32 research outputs found
Topografía Infraclavicular De Los Fascículos Del Plexo Braquial En Diferentes Posiciones Del Miembro Superior
Brachial plexus neuropathies are common complaints among patients seen at orthopedic clinics. The causes range from traumatic to occupational factors and symptoms include paresthesia, paresis, and functional disability of the upper limb. Treatment can be surgical or conservative, but detailed knowledge of the brachial plexus is required in both cases to avoid iatrogenic injuries and to facilitate anesthetic block, preventing possible vascular punctures. Therefore, the objective of this study was to evaluate the topography of the infraclavicular brachial plexus fascicles in different upper limb positions adopted during some clinical procedures. A formalin-preserved, adult, male cadaver was used. The infraclavicular and axillary regions were dissected and the distance of the brachial plexus fascicles from adjacent bone structures was measured. No anatomical variation in the formation of the brachial plexus was observed. The metric relationships between the brachial plexus and adjacent bone prominences differed depending on the degree of shoulder abduction. Detailed knowledge of the infraclavicular topography of neurovascular structures helps with the diagnosis and especially with the choice of conservative or surgical treatment of brachial plexus neuropathies. © 2016, Universidad de la Frontera. All rights reserved.3431063106
Dressed States Approach to Quantum Systems
Using the non-perturbative method of {\it dressed} states previously
introduced in JPhysA, we study effects of the environment on a quantum
mechanical system, in the case the environment is modeled by an ensemble of non
interacting harmonic oscillators. This method allows to separate the whole
system into the {\it dressed} mechanical system and the {\it dressed}
environment, in terms of which an exact, non-perturbative approach is possible.
When applied to the Brownian motion, we give explicit non-perturbative formulas
for the classical path of the particle in the weak and strong coupling regimes.
When applied to study atomic behaviours in cavities, the method accounts very
precisely for experimentally observed inhibition of atomic decay in small
cavities PhysLA, physics0111042
Fine-Tuning Solution for Hybrid Inflation in Dissipative Chaotic Dynamics
We study the presence of chaotic behavior in phase space in the
pre-inflationary stage of hybrid inflation models. This is closely related to
the problem of initial conditions associated to these inflationary type of
models. We then show how an expected dissipative dynamics of fields just before
the onset of inflation can solve or ease considerably the problem of initial
conditions, driving naturally the system towards inflation. The chaotic
behavior of the corresponding dynamical system is studied by the computation of
the fractal dimension of the boundary, in phase space, separating inflationary
from non-inflationary trajectories. The fractal dimension for this boundary is
determined as a function of the dissipation coefficients appearing in the
effective equations of motion for the fields.Comment: 10 pages, 4 eps figures (uses epsf), Revtex. Replaced with version to
match one in press Physical Review
Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications
The success of new scientific areas can be assessed by their potential for
contributing to new theoretical approaches and in applications to real-world
problems. Complex networks have fared extremely well in both of these aspects,
with their sound theoretical basis developed over the years and with a variety
of applications. In this survey, we analyze the applications of complex
networks to real-world problems and data, with emphasis in representation,
analysis and modeling, after an introduction to the main concepts and models. A
diversity of phenomena are surveyed, which may be classified into no less than
22 areas, providing a clear indication of the impact of the field of complex
networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions
are welcome
Whole genome analysis of a schistosomiasis-transmitting freshwater snail
Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis
Adaptive preconditioning in neurological diseases - therapeutic insights from proteostatic perturbations
International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai