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Fine-tuning solution for hybrid inflation in dissipative chaotic dynamics

Rudnei O. Ramos*
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755-3528

and Departamento de Fı´sica Teo´rica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, Rio de Janeiro, Brazil†

~Received 23 April 2001; published 26 November 2001!

We study the presence of chaotic behavior in phase space in the preinflationary stage of hybrid inflation
models. This is closely related to the problem of initial conditions associated with these inflationary types of
model. We then show how an expected dissipative dynamics of fields just before the onset of inflation can
solve or ease considerably the problem of initial conditions, driving the system naturally toward inflation. The
chaotic behavior of the corresponding dynamical system is studied by computation of the fractal dimension of
the boundary in phase space separating inflationary from noninflationary trajectories. The fractal dimension for
this boundary is determined as a function of the dissipation coefficients appearing in the effective equations of
motion for the fields.

DOI: 10.1103/PhysRevD.64.123510 PACS number~s!: 98.80.Cq

I. INTRODUCTION

Among the various proposed models for implementing
inflation, the hybrid inflation model@1# is one of the most
attractive because of the possibility of its implementation in
the context of supersymmetry and supergravity models@2#.
The principle behind these models for inflation is based on
models where the inflaton is coupled to one or more scalar
fields. The inflationary phase is characterized by an initial
phase in the evolution of the fields where the inflaton field
slowly moves toward a zero vacuum expectation value, until
it approaches a critical value that then induces spontaneous
symmetry breaking in one of the other fields coupled to the
inflaton, after which the fields quickly evolve to their
vacuum states and inflation ends.

It has been shown in the context of supergravity moti-
vated models@3# that for inflaton field amplitudes larger than
the Planck mass there will appear large quantum corrections
in the inflaton’s effective potential, destroying the flatness of
the inflaton’s potential as required by the slow-roll condi-
tions for inflation. The question then turns to whether infla-
tion can be achieved in these models for initial inflaton field
amplitudes smaller than the Planck scale, where a reliable
model could be constructed. But in this case it has been
shown@4# that small fluctuations of the other fields coupled
to the inflaton are able to efficiently prevent the onset of
inflation, or quickly drive previous inflationary trajectories to
noninflationary trajectories, therefore making inflation end
before enoughe-folds of inflation have been produced (Ne
*70 is required! to solve the usual cosmological horizon and
flatness problems. This is related to the homogeneity require-
ment over Hubble size distances@5# in order for inflation to
begin. In the context of hybrid inflation this problem is even
more severe, requiring an extreme fine-tuning of the initial
conditions in order to have sufficient homogeneity, with neg-
ligible spatial and time derivatives of the other fields that are

coupled to the inflaton, over regions extending far beyond a
few Hubble lengths.

A few solutions to this homogeneity or fine-tuning prob-
lem have been proposed. The authors in Ref.@6#, for ex-
ample, propose two-stage inflation models where a first short
inflationary phase would smooth a large enough region in
phase space to make possible a later, longer, second infla-
tionary phase. In Ref.@7# the possibility of solution of the
fine-tuning problem is analyzed in the context of more com-
plicated generalizations of the hybrid inflation model as mo-
tivated from higher-dimensional scalar field models or brane
cosmology.

Here I will be interested in investigating the possible role
of effective field interactions in shedding further light on this
fine-tuning problem in the preinflationary phase. This is
mostly motivated by several works on the effective dynamics
of scalar field configurations, which have shown that dissi-
pation is intrinsically present in the field dynamics@8–15#.
In particular, the role of dissipation has been emphasized in
all these works. We can trace the origin of these effects by
considering the dynamics of a given system that interacts
with a sufficiently large environment~in the sense of degrees
of freedom!. One well known example of this, in the context
of statistical mechanics, is the model of an oscillator, taken
as being the system, in interaction with a large number of
harmonic oscillators, which are taken as representing the en-
vironment. By functionally integrating over the environment
degrees of freedom we can then show that the dynamics of
the system oscillator will be dissipative, with an equation of
motion of the form of a Langevin-like one@16,14#.

The dynamics of interacting fields has being the subject of
intense study, in both Minkowski space-time@8,10,15# and
Friedmann-Robertson-Walker~FRW! space-times@11,12#,
with special interest in studying the dynamics of the inflaton
field both during and immediately after the inflationary
phase. In particular, in Refs.@17,18# the importance of con-
sidering dissipative effects~due to inflaton’s decay! during
inflation was shown. The authors of@17# showed how dissi-
pation can influence the usual scenario of inflation, and also
the effect of dissipation on the field trajectories in phase
space. Strongly dissipative regimes for field evolution have
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particularly motivated the implementation of new inflation-
ary models called ‘‘warm inflation’’@19#. The viability of the
construction of microscopically motivated models of
strongly dissipative inflation has been shown in the context
of superstring inspired models in Ref.@20# and argued also
possible for more general models in@21#.

