the atmosphere in three significant
ways. In the ‘trapped fireball’ picture of magnetar bursts (Thompson
& Duncan 1995), the huge release of magnetic energy leads to the
creation of a pair-plasma, so that the atmosphere is dominated by
this dense pair-gas, rather than baryonic matter ablated from the
star’s surface. Further, closed field lines provide a strong confining
force for both baryonic and Leptonic matter, since plasma cannot
easily move perpendicular to the field. A straightforward calculation
(see Section 2.1) demonstrates that a very strong field can easily
confine even the largest giant flares with L ∼ 1044 erg s−1 (Lamb
1982), so that PRE in a magnetar will likely only occur in open field
line regions.

The final effect of the magnetic field, and the most important
one in the present work, is to modify the electron scattering cross-
sections by several orders of magnitude, depending on the polariza-
tion state of the scattering photon. The strong magnetic field sup-
presses electron motion perpendicular to the field, so that photons
that try to excite this motion (i.e. that are polarized perpendicular to
B; the ‘Extraordinary’ or E mode) have a greatly reduced scatter-
ing cross-section compared to the Thomson scattering cross-section
σ Th, while photons polarized parallel to B (the ‘Ordinary’, O mode)
are largely unaffected. The modified polarization-dependent cross-
sections will increase the critical luminosity (sometimes called the
‘magnetic Eddington limit’) by several orders of magnitude (Miller
1995; Thompson & Duncan 1995). Additionally, since the E-mode
cross-section scales roughly as (T/B)2 (see equation 14), the opacity
increases steeply with distance from the star, due to the decrease
in field strength, and becomes strongly temperature dependent. Lcr

is therefore a strong function of radius. As we will demonstrate,

1 Here and throughout the paper, we follow Paczyński & Anderson (1986)
in defining Lcr as the actual maximum luminosity as a function of radius,
modified by the changing opacity and gravitational redshift, whereas LEdd

is strictly given by equation (1).

the strong temperature and field dependence of the opacity has a
profound effect on the structure of the magnetar atmosphere in
comparison to the non-magnetic case.

The objective of this paper is to explore the structure of a magne-
tar atmosphere at very high luminosities. We follow the approach
of Paczyński & Anderson (1986) and calculate the structure of a
series of hydrostatic atmospheres with different masses, base tem-
peratures and magnetic field strengths, solving the equations for
stellar structure. The main difference from Paczyński & Anderson
(1986) is in our consideration of the opacity, which is dominated
by electron scattering in both cases. They consider a non-magnetic
star, for which the electron scattering cross-section is the Thomson
one (modified at high temperatures by Klein–Nishina corrections).
We instead use the cross-sections modified by the strong magnetic
field, so that the radiation is split into two polarization modes, and
only E-mode photons diffuse through the atmosphere.

The paper runs as follows. In Sections 2.1–2.2 we discuss the con-
cept of a ‘critical luminosity’ in more depth, and present the equa-
tions we use to calculate the structure of the atmosphere. Section 2.3
focuses on the electron scattering cross-sections in a super-strong
magnetic field. The field introduces several complications (such as
the dependence on photon energy of the scattering cross-section
and the presence of the cyclotron resonance), and we explain how
we calculate the effective opacity for a thermal photon distribution.
Section 3 presents the main results of our calculations, and Sec-
tion 4 compares our results to previous calculations of the critical
luminosity. Finally, in Section 5 we examine additional physical
processes (the choice of grey opacity, the addition of a pair plasma
gas and magnetic confinement from closed field lines), and argue
that none of these are likely to affect the qualitative conclusions
of the paper, by which we mean the non-existence of hydrostatic
extended magnetar atmospheres.

2 MO D EL

The structure of the atmosphere of a magnetar can be calculated
from the equations of stellar structure. We do this from the surface
of the magnetar to a point far away from the star where the atmo-
sphere can be said to have ended. We describe the various equations
in detail, starting with the critical luminosity and magnetic field in
Section 2.1 and the stellar structure equations in Section 2.2. The
form of the opacity in a strong magnetic field is discussed in Sec-
tion 2.3. We then treat the boundary conditions and computational
method in Section 2.4, and briefly summarize our model.

2.1 Critical luminosity in a super-strong magnetic field

Our goal is to compute the ratio between the local luminosity L
and the critical luminosity Lcr throughout the atmosphere, with the
latter defined as the luminosity at which the outward radiation force
is exactly balanced by inward forces. If L/Lcr is greater than one
at any point, the atmosphere will be unstable there, and thus not in
hydrostatic equilibrium.

In this work we define Lcr to be the critical luminosity at which
the radiative force exactly matches gravity, reserving the term Ed-
dington luminosity for the special case where the opacity is given
by the Thomson scattering opacity. This critical luminosity is given
by

Lcr = 4πcGM

κ

(
1 − Rg

r

)−1/2

, (2)
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where Rg = 2GM/c2 is the gravitational radius, M is the mass of
the star, κ is opacity, r is the radius measured from the centre of the
star, and c and G are the usual constants.

In a magnetar atmosphere, the opacity will be reduced by sev-
eral orders of magnitude from the Thomson opacity (Miller 1995;
Thompson & Duncan 1995), giving a critical luminosity of order
1040–1041 erg s−1, which is in the range of typical luminosities of
magnetar bursts, and several orders of magnitude larger than the
Eddington luminosity of 2 × 1038 erg s−1. This critical luminos-
ity is inversely proportional to the opacity, which means that in a
super-strong magnetic field it will be dependent on the magnetic
field strength, and thus be variable throughout the atmosphere. We
discuss the effect of the magnetic field on the opacity in detail in
Section 2.3.

In closed field line regions, gravity will not be the dominant con-
fining force. Here, plasma is trapped by suppressing the transport of
charges across field lines, and so the radiation force is counteracted
by magnetic stress. In a magnetar this effect will dominate gravity,
giving for the critical trapping luminosity (Lamb 1982)

Ltr � 2.1 × 1049

(
B

Bcr

)2 (
R�

10 km

)2

erg s−1, (3)

where B is the magnetic field strength, R� is the radius of the neutron
star and Bcr = 4.4 × 1013 G is the quantum critical magnetic field
strength, the field strength for which the cyclotron and rest mass
energies of the electron are equal.

For a typical magnetar this critical luminosity will be above
1050 erg s−1, far more than the luminosity of even the rare giant
flares. As PRE requires the luminosity to reach the critical lumi-
nosity to cause expansion, it is clear that PRE can only ever occur
in open field line regions. In the remainder of this work we will
therefore only treat open field line regions.

Treating only open field lines does not limit the applicability of
our models greatly. Even in the trapped fireball model (Thompson
& Duncan 1995, 2001), where the radiation is emitted from the
surface of a fireball trapped in the closed magnetic field lines, most
of the radiation will be emitted through open field line regions. This
is because the fireball is the hottest and thus most luminous near
its base, where the surface of the fireball borders on the open field
line regions, so that the radiation is emitted into the open field line
region.

We consider a purely radial magnetic field with the field strength
falling off as the field of a dipole directly above either of the mag-
netic poles; the modifications incurred at non-zero colatitudes are
not expected to qualitatively alter our conclusions. We use the fully
general relativistic equations for the radial dependence of the mag-
netic field (Petterson 1974; Wasserman & Shapiro 1983)

B = − 6μ

rR2
g

[
r

Rg
ln

(
1 − Rg

r

)
+ Rg

2r
+ 1

]
, (4)

where μ is the magnetic dipole moment.

2.2 Stellar structure equations

We consider a spherically symmetric atmosphere model, using the
general relativistic equations of stellar structure given by Thorne
(1977) to calculate the radial structure of a magnetar atmosphere.
The relevant equations are the equation of hydrostatic equilibrium,
the equation of energy transport, the equation for optical depth and

the mass continuity equation. We reformulate these equations as

dP

dr
= −GMρ

r2

(
1 − Rg

r

)−1 [
1 + P + 1.5Pg + 4σSBT 4/c

ρc2

]
,

(5)

as a specialized form of the Oppenheimer–Volkoff equation,

dT

dr
= T

P

dP

dr
∇, (6)

dτ

dr
= −κρ

(
1 − Rg

r

)−1/2

, (7)

d�M

dr
= −4πr2ρ

(
1 − Rg

r

)−1/2

, (8)

where P is the total pressure, Pg is the gas pressure, T is the tem-
perature, ρ is the density, τ is the optical depth, κ is the opacity
(Section 2.3) and �M is the rest mass of the atmosphere above
radius r. ∇ is defined as d log T/d log P, and depends on the manner
in which energy is transported. In principle, this is a combination
of radiative transport, convective transport and conductive trans-
port. However, conduction is only significant compared to radiation
at much higher densities than we consider (Potekhin, Chabrier &
Yakovlev 2007), while convection, which is included in the models
from Paczyński & Anderson (1986), is strongly suppressed by the
magnetic field in the magnetar case (Rajagopal & Romani 1996).
Thus, we set ∇ = ∇ rad, which is given by

∇rad =
[

κL∞
16πcGM(1 − β)

(
1 − Rg

r

)−1/2

+ P

ρc2

]

×
[

1 + P + 1.5Pg + 4σSBT 4/c

ρc2

]−1

, (9)

with L∞ the luminosity as seen by an observer at infinity. Assuming
blackbody emission, this luminosity is linked to the temperature at
the photosphere (where r = Rph) through

L∞ = 4πσSBR2
phT

4
ph

(
1 − Rg

Rph

)
, (10)

a Stefan–Boltzmann law modified by general relativity, which im-
poses an effective reduction in solid angles by the factor 1 −
Rg/Rph. Here Tph is the temperature at r = Rph and σ SB the Stefan–
Boltzmann constant. Equations (5)–(10) are derived from Thorne
(1977) by dropping the gravitational acceleration correction factor
4πr3P/Mc2, which is always less than 10−10 in our models, and
using the ‘total mass’ from Thorne as our mass. These equations
reduce to those given by Paczyński & Anderson (1986) when com-
bined with equation (11), correcting two typographical errors in
equations (3a) and (4b) of that work.

We consider a purely radial magnetic field and use an ideal gas
equation of state, so that the pressure in the atmosphere is simply
given by the sum of radiation pressure and gas pressure:

P = Pg + Pr, Pg = k T ρ

μ mH
, Pr = 4σSB

3c
T 4, (11)

where T is the temperature, ρ the density, μ the mean molecular
mass per free particle (both ions and electrons), k the Boltzmann
constant and mH the mass of a hydrogen atom. This equation for the
radiation pressure assumes the gas is in thermodynamic equilibrium
with the radiation field, an assumption we will revisit in Section 5.1.
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We ignore the effects of any mildly relativistic electrons, as these
will not change our qualitative results.

We assume the atmosphere to be entirely composed of fully
ionized helium. This is not necessarily a realistic composition for
a magnetar atmosphere, but does make for easy comparison to the
non-magnetic case. We will briefly discuss the effect of a more
realistic composition, including an electron positron pair plasma, in
Section 5.2.

2.3 Opacity

The opacity in a super-strong magnetic field is strongly reduced
from the Thomson opacity, because the scattering cross-section of
one of the two polarization modes of the photons is suppressed by
the magnetic field. Therefore, the opacity decreases strongly with
increasing magnetic field strength, which means that the critical
luminosity increases with magnetic field strength. We will now go
into what this means for the opacity in the atmosphere of a magnetar.

Since the photon energies under consideration here are typically
above 2 keV (see Woods & Thompson 2006 for typical magne-
tar burst spectra), the opacity can be assumed to be dominated by
Compton scattering off free electrons (Thompson & Duncan 1995),
and photoelectric and atomic transition contributions are generally
small. Some corrections for these atomic processes are needed at
slightly lower photon energies, but these are not expected to signif-
icantly change our results.

The monochromatic opacity κν follows from the Compton scat-
tering cross-section. In a strong magnetic field, with its inherently
anisotropizing influence, this cross-section depends strongly on the
polarization mode of the photons. Photons in the ordinary polar-
ization mode (O mode or ‖ mode), with their electric field vector
lying in the plane containing their direction of propagation and
the magnetic field, have a much larger chance of scattering than ex-
traordinary mode (E-mode or ⊥ mode) photons, which are polarized
perpendicular to this plane. The strong magnetic field also modifies
the dielectric properties of both the atmospheric/magnetospheric
plasma, and polarizes the vacuum (Adler 1971; Harding & Lai
2006). Accordingly, the field introduces profound modifications to
the scattering opacity.

Assuming both photon modes are polarized perpendicular to their
direction of propagation, the scattering cross-section for a photon in
mode j (where j = 1 is the E mode and j = 2 the O mode) travelling
at an angle θ with respect to the magnetic field direction is given by
(Ho & Lai 2003)

σj = σTh

1 + K2
j

[
1

2

ω2(1 − Kj cos θ )2

(ω − ωC)2 + �2
e /4

+ 1

2

ω2(1 + Kj cos θ )2

(ω + ωC)2
+ K2

j sin2θ

]
, (12)

with

�e = 2e2ω2
C

3mec3
, (13)

where σ Th is the Thomson cross-section, ω is the angular frequency
of the photon and ωC = eB/mec is the electron cyclotron frequency.
�e is the classical natural linewidth of the cyclotron resonance, and
satisfies �e/ωC = 2αf (B/Bcr)/3 where αf = e2/�c is the fine struc-
ture constant. When ωC becomes a sizable fraction of mec

2/�,
relativistic corrections to this linewidth become mandatory (Bar-
ing, Gonthier & Harding 2005). However, in our calculations we
use the Rosseland mean opacity (except in Section 5.1, where we

discuss what happens when we revise this approximation), which
will be detailed below, which means the electron cyclotron res-
onance gets smoothed out. The precise numerical value of the
linewidth is therefore not very important, unless the local field sub-
stantially exceeds 1015 G. The term Kj incorporates the influences of
plasma and vacuum dispersion on the scattering cross-section, and
is detailed in Appendix A, where we show how this form reduces
to the various commonly used approximations, as given by Herold
(1979) and Ventura (1979).

For radiation frequencies below the cyclotron frequency, this
form for the cross-section reduces to

σE ∼ ω2

ω2
C

σTh, σO ∼ σTh, (14)

with ω is the radiation frequency, ωC the electron cyclotron fre-
quency and σ Th the Thomson scattering cross-section. Thus, the
scattering cross-section to O-mode photons is roughly constant,
while the cross-section to E-mode photons scales roughly as T2/B2

when B  T. The fact that the scattering cross-sections are so
different for the two different polarization modes means that the at-
mosphere will have two distinct photospheres: one for each photon
mode. As the scattering cross-section is significantly larger for O-
mode photons than for E-mode photons, the O-mode photosphere
will be located outside the E-mode photosphere.

We use the cross-sections formulated by Ho & Lai (2003), as
these incorporate the quantum electrodynamical, vacuum polar-
ization and plasma dispersion effects, making them correct in the
high-density regions of the atmosphere, where the commonly used
scattering cross-sections in the absence of dispersion from Herold
(1979) break down. However, these cross-sections do not incorpo-
rate Klein–Nishina reductions, which come into play when the elec-
tron thermal energy approaches its rest mass energy, i.e. kT ∼ mec

2.
This is also the regime where kinematic modifications to the opacity
become significant, i.e. when the motions of the electrons must be
accounted for in treating photon transport. Neither of these effects
will be considered in the present work, as an opacity equation in-
corporating all of the above effects is not currently available in the
literature. A side effect of this opacity treatment is that it is im-
possible to reproduce the results of Paczyński & Anderson (1986)
with our models by setting the magnetic field to zero, as in the
non-magnetic case the existence of extended atmospheres depends
on the Klein–Nishina corrections.

To form the total opacity, the scattering differential cross-section
in equation (12) is averaged over angles by multiplying it by sin θ

before integrating over θ , so as to model an isotropic distribution
of photons. This neglects the inherent transport-induced anisotropy
of photons in the surface layers (Özel 2001) that will introduce
some quantitative (but not qualitative) modification to the outermost
portions of our atmospheric profiles.

The scattering cross-sections contain two resonances: the elec-
tron cyclotron resonance and the vacuum resonance. While these
resonances are crucial for spectral modelling, we find that in our
models they are not of great significance, being mostly smoothed
out to relatively minor features in the opacity due to the fact that
we use the Rosseland mean opacity. As we assume the photons to
be in thermal equilibrium with the gas throughout the atmosphere
in the equation for radiation pressure, it is reasonable to extend this
assumption and take the opacity at any point to be the Rosseland
mean opacity at the local temperature, as given by

1

κ̄
=

[∫ ∞

0

1

κν

∂Bν(T )

∂T
dν

] [∫ ∞

0

∂Bν(T )

∂T
dν

]−1

, (15)
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where ν is the frequency of the radiation, κν is the monochromatic
opacity and Bν is the Planck function. This form applies when the
gradients in temperature arise on much larger spatial scales than the
gradients for opacity. As a consequence of averages being formed
for inverse opacities, more tenuous and low-opacity domains dom-
inate the determination of the Rosseland mean, so that the various
resonance regions do not contribute much. We define the Rosseland
mean opacity to E-mode photons as κ̄E, and the Rosseland mean
opacity to O-mode photons as κ̄O. We will discuss the shortcomings
of using the Rosseland mean opacity in Section 5.1.

For the purpose of the structure of the atmosphere, the opacity sets
the radiative energy transport through the atmosphere, as described
by equation (9), as well as the radiative force, which determines the
critical luminosity given by equation (2). For both energy transport
and radiative force the relevant photon flux is the net flux, as in
both cases the effect of identical photons propagating in opposite
directions cancels out. Therefore, we will define an opacity κnet as
the average opacity to the net outward flux of photons:

κnet = FO

F
κ̄O +

(
1 − FO

F

)
κ̄E, (16)

where F is the net outward flux and FO is the net outward flux in
O-mode photons. This represents an opacity that is appropriately
weighted for the relative local fluxes of the two polarization modes.

In a scattering event, a photon has a certain probability of chang-
ing modes. These probabilities can be calculated from the cross-
sections for scattering into one specific polarization mode and for
X-rays in magnetar atmospheres are given by (Ulmer 1994; Miller
1995)

PE→O = 1/4,

PO→E � ω2/ω2
C. (17)

These equations are approximate and only valid in the limit ω � ωC,
which is true close to the star, at least up to a few kilometres above
the surface; they also apply to the Thomson regime, i.e. provided
ω � mec

2/�.
At large optical depth the net opacity will be given by the opacity

to E-mode photons. O-mode photons will effectively be stuck in
this region, as they have a much larger scattering cross-section than
E-mode photons (Miller 1995). This does not mean there are no
O-mode photons deep in the atmosphere, merely that they move
inwards as much as outwards, not contributing to the net flux, and
can only diffuse effectively by converting to the E mode.

At lower optical depth O-mode photons will start to contribute
to the net flux. To quantify this contribution, we consider the prob-
ability an O-mode photon at optical depth τO has of escaping the
atmosphere without converting to the E mode. This probability is
roughly given by

Pesc = (1 − PO→E)τ
2
O , (18)

in diffusive regimes. Any O-mode photon that escapes in this way
contributes to a net outward flux of O-mode photons at all points
between its origin (the point where it converted from the E mode)
and the outer edge of the atmosphere.

The probability given by equation (18) is effectively zero in the
region where the optical depth to E-mode photons is greater than
one, since the optical depth to O-mode photons is several orders
of magnitude larger. Thus, as long as the total photon population
is divided more or less equally over the two modes, which should
be true due to detailed statistical balance, we can safely assume
the entire net outward flux to be in E-mode photons at τE = 1.

Between this point and the outer edge of the atmosphere, these E-
mode photons will scatter once on average, so that the fraction of
E-mode photons that scatter in any interval dτE in the region 1 >

τE > 0 is approximately equal to dτE, assuming most of the net flux
will still be in E-mode photons. The fraction of the net flux that is
in O-mode photons at a point τE = τ ′ in this region is then given
by

FO

F
= −

∫ τ ′

1
PE→OPesc dτE. (19)

Note that this integral is constructed from inner radii to outer ones,
so that τ ′ < 1 and optical depth declines with radius. This equation
can be used to track the approximate fraction of the net outward
flux of photons in the O mode, and thus calculate κnet.

To test our method of determining the fraction of net outward
photons in the O mode we compare this to the analysis and Monte
Carlo simulations performed by Miller (1995). The fraction of net
outward photons in the O mode at τ = 0 as given by equation
(19) should match the fraction of escaping photons in the O mode
as calculated by Miller (1995). We have tested this for a range
of constant values of ω/ωC and find that the fraction of photons
that escape the atmosphere in the O mode is roughly given by
0.22ω/ωC. Miller performed Monte Carlo simulations to calculate
the radiative force divided by flux, rather than the fraction of photons
escaping in the O mode. However, he also performed an order of
magnitude calculation to predict the results of his simulations, where
he calculated the fraction of photons escaping in the O mode, which
he then multiplied with σ Th/c to get the force divided by flux. In
this order of magnitude treatment he calculated that the fraction
of photons escaping in the O mode is given by 0.1ω/ωC, which
is a factor of 2 lower than our estimate. However, he also found
that his final prediction for force divided by flux was a factor of
2 lower than the results of his simulations. Thus, if we take the
results of his Monte Carlo simulations and calculate back to the
fraction of photons escaping in the O mode by dividing by σ Th/c,
we find that our predictions almost exactly match his simulations.
Note that while for this comparison we integrate equation (19) with
a constant value of ω/ωC to match the approach taken by Miller, in
our atmosphere models this equation is solved simultaneously with
the stellar structure equations (equations 5–8), using the radially
variable values of ω/ωC and τO and thus obtaining the correct
radial dependence of FO/F.

2.4 Boundary conditions and method

We solve six differential equations of stellar structure, for pres-
sure, temperature, atmosphere mass and optical depth to O-mode
photons, E-mode photons and a combination of both, as given by
equations (5), (6) and (8) and three versions of equation (7): for
the optical depth to E-mode photons, O-mode photons and the net
flux of photons. We do this by integrating these equations from the
stellar surface at R� = 10 km to Rend, which we choose as the point
where the density becomes so small that the atmosphere has effec-
tively ended, choosing this cut-off density as 10−15 g cm−3. This is
in principle an arbitrary value, but we have verified that increasing
this value to 10−12 g cm−3 does not change the results at all, in-
dicating that our chosen value is likely even lower than necessary.
Additionally, we find no change in our results from fixing Rend at
1000 km, which is well beyond the expected size of the atmosphere.