On very general grounds, we are then led to enquire about
the possible role of field dissipation also at the early stages of
inflation and in particular its role in smoothing large regions
in phase space and thus easing considerably the homogeneity
requirements for the onset of inflation and, consequently,
providing a natural solution for the problem of fine-tuning
associated with hybrid inflation. It is easy to understand the
effect of dissipation on the initial condition problem. For the
regime of initial inflaton amplitude below the Planck scale
the energy density is small at the beginning of inflation, re-
sulting in a small Hubble parameterH, which determines
how fast the inflaton energy is converted to expansion. For
small values ofH the coupling of the fields to the back-
ground metric of gravity is small and the corresponding fric-
tionlike term in the equations of motion, of the form 3Hḟ, is
small. This results in a very long evolution of the fields,
where those fields coupled to the inflaton oscillate around
zero several times, generating strong sensitivity to very small
variations of the initial conditions and resulting in a complete
indetermination of the final outcome of the fields’ trajecto-
ries, which can be evolution toward an inflationary regime or
to the minima of the potential. The behavior of the fields’
trajectories in the early times before a required long infla-
tionary regime is then extremally chaotic. In the language of
dynamical systems we have two types of attractor in the
system, represented by the inflationary regime and the
minima of the potential. The presence of dissipation works in
damping the fluctuations of the fields in this initial critical
time, suppressing the chaotic motions, which we then expect,
from the results of Ref.@17#, will bias the inflaton field tra-
jectory toward the inflationary one. In fact, recently a study
done by the author of Ref.@22# has indicated that additional
damping terms in the inflaton equation of motion could alle-
viate many of the problems related to the homogeneity re-
quirements before inflation. Another study done by the au-
thors of Ref.@23#, using a supersymmetric hybrid inflation
model, has also indicated that particle production may be a
way to relax the extreme homogeneity requirements for hy-
brid inflation.

Here I will be concerned with determining for what mag-
nitude of dissipation the outcome of the evolution of the
fields tends mostly toward the inflationary regime, or, in the
dynamical system approach, how fast dissipation will change
the chaotic regime, characterized by unstable inflationary tra-
jectories, to a nonchaotic one, with stable inflationary trajec-
tories. I study chaos in the dynamical system of equations by
means of the measure of the fractal dimension~or dimension
information! ~for a review and definitions, see, e.g., Ref.
@24#!, which gives a topological measure of chaos for differ-
ent space-time settings and is a quantity invariant under co-
ordinate transformations, thus providing an unambiguous
signal for chaos in cosmology and general relativity prob-
lems in general@25,26#. The method I apply in this work for

quantifying chaos is thus particularly useful in the cosmo-
logical preinflationary scenario context that we are studying,
in which case other methods may be ambiguous, for ex-
ample, the determination of Lyapunov exponents, which
does not give a coordinate invariant measure for chaos, as
discussed in@25,26#. Also, other methods for studying cha-
otic systems, for example, by Poincare´ sections, are not suit-
able in the case we are interested in, where chaos is mostly a
transitory phenomenon~it ends by the time the fields reach
the potential minima, or when the inflaton enters the infla-
tionary region!. By computing the fractal dimension charac-
terizing this chaotic behavior, which is related to the uncer-
tainty in the system parameter values in predicting the final
outcome from a given initial condition~we may say that the
boundaries of initial conditions that lead to inflation or evo-
lution toward the potential minima are mixed!, we are able to
infer the naturalness of inflation for different settings of the
initial conditions. To my knowledge, this is the first time that
this kind of study has been performed in the context of a
dissipative dynamical system in cosmology and applied to
the initial condition problem of inflation in particular.

The paper is organized as follows. In Sec. II, I give the
basic equations defining the dynamical system and discuss
some of their properties. In Sec. III, I present the numerical
analysis of the dynamical system and the computation of the
fractal dimension as a function of the magnitude of dissipa-
tion. From this analysis one will be able to draw conclusions
about the general effect of dissipation in the evolution of the
fields and how it works in favor of the inflationary regime.
Finally, in Sec. IV, I give the concluding remarks.

II. THE MODEL AND ITS PROPERTIES

The model I will study here consists of the simplest hy-
brid inflation model, with a scalar fieldf ~the inflaton!
coupled to another scalar fields, which triggers the end of
inflation. The potential is@1#

V~f,s!5
l

4
~s22M2!21

m2

2
f21

g2

2
f2s2, ~2.1!

where the parametersM2,m2 and the couplingsl, g2 are
positive. In the following I will treat only the case of homo-
geneous fields,f[f(t) and s[s(t), which is the usual
case in work dealing with the initial condition problem in
hybrid inflation. The interpretation of inflation from the po-
tential ~2.1! is the standard one. For values off larger than
a critical valuefcr , wherefcr

2 5lM2/g2, there is no sym-
metry breaking in thes field direction ands50 is a local
minimum of the potential. We are interested in the region
where Mpl

2 @f2*fcr
2 where inflation takes place~the false

vacuum dominated regime!. After the inflaton field drops be-
low fcr , symmetry breaking occurs in thes field direction
of the potential. At this point the fields quickly move toward
the minimas56M , f50 and inflation ends.

The chaotic properties of the classical~homogeneous!
equations of motion, in Minkowski space-time, for a model
with potential similar to the one given by Eq.~2.1!, were
studied in Ref.@27#, while the full effective equations of
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motion in Minkowski space-time were studied by Ramos and
Navarro in Ref.@28#. In Ref. @28# the general form expected
for the equations of motion for the fields, for potentials of the
form of Eq. ~2.1!, was derived and a detailed account of the
dissipative terms appearing in these equations was given.
The chaotic behavior of the equations of motion for the fields
was quantified by means of the fractal dimension and the
authors studied in detail how dissipation of the fields, due to
decaying modes, changed the chaotic behavior of the dynam-
ics. I will here extend the results of Ref.@28# to the case of
an expanding background, a flat Friedmann-Robertson-
Walker background metric.

As shown in Refs.@15,28,21# dissipation comes from the
coupling of the system fieldsf ands ~here taken as back-
ground field configurations! to a bath made of a set of other
fields, for example, made ofNc fermionsc i and/orNx sca-
lars x i . The general form of the interactions can be of the
form

(
i 51

Nx

~gf
2 f2x i

21gs
2s2x i

2! ~2.2!

for scalar fieldsx i and

(
i 51

Nc

~ f fc̄ ifc i1 f sc̄ isc i ! ~2.3!

for fermion fields c i . The coupled effective equations of
motion for f ands are usually expected to be complicated
nonlocal equations of motion with typical non-Markovian
dissipative kernels. In@28# we showed that at high tempera-
ture and in the largeNx , Nc limit for the ~thermal! bath
fields we can find an approximate Markovian limit for the
kernels, from which we can express the equations of motion
for the fields in terms of dissipative local equations. In Ref.
@21# we studied in detail the general equations for the non-
Markovian dissipative kernels at zero temperature and
showed that for a certain class of field decaying modes the
Markovian approximation is also a valid assumption. The
results obtained in Ref.@21# show that we can evade the
assumption of an initial high-temperature thermal bath as
used in Ref.@28# to derive the local equations of motion for
the fields and makes it, therefore, more appropriate to the
application we intend here, which is a study of the initial
condition problem for the onset of inflation in hybrid infla-
tion models characterized by potentials like Eq.~2.1!.

I will just use the general form of the coupled effective
equations of motion obtained in Ref.@28# without a complete
specification of the dissipative coefficients, which I will take
as free parameters. This is a valid analysis here since I will
mostly be interested in how the general dissipation expected
for the fieldsf ands in their coupled effective equations of
motion will change the chaotic properties of the dynamical
system, which, as explained in the Introduction, are directly
related to the initial condition problem. The detailed form of
the dissipative coefficients depends on the microscopic phys-
ics of the specific model under study, such as the coupling of
the system fields with the bath fields, the decaying modes

available, and the expanding metric. In fact the magnitude of
the dissipation terms may be controlled by these couplings,
as shown in Refs.@15,21,28#.

In analogy to the results obtained in Ref.@28# we write the
equations of motion forf ands in the form1

f̈13Hḟ1m2f1g2fs21h1f2ḟ1h3fsṡ50 ~2.4!

and

s̈13Hṡ2lM2s1ls31g2sf21h2s2ṡ1h3fsḟ50,

~2.5!

whereh1 , h2, andh3 denote the dissipation coefficients. In
addition to the coupled equations of motion~2.4! and ~2.5!
we also have the Friedmann equation and the evolution equa-
tion for the Hubble parameterH5ȧ/a, wherea is the scale
factor, given as usual by

H25
8pG

3
~rm1r r !2

k

a2
, ~2.6!