We solve equation (19) for the fraction of the net flux con-
tained in O-mode photons from the point τE = 1 to Rend. We inte-
grate with a straightforward iterative shooting procedure, using an
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eighth-order Runge–Kutta method with embedded Dormand–
Prince error estimation from Press et al. (2007). We start with
guesses for all undetermined parameters at the stellar surface, and
iterate until all the outer boundary conditions are met.

Our input parameters are the magnetic field strength at the surface
B�, the density at the base of the atmosphere ρ� and the luminosity
as seen by an observer at infinity L∞. Further boundary conditions
are provided by the assumption that the atmosphere has ended at
Rend, giving τ = τO = τE = 0 and �M = 0 at r = Rend. The final
boundary condition is provided by the assumption that FO/F = 0
at τE = 1.

We calculate a series of atmospheres with a density at the base of
the atmosphere ρ� in the range 103–107 g cm−3, and luminosities
from 1036 to 1042 erg s−1, repeating this for magnetic field strengths
at the surface of the star of 1014 and 1015 G, values chosen to
describe a typical magnetar. The range of densities is chosen to
encompass the total atmospheric mass from Paczyński & Anderson
(1986), which is ∼2 × 1020 g for all models in that work, and to
span a sensible density range at the base of the atmosphere, as 103 g
cm−3 is roughly the atmospheric density limit for a cold neutron
star, while 107 g cm−3 is roughly where it becomes impossible for
X-rays to propagate through the gas, due to the plasma frequency
becoming greater than the typical photon frequency.

Summarizing, our model consists of solving the differential equa-
tions of stellar structure (Thorne 1977) from the surface of a magne-
tar out to a point where the density is so low that the atmosphere has
effectively ended. The input parameters of our model are the surface
magnetic field strength, surface temperature of the star and the total
mass of the atmosphere. We make the following assumptions.

(i) The magnetic field is purely radial, with the radial dependence
of a dipole field right above the magnetic pole. This also means there
is no radial magnetic pressure component, so that magnetic pressure
can be ignored.

(ii) The atmosphere consists of pure fully ionized helium.
(iii) The radiation field is in local thermodynamic equilibrium

with the gas.
(iv) The opacity is dominated by Compton scattering, with the

scattering cross-sections as given by Ho & Lai (2003).
(v) Relativistic effects in scattering that can potentially modify

the opacity somewhat for temperatures in excess of 50 keV are
neglected.

(vi) For purposes of the structure equations, the relevant opacity
is the opacity that belongs to the net outward photon flux, as given
by the sum of the Rosseland mean opacities to E-mode and O-mode
photons, weighted by the relative contribution of those two modes
to the net outward flux.

3 R ESULTS

Our results differ dramatically from those found for non-magnetic
atmospheres by Paczyński & Anderson (1986). We find no stable
atmospheres with photospheric height greater than about 10 metres.
Although the radius of the photosphere increases as surface temper-
ature is increased, it does so by a very small amount. Additionally,
the temperature at the photosphere is higher rather than lower for
models with larger photospheric radius, because the increase in
surface temperature required to make the atmosphere expand more
than compensates for any temperature decrease caused by having
a larger photospheric radius. Our results also show that the photo-
spheres for E- and O-mode photons are always close together, both
spatially and in terms of temperature, despite the large difference

Figure 1. Radial structure of a magnetar atmosphere model, showing tem-
perature T, density ρ and gas pressure Pg divided by total pressure P plotted
against radius for B = 1014 G, ρ� = 106 g cm−3 and L∞ = 1038 erg s−1.
The two vertical lines represent the E- and O-mode photospheres. Density
and temperature drop rapidly below the E-mode photosphere. From there on
out, temperature stabilizes while density continues to drop, causing the total
pressure to change from being gas pressure dominated to radiation pressure
dominated.

in the opacity to these two different modes. An overview of input
and output parameters for our computed hydrostatic atmospheres is
given in Table A1.

The general structure of the atmosphere in our results is illus-
trated in Fig. 1. Almost all the matter in the atmosphere is con-
tained within the first 10 metres, with only a fraction of ∼10−7 of
the total atmospheric mass beyond that region. In those first few me-
tres, the temperature drops rapidly by about an order of magnitude,
to stabilize from there on out in an unheated coronal region. The
density rapidly drops down to the cut-off density where we define
the atmosphere to end. The pressure is dominated by gas pressure
in the innermost region, and becomes dominated by almost con-
stant radiation pressure when the density drops. This structure is
qualitatively the same for all different combinations of L∞, B and
ρ�, with different values giving only numerical differences. In gen-
eral, a higher luminosity gives a higher temperature throughout the
atmosphere, with luminosities that are too high causing the atmo-
sphere to become unstable so that no solution to the equations can
be found. Higher magnetic field strengths mean a higher critical
luminosity due to a reduced opacity, so that a higher luminosity
can propagate through the atmosphere before becoming unstable.
Finally, a higher density gives higher temperatures and luminosities
in optically thick regions for the same escaping luminosity, so that
the luminosity limit at which the optically thick regions become
unstable is lower.

The height of the photospheric radius of a few metres and the
density structure of our model atmospheres can be understood rea-
sonably well in terms of the standard atmospheric scale height.
When considered at small height compared to the stellar radius, in
an atmosphere composed of pure helium, above a 1.4 M� star, this
scale height is given by

H � 4
kT

[keV]
cm. (20)

Thus, for a typical model atmosphere with kT� = 25 keV this scale
height is about one metre. Over this length scale, the density will
drop by a factor of e, which causes a strong drop in the temperature
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as well, as the two gradients are linked in optically thick regions.
However, as the temperature drops, the scale height, which is pro-
portional to temperature, decreases. This causes a rapidly steepening
gradient in the density and temperature profiles, so that the density
decreases by many orders of magnitude inside a few atmospheric
scale heights, relative to that calculated at the surface. Over the
range of this huge drop in density the material becomes optically
thin, which causes the temperature profile to cease tracing the mass
density profile and signifies the photospheric radius.

Such gas pressure domination of the atmospheric structure close
to the surface of the star is also present in the non-magnetic results
from Paczyński & Anderson (1986). However, in their results a huge
radiation pressure supported region, extending up to 200 km, sets up
above this gas pressure supported region. In contrast, in our models,
no significant radiation pressure supported region is present. The
reason for this is that for a radiation pressure supported region to
be stable, the luminosity has to be almost equal to (but below) the
critical luminosity throughout this region (Paczyński & Anderson
1986). This is also the only way to have an extended atmosphere, as
the thermal gas would need an unusually high (i.e. relativistic) tem-
perature to support a stable, extended atmosphere. For an extended
atmosphere to be in hydrostatic equilibrium requires

dPr

dr
= −ρ

GM

r2

(
1 − Rg

r

)−1/2

. (21)

Substituting for the gradient of radiation pressure using equations
(6), (9) and (11) gives:

L

Lcr

(
1 − Rg

r

)−1/2

� 1. (22)

This equation is of general validity, and is satisfied in the non-
magnetic case for a large range of altitudes for an appropriate choice
of temperature due to a fine balance between the general relativistic
and Klein–Nishina corrections (Paczyński & Anderson 1986).

Fig. 2 shows the ratio between luminosity and critical luminosity
in a magnetar atmosphere as it follows from our models. This figure
is analogous to fig. 2 of Paczyński & Anderson (1986), but while
their results show that the luminosity remains within a factor of
10−4 below the critical luminosity up to a height of 200 km, our
results show a fluctuation of several orders of magnitude over that
range, which shows that the equality given in equation (22) cannot
be met in our models. These strong fluctuations in L/Lcr are caused
by the strong variations in opacity, which are illustrated in Fig. 3.
This figure shows that the opacity in a magnetar atmosphere drops
rapidly with both decreasing temperature and increasing magnetic
field strength.

In our models, the temperature drops rapidly up to the photo-
sphere, so that the opacity also drops. The temperature only be-
comes close to constant when it decouples from the density outside
the photosphere, while for the photosphere to extend the opacity
would have to be close to constant over an extended region be-
low the photosphere. Additionally, at much larger length scales the
decreasing magnetic field strength would also prevent the opacity
from being constant over an extended range of radii.

We thus find that extended hydrostatic magnetar atmospheres
in open field line regions do not exist, as the strong radial depen-
dence of the opacity prevents the existence of an extended radiation
pressure supported region. This provides an important additional in-
gredient to the results of our earlier work (Watts et al. 2010). While
the criteria set out in that work for PRE to occur in magnetars are
all valid, its preliminary considerations omitted the requirement for
near equality of the luminosity and the critical luminosity through-

Figure 2. Stability of several model atmospheres, as given by the ratio
between the local luminosity L [which asymptotically approaches L∞ in
equation (10) at large radii] and the critical luminosity Lcr plotted against the
height above the stellar surface, for B = 1014 G, ρ� = 106 g cm−3 and L∞ =
2 × 1038, 1038, 3 × 1037 and 1037 erg s−1, as marked in the figure. The
variations are mostly caused by the variations in opacity, with which L/Lcr

scales linearly, as any other radius dependent terms are just gravitational
corrections. The initial downwards slope at low height is caused by the
temperature dependence of the opacity through the photon frequency. The
sudden rise between the two photospheres is where the net radiation force
switches from being E-mode to O-mode dominated, causing an increase in
opacity.

out the atmosphere. This turns out to be a criterion that cannot be
met in open field line regions of magnetars. In summation, the con-
ditions given in Watts et al. (2010) are indeed necessary for PRE to
occur, but they are not sufficient.

4 M A X I M U M L U M I N O S I T Y

We now consider the maximum luminosity that can propagate
through the atmosphere of a magnetar as it follows from our re-
sults, and compare this to previous work. The critical luminosity in
the atmosphere of a magnetar has been estimated several times in
the literature. Two results in particular are generally quoted. The
first is the estimate Lcr = (ω2

C/ω2)LEdd (Paczyński 1992), which is
based on the reduction of the scattering cross-section of E-mode
photons by the magnetic field as compared to the non-magnetic
case. This estimate only takes into account E-mode photons, based
on the assumption that the entire luminosity will diffuse outwards in
the form of E-mode photons, as these have a much lower scattering
cross-section. The second estimate we compare our results with is
the one from Miller (1995), which is based on the radiation force
exerted by O-mode photons escaping the atmosphere, and is given
by Lcr = 5(ωC/ω)LEdd. This equation is based on a treatment in
the region around the O-mode photosphere, which is where Miller
expects the critical luminosity to be lowest. Therefore, we calculate
this equation at the O-mode photosphere, and treat the result as
the maximum luminosity to be propagated through an atmosphere
without causing instability. Note that the critical luminosity in our
models fully incorporates the effects of gravitational redshift, while
the given estimates do not, but this does not cause major discrepan-
cies.

A comparison between these different critical luminosities is
shown in Fig. 4, and shows that the critical luminosity we find is gen-
erally lower than previous predictions, although still significantly
higher than non-magnetic limit. Our results follow the behaviour of
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Figure 3. General behaviour of the electron and ion scattering opacities
with differing temperature and magnetic field, illustrating the dependencies
on temperature and magnetic field strength of the opacity that determine
the stability of our atmosphere models. Plotted are the Rosseland mean
opacities for E-mode photons versus magnetic field strength, showing both
electron and ion scattering opacities, for ρ = 100 g cm−3 and kT� = 10, 1
and 0.1 keV, as marked in the figure. These temperatures are chosen to show
the general temperature dependence. A different density would not change
these curves as long as the gas is still opaque to X-rays, except for the
position of the vacuum resonance, which is the small resonance peak visible
in the electron scattering opacity around 1012 G for 0.1 keV and around
1013 G for 1 keV. This resonance is present in all curves, but smoothed
out to varying degrees in calculating the Rosseland mean. The maximum of
the curves lies at the cyclotron resonance, and at lower magnetic field than
this the opacity reduces to the Thomson opacity. It is clear that the ion and
electron scattering opacities are comparable in the high field limit, while
the electron scattering opacity dominates at lower fields, with the crossover
between these two cases lying at higher magnetic field strength for higher
temperatures. In our models, the lowest temperatures are about 1 keV at
1014 G and about 3 keV at 1015 G, so all our models lie in the region
where electron scattering dominates, justifying our choice to neglect the
ion scattering opacities. Note that due to the nature of the Planck function,
the peaks caused by the various resonances in the Rosseland mean opacity
do not occur at the same position in these graphs as they would for the
corresponding monochromatic opacities.

Figure 4. Critical luminosity versus radius, comparing our numerical re-
sults to various theoretical predictions of this quantity, where the abbrevia-
tion P & A refers to Paczyński & Anderson. These results are for B = 1014 G,
ρ� = 106 g cm−3 and L∞ = 1038 erg s−1. Note that the Miller (1995) value
is a straight line, because Miller calculates the maximum luminosity that
can be propagated through an atmosphere, rather than a critical luminosity
at each radius. The Paczyński & Anderson (1986) value is the non-magnetic
value.

the relation from Paczyński (1992) up to the E-mode photosphere,
but are an order of magnitude lower, which is caused by the fact
that we use the Rosseland mean opacity, which takes into account
a thermal distribution of photons, rather than the monochromatic
opacity their estimate is based on. Between the E-mode and O-mode
photospheres, our results switch to following the form from Miller
(1995), as here the O-mode photons start to dominate our opacity.

Our results show that a single critical luminosity for the entire
atmosphere, or the maximum luminosity that can be propagated
through the atmosphere, is roughly given by the lowest luminosity
out of two approximations. The first is the approximation in the
E-mode-dominated region following from our models, where the
critical luminosity is the minimum value that 0.1(ωC/ω)2LEdd takes
on below the E-mode photosphere. The second is the approximation
for the region where O-mode photons dominate the radiation force,
which gives a critical luminosity of roughly 5ωC/ωLEdd, calculated
at the O-mode photosphere, as given by Miller (1995). In our mod-
els the former is always the lower of the two, but this does not
necessarily have to be the case in more detailed atmosphere mod-
els. These approximations break down when they get close to the
non-magnetic Eddington luminosity, where the critical luminosity
will become equal to this non-magnetic value.

In our results, we find that this critical luminosity for the whole
atmosphere is never approached closely. This is because in our
models this critical luminosity is set just above the surface of the
star, where the pressure is dominated by gas pressure. The critical
luminosity gives the luminosity at which radiation force balances
gravitational force, but if there is significant gas pressure, this will
also contribute to the force balance. Thus, in a gas pressure domi-
nated region the maximum luminosity that can be propagated with-
out violating hydrostatic equilibrium will actually be lower than
the critical luminosity we calculate above, with the precise value
depending on the atmospheric structure.

5 A D D I T I O NA L P H Y S I C S

Throughout this work we have made a number of simplifying as-
sumptions. None of these assumptions qualitatively alters our main
result: extended hydrostatic atmospheres of magnetars cannot exist,
because the near equality of the luminosity and the critical lumi-
nosity is not possible over an extended range of radii.

Three of our main simplifying assumptions are: assuming the
validity of using the Rosseland mean opacity, ignoring the presence
of an electron–positron pair plasma in the composition and ignor-
ing magnetic confinement effects. We will now elaborate on why
relaxing these assumptions would not enable extended hydrostatic
atmospheres of magnetars.

5.1 Grey opacities

Throughout our models, we have been using the Rosseland mean
opacity as a way of reducing a photon energy dependent problem
to a simpler grey atmosphere problem. However, this has two main
limitations. First, the Rosseland mean opacity is generally only
a good approximation deep in the atmosphere, up to somewhere
a little below the E-mode photosphere. Secondly, due to the fact
that the Rosseland mean opacity emphasizes the low-opacity parts
of the spectrum, the outward radiation force is underestimated,
particularly in the area around the vacuum resonance.

The first effect of using the Rosseland mean opacity in the outer
regions of the atmosphere is that we find an incorrect temperature
profile in that part of the atmosphere. This effect has been quantified
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by Özel (2001), who showed that while a Rosseland mean opacity
model gives a constant temperature profile at low optical depth, a
full radiative transfer approach gives a temperature that continues
to decline.

The effect that a more accurate temperature profile would have
on our models is fairly straightforward to predict. The optically thin
regions would still be dominated by radiation pressure, as the gas
pressure falls away rapidly. The temperature of the O-mode pho-
tosphere would be somewhat lower, and thus the value at which
the critical luminosity stabilizes in the outer regions of the atmo-
sphere would be higher by the same factor, since beyond the O-
mode photosphere critical luminosity is set by the temperature of
the O-mode photosphere, following the scaling of ω−1 predicted
by Miller (1995). The critical luminosity would still stabilize at a
constant value, as the photons do not thermalize with the gas in this
region, so the continuing decrease of the temperature would have
little effect on the radial structure of the atmosphere. Thus, a more
accurate temperature profile would change our quantitative results
slightly, but not our qualitative results.

The second problem with using the Rosseland mean opacity is
more difficult to quantify. The Rosseland mean opacity is the cor-
rect energy averaged opacity for energy transport, as it is used in
equation (9). However, for the purposes of the radiation force, the
correct energy averaged opacity is the flux mean opacity, which
is only equivalent to the Rosseland mean in thermodynamic equi-
librium. Although there is no explicit radiation force term in our
equations, the form given for the radiation pressure in equation (11)
is based on the same assumption of local thermodynamic equilib-
rium as the Rosseland mean opacity. So to correct our treatment of
the radiation force in the outer regions of our atmosphere models,
where local thermodynamic equilibrium is a very poor assumption,
we have to calculate the radiation pressure from the radiation flux
and the flux mean opacity through

dPr

dr
= −κFρL∞

4πr2c

(
1 − Rg

r

)−1

, (23)

where κF is the flux mean opacity, which is defined as

κF =
[∫ ∞

0
κνFν dν

] [∫ ∞

0
Fν dν

]−1

, (24)

where Fν is the monochromatic flux. Equation (23) adds an addi-
tional differential equation to our model, for which a boundary con-
dition can be provided by requiring Pr = F/c at the outer boundary
atmosphere, where F is the total flux. Additionally, the flux mean
opacity should be used in equation (2) instead of the Rosseland
mean opacity, as this equation is based on equating the forces of
radiation and gravity. In both these cases we still have to calcu-
late κnet as defined in equation (16), but from the single-mode flux
mean opacities rather than from the single-mode Rosseland mean
opacities.

While ideally we would use the flux mean opacity as outlined
above, calculating the flux mean opacity requires detailed radiative
transfer equations. However, we can use different grey opacities,
which can be approximated without radiative transfer modelling, to
get an idea of the qualitative effect that using the flux mean opacity
would have on our models.

The Rosseland mean opacity will generally be lower than the
flux mean opacity, as it strongly emphasizes the low-opacity part
of the photon spectrum. The flux mean opacity also emphasizes the
low-opacity energies somewhat, as the energy distribution of the
flux will be skewed towards those energies were opacity is lower,

Figure 5. Thomson scattering opacity and monochromatic, Planck mean
and Rosseland mean opacities versus temperature, all for the E mode. This
is for magnetic field strength B = 1014 G and density ρ = 100 g cm−3,
which is typical for the density around the vacuum resonance in our models.
The peaks between 1 and 10 keV are cause by the vacuum resonance, while
the sharp rise in the Planck mean opacity near 100 keV is caused by the
electron cyclotron resonance.

but not as strongly as the Rosseland mean opacity. Thus, we can
treat our models using the Rosseland mean opacity as a sort of lower
boundary to a more accurate result, in which the radiation force is
underestimated.

Similarly, we can create a set of models that function as a sort of
upper boundary, where radiation force is overestimated, by using
the Planck mean opacity. This opacity is defined as

κP =
[∫ ∞

0
κνBνdν

] [∫ ∞

0
Bνdν

]−1

. (25)

In a region where the frequency-dependent opacity κν changes
slowly compared to the photon mean free path, the Planck mean
opacity will be higher than the flux mean, as the Planck mean opac-
ity does not emphasize any part of the photon spectrum, while the
flux will be skewed to low-opacity energies. Since the temperature
gradient in our models is set by photon diffusion, this should be
roughly valid throughout our models, so that it is difficult to imag-
ine the Planck mean opacity being lower than the flux mean opacity
anywhere. Note that while the opacity to the net outward flux of
photons κnet does change rapidly between the E- and O-mode pho-
tospheres, this is unrelated to the grey opacity used, but an effect of
the mode switching of photons. Thus, it is reasonable to assume that
the Planck mean opacity will be either larger than or comparable
to the flux mean opacity throughout our models, and thus provide
an interesting upper boundary to the effect of radiation force on
our models. The difference between the monochromatic, Rosseland
mean and Planck mean opacities is illustrated in Fig. 5.

An additional argument for using the Planck mean opacity can
be made by looking at radiative transfer calculations of magnetar
emission spectra. Such calculations (Özel 2001; Ho & Lai 2001;
van Adelsberg & Lai 2006; Suleimanov, Potekhin & Werner 2009)
typically show emerging spectra that are very similar to blackbody,
with large deviations only occurring due to the proton cyclotron
resonance. This resonance is not included in our models, but falls
inside the photospheres for some of our models with B = 1015 G,
where it occurs at roughly 6 keV. However, as the frequency at
which the proton cyclotron resonance occurs is constant throughout
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Figure 6. Local luminosity as a fraction of critical luminosity versus radius,
for models using the Planck mean opacity, using different values of L∞ as
indicated in the figure, for B = 1014 G and ρ� = 106 g cm−3. This figure
is analogous to Fig. 2, and the behaviour is similar to that observed in that
figure. The exception is the region between the two photospheres, where
the opacity, and thus the critical luminosity, becomes dominated by the
vacuum resonance. This is what causes the sharp peak seen between the
two photospheres. The values for L∞ include the highest value that gives a
stable solution, and are otherwise chosen to aid visual clarity.

the atmosphere, the photon flux at this resonance will be greatly
reduced, so this resonance will have little influence on the flux
mean opacity. Thus, the Planck mean opacity represents not only an
interesting bound to the radiation force in our problem, but actually
gives a reasonable approximation to the flux mean opacity.

Using the additional differential equation given by equation (23),
substituting the Planck mean opacity for the flux mean opacity and
replacing the Rosseland mean opacity by the Planck mean opacity
in the equation for the critical luminosity [but not in equation (9)
where the Rosseland mean is the correct grey opacity] we construct
a new set of model atmospheres. The results from these models
are summarized in Table A2. The main difference between these
results and our previous results is that the highest luminosities for
which we find stable atmosphere solutions are even lower than the
luminosities we found previously, generally by a factor of a few.

The radial structure of the atmosphere in these models is practi-
cally identical to the structure detailed in Section 3 and shown in
Fig. 1, namely a compact gas pressure supported atmosphere, with
no significant contribution from radiation pressure. While the be-
haviour of the opacity just below the O-mode photosphere in these
models is significantly different from that in our previous mod-
els due to the much larger influence of the vacuum resonance, the
Planck mean opacity does not become (significantly) larger around
the vacuum resonance than it is at the hot base of the atmosphere.
This can also be seen in Fig. 6, which shows the variation of the
ratio between the luminosity and the critical luminosity with radius.
While this figure shows that the detailed behaviour of the critical
luminosity is different compared to our previous models, the strong
radial dependence and the absence of a radiation pressure supported
region remain. Thus, the structure of the atmosphere in these models
is relatively unaffected compared to our LTE models. Furthermore,
the strong vacuum resonance in the Planck mean opacity intro-
duces an additional radial dependence into the critical luminosity,
strengthening our qualitative argument as to the impossibility of an
extended radiation pressure supported region.

5.2 Electron–positron pair plasma

For the composition we have assumed an atmosphere composed
entirely of fully ionized helium. Changing this to a different atomic
composition would change the results by a small numerical factor,
and thus not have any significant impact on our conclusions. How-
ever, a realistic magnetar atmosphere will also contain an electron–
positron plasma, particularly if it is hot enough to contain mildly
relativistic electrons. This could make a significant difference, as
it adds scattering particles without adding a significant amount of
mass, thus increasing the opacity.

The number density of a one-dimensional, magnetized, electron–
positron plasma is given by (Canuto & Ventura 1977; Thompson &
Duncan 1995)

ne± = B

Bcr

(mec

�

)3
(

kT

2π3 mec2

)1/2

e−mec
2/kT . (26)

The appearance of the crucial exponential factor encapsulates the
rest mass contribution to the pair chemical potential when the pairs
are in equilibrium with photons. Calculating this number density
for some of our atmosphere models shows that the exponential
dependence on T causes a drop of many orders of magnitude in
the pair plasma number density in the first few metres of the at-
mosphere, where the temperature drops rapidly. This means that
either the contribution of the pair plasma to the total number
density of electrons in the rest of the atmosphere is negligible,
or that the number density of electrons in the high temperature
region at the base of the atmosphere is incredibly large, which
would then cause the critical luminosity to drop below the radiation
luminosity.

The rapid temperature drop in the first few metres of the atmo-
sphere is also a feature of the models from Paczyński & Ander-
son (1986), and likely of any magnetar atmosphere model. Thus,
we conclude that even including an electron–positron plasma in a
hydrostatic model would not enable an extended atmosphere, al-
though such an extension is anticipated to influence the detailed
atmospheric structure.

5.3 Magnetic confinement

The other major assumption in our model that we know to be
wrong is treating the magnetic field as purely radial, which means
we ignore any magnetic confinement effects. As we noted in
Section 2.1, the confinement caused by a closed field line region
is too strong to allow PRE, as the required expansion will never
occur.

In a poloidal field structure, the non-radial (i.e. confining) compo-
nent of the field scales as sin � at colatitudes �. Even if such a small
closed field component were to contribute to the confinement, equa-
tion (3) has the same B2 dependence as the critical luminosity from
Compton scattering. The same can be asserted for quasi-toroidal
field components from non-poloidal field morphologies. Accord-
ingly, the vertical gradient of the non-radial component of the mag-
netic field would be large. Thus, just as for Compton scattering,
magnetic confinement cannot create near-equality of the luminosity
and critical luminosity. The only way for the field stress to keep
the critical luminosity roughly constant, and thus equal to the lu-
minosity, over an extended range of radii, would be for the closed
field component to be at most a very weakly dependent function
of radius. This is highly unlikely in any reasonable magnetic field
geometry.
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6 C O N C L U S I O N S

Hydrostatic extended magnetar atmospheres do not exist, due to
the fact that the strong dependence of opacity on radius makes the
required near equality of the luminosity and the critical luminos-
ity throughout the atmosphere impossible. A hypothetical extended
magnetar atmosphere will thus either have large regions where lu-
minosity is greater than the critical luminosity, or it will have large
regions where the luminosity is much lower than the critical lumi-
nosity, so that it is not supported against gravity. Therefore, such
an atmosphere cannot exist. This is unlike the non-magnetic case,
where a precise balance between luminosity and critical luminos-
ity means the photospheric radius can extend up to 200 km. The
fact that magnetars do not have extended hydrostatic atmospheres
means that PRE, as envisaged previously, cannot work, due to the
fact that stable expansion of the atmosphere is not possible.

Additionally, we find that the maximum luminosity that can be
propagated through a hydrostatic magnetar atmosphere may be
lower than the critical luminosity given by Miller (1995), depend-
ing on the structure of the atmosphere. This is due to the fact that
Miller (1995) assumes the maximum luminosity that can propagate
will be set by the scattering of O-mode photons near the O-mode
photosphere. However, in our models the maximum luminosity is
set by E-mode photons scattering in the highest temperature region
near the surface of the star, where the scattering cross-section is rel-
atively large due to the high frequency of the thermalized photons.
This means that depending on the atmospheric structure, more ob-
served magnetar bursts might have reached their critical luminosity
than previously assumed.

Our results have implications for interpretation of spectral fits to
magnetar burst data. Magnetar bursts are typically fitted with sev-
eral different spectral models, the main ones being two power laws,
a power law plus a blackbody, two black bodies, and more recently
a power law with exponential cut-off and optically thin thermal
bremsstrahlung. The two blackbody model is typically one of the
best fitting of these models (Feroci et al. 2004; Olive et al. 2004),
with typical fitting parameters giving two temperatures around 3 and
11 keV, and typical emission region radius of roughly the radius of
a neutron star for the colder blackbody, and an order of magni-
tude smaller than that for the hotter component, but with a large
scatter in the sizes. While this model has mostly been presented as
purely phenomenological, it has occasionally been suggested that
this could be interpreted as representing the distinct signatures of the
E- and O-mode photospheres (Israel et al. 2008; Kumar, Ibrahim &
Safi-Harb 2010). This interpretation was attractive in the sense that
it opened up the possibility of another way of measuring the crit-
ical luminosity. Our results show that in a hydrostatic atmosphere
the temperature difference between these two photospheres is never
more than one or two keV, and that they are very close to each other
spatially. This makes the interpretation of the two blackbody model
as representing the E- and O-mode photospheres highly unlikely.

Our results pose the question of what does happen when a mag-
netar burst exceeds the critical luminosity. As we have shown, hy-
drostatic extended atmospheres are impossible. Thus, solving this
problem will require dynamical, time dependent models. These
models would very likely result in outflows, which could give rise
to several forms of observable emission, such as the radio emis-
sion seen from the outflow from the SGR 1806−20 Giant Flare
(Cameron et al. 2005; Gaensler et al. 2005; Granot et al. 2006),
or the ‘Magnetar Wind Nebula’ recently detected around Swift
J1834.9−0846 (Younes et al. 2012). Any outflows would likely be
very sudden, due to the short sound crossing time and burst time-

scale involved. The observation that prompted this research, that of
SGR J0501+4516, likely reached or exceeded its critical luminosity
(Watts et al. 2010), and would thus be a prime candidate for testing
any future dynamical models of magnetar bursts.
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A P P E N D I X A : D E TA I L S O F T H E SC AT T E R I N G
CROSS-SECTION EQUATION

This appendix gives more detail on the term Kj from equation (12),
which incorporates the effects of vacuum polarization and plasma
dispersion into the Compton scattering cross-sections for photons in
a super-strong magnetic field. The index j indicates the polarization
mode, where j = 1 stands for the E mode and j = 2 for the O mode.
This term is what differentiates the treatment by Ho & Lai (2003)
from older commonly used approximations (Herold 1979; Ventura
1979). We will now detail what KJ is with and without including
vacuum polarization and plasma dispersion effects. Kj is given by

Kj = β

[
1 + (−1)j

(
1 + 1

β2

)1/2
]

, (A1)

β = β0βV, (A2)

β0 = ωC

ω

1

2(1 − ve)

sin2θ

cos θ
, (A3)

ve = ω2
P

ω2
, (A4)

where ωP is the plasma frequency. The parameter βV describes the
influence of vacuum polarization. If vacuum polarization can be
neglected, βV = 1, and the cross-section reduces to the form given
by Ventura (1979), which includes plasma dispersion and quantum

electrodynamical effects, but not vacuum polarization. If plasma
dispersion is also neglected, β0  1, so that K1 ∼ 0 and K2 → ∞,
in which limit equation (12) reduces to the form given by Herold
(1979).

When including vacuum polarization, the parameter βV is given
by (Ho & Lai 2003)

βV =
(

1 + â + q

1 − ve

)−1
⎡
⎣1 + (q + m)(1 − ue)

ueve

(
1 − â + m

q + m
ve

− ve(1 − Mui)

1 − ue

−â + q + m(1 − ve)

q + m

)⎤
⎦, (A5)

â � αF

2π

[
1.195 − 2

3
ln

B

Bcr
− Bcr

B

(
0.8553 + ln

B

Bcr

)
− B2

cr

2B2

]
,

q � − αF

2π

[
−2

3

B

Bcr
+ 1.272 − Bcr

B

(
0.3070 + ln

B

Bcr

)

− 0.7003
B2

cr

B2

]
,

m � − αF

2π

[
2

3
+ Bcr

B

(
0.1447 − ln

B

Bcr

)
− B2

cr

B2

]
, (A6)

ue = ω2
C

ω2
, ui = ω2

C,ion

ω2
, (A7)

where ωC, ion is the ion cyclotron frequency, αF is the fine-structure
constant and M = ωC/ωC, ion. These equations have been derived
under the assumption ui � 1, which is consistent with our results,
as well as ve ≤ 1, which has to be true for radiation to be able to
propagate.

Table A1. Properties of the computed magnetar atmospheres using the method described in Section 2. Columns show the magnetic field
strength, density at the base of the atmosphere, luminosity surface temperature, total atmosphere mass, radius and temperature of the E-mode
photosphere and radius and temperature of the O-mode photosphere. For each combination of magnetic field strength and surface density
we show the result for the highest luminosity that still gives a stable atmosphere, and the two round powers of 10 in luminosity below that.
A value of 0 for the height of the E-mode photosphere means that particular atmosphere model is optically thin to E-mode photons.

Input variables E-mode photosphere O-mode photosphere
B� ρb L∞ kT� �Mtot R − R� kT R − R� kT
(G) (g cm−3) (erg s−1) (keV) (g) (m) (keV) (m) (keV)

1014 104 1 × 1038 1.9 1.3 × 1017 0 1.9 0.4 1.7
1014 104 1 × 1039 6.3 2.4 × 1018 0.3 3.5 0.8 3.0
1014 104 4 × 1039 24 9.8 × 1018 1.2 4.9 1.9 4.2
1014 105 1 × 1037 1.4 5.2 × 1018 0.05 1.1 0.3 1.0
1014 105 1 × 1038 4.7 1.8 × 1019 0.2 2.0 0.6 1.7
1014 105 6 × 1038 24 9.1 × 1019 1.2 3.1 1.7 2.6
1014 106 1 × 1037 6.3 2.3 × 1020 0.3 1.1 0.5 0.9
1014 106 1 × 1038 34 1.3 × 1021 1.6 1.9 2.0 1.6
1014 106 2 × 1038 68 2.6 × 1021 3.3 2.3 3.7 2.0

1015 104 1 × 1040 6.0 2.2 × 1018 0 6.0 1.4 5.8
1015 104 1 × 1041 10.9 4.1 × 1018 0.02 10.8 2.4 9.1
1015 104 6 × 1041 25 9.9 × 1018 0.7 17 8.2 15
1015 105 1 × 1039 3.4 1.3 × 1019 0 3.4 0.9 3.1
1015 105 1 × 1040 9.7 3.6 × 1019 0.3 6.2 1.7 5.3
1015 105 5 × 1040 27 1.0 × 1020 1.2 9.2 3.2 7.9
1015 106 1 × 1039 7.1 2.6 × 1020 0.3 3.5 1.2 3.0
1015 106 1 × 1040 60 2.3 × 1021 2.9 6.2 4.3 5.3
1015 106 4 × 1040 168 8.1 × 1021 9.4 8.7 11.4 7.5
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Table A2. Properties of the computed magnetar atmospheres using the non-LTE method described in Section 5.1.

Input variables E-mode photosphere O-mode photosphere
B� ρb L∞ kT� �Mtot R − R� kT R − R� kT
(G) (g cm−3) (erg s−1) (keV) (g) (m) (keV) (m) (keV)

1014 104 1 × 1038 1.9 7.1 × 1017 0 1.9 0.4 1.6
1014 104 1 × 1039 6.4 2.4 × 1018 0.3 3.4 0.8 3.0
1014 104 3 × 1039 20 8.9 × 1018 1.1 4.6 1.7 3.9
1014 105 1 × 1037 1.4 5.2 × 1018 0.06 1.1 0.2 0.9
1014 105 1 × 1038 4.7 1.8 × 1019 0.2 1.9 0.6 1.7
1014 105 6 × 1038 24 9.3 × 1019 1.2 3.0 1.7 2.5
1014 106 1 × 1037 6.3 2.3 × 1020 0.3 1.1 0.5 0.9
1014 106 7 × 1037 25 9.3 × 1020 1.2 1.8 1.5 1.5

1015 104 1 × 1039 3.4 1.3 × 1018 0 3.4 0.8 3.3
1015 104 1 × 1040 6.0 2.3 × 1018 0 6.0 1.4 5.8
1015 104 5 × 1040 9.0 3.4 × 1018 0 9.0 1.9 6.5
1015 105 1 × 1038 1.9 7.1 × 1018 0 1.9 0.5 1.8
1015 105 1 × 1039 3.4 1.3 × 1019 0 3.4 0.8 2.8
1015 106 1 × 1037 1.9 6.8 × 1019 0.05 1.1 0.3 1.0
1015 106 1 × 1038 3.0 1.1 × 1020 0.1 1.9 0.6 1.6

This paper has been typeset from a TEX/LATEX file prepared by the author.

 at U
niversiteit van A

m
sterdam

 on July 2, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/