2Ḣ13H21
k

a2
528pG~pm1pr !, ~2.7!

whereG51/mPl
2 , with mPl the Planck mass.k50,11,21 for

a flat, closed, or open Universe, respectively.rm(r ) andpm(r )
are the energy density and pressure for matter~radiation!,
respectively. We also have the standard relations

rm5
1

2
ḟ21

1

2
ṡ21V~f,s!, ~2.8!

pm5
1

2
ḟ21

1

2
ṡ22V~f,s!, ~2.9!

andpr5
1
3 r r .

The matter and radiation energy densitiesrm and r r
evolve in time as

ṙm13H~ḟ21ṡ2!1h1f2ḟ21h2s2ṡ212h3fsḟṡ50

~2.10!

and ~from the energy conservation law!

ṙ r14Hr r2h1f2ḟ22h2s2ṡ222h3fsḟṡ50.
~2.11!

Assuming a flat universe (k50), from Eq. ~2.6!, we can
consider

r r5
3

8pG
H22rm5

3

8pG
H22

ḟ2

2
2

ṡ2

2
2V~f,s!

~2.12!

1This should be compared with Eqs.~5.1! and ~5.2! of Ref. @28#.
In the notation used here we have that in those equationsfc→f,

cc→s, m̄f
2 →m2, m̄c

2→lM2, l̄f→0, l̄c→6l, andḡ→g.
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as the first integral of Eq.~2.11!. Using Eqs.~2.6!–~2.9!, we
can also express the equation for the acceleration in the fol-
lowing form:

ä

a
5

8pG

3
~rm2r r !24pG~ḟ21ṡ2!. ~2.13!

The field equations~2.4! and ~2.5! with Eq. ~2.13! form a
dissipative dynamical system that we will study numerically.
Using Eq.~2.12! in Eq. ~2.13! and defining the dimensionless
variablesy5A8pGf, x5s/M , t5Mt, the constantsa2

5m2/M2, b258pGM2, and the rescaled dissipative coeffi-
cientshy5Mh1 , hx5Mh2, andhxy5Mh3, the system of
equations~2.4!, ~2.5!, and ~2.13! can then be rewritten in
terms of dimensionless variables in the form of the following
system of first order differential equations:

x85z,

y85w,

a85u,

z8523
u

a
z1lx2lx32

g2

b2
xy22hxx

2z2
1

b2
hxyxyw,

w8523
u

a
w2a2y2g2yx22

1

b2
hyy

2w2hxyxyz,

u852
u2

a
2

a

6
~b2z21w22b2l12lb2x2

2lb2x422a2y222g2x2y2!, ~2.14!

where the prime indicates the derivative with respect to the
dimensionless timet, e.g.,x85dx/dt.

For convenience we use the values forl, g2, M, andm as
given by Mendes and Liddle in Ref.@7#: l5g251, M52
31022MPl , andm5531026MPl , whereMPl51/A8pG is
the reduced Planck mass. From these values ofm andM we
find for the constantsa and b in Eq. ~2.14! the valuesa
52.531024 and b5231022. In terms of these values we
also have that the critical value for the inflaton field,fcr , in
the dimensionless variables is given byycr5231022.

III. CHAOS AND THE FRACTAL DIMENSION

We next numerically solve the system of equations in Eq.
~2.14! and search for chaotic regimes and how they change
with increasing dissipation. Let us initially consider the fol-
lowing initial conditions att50: f543fcr , ḟ50, s52
31022M , ṡ50, and H determined initially by Eq.~2.6!,
with zero initial radiation energy density. These values guar-
antee that the stable inflationary trajectories will correspond
to at leastNe*60 e-folds of inflation. For the dissipation
coefficientshx , hy , andhxy , for convenience, we will con-
sider them all with the same value, which is consistent with
the recent findings in Ref.@21#, or the calculations in Ref.

@28#. Small variations of the magnitude among these coeffi-
cients are not critical here, since the dissipation in Eq.~2.14!
is dominated by the term corresponding toh1f2ḟ. We take
the dissipation coefficients with initial values as given by
$h%5(hx ,hy ,hxy)5(0,0,0) and increase them until the
chaotic behavior of the system changes to nonchaotic.

For $h%50 a typical result for three trajectories around
the initial values of the fields~in dimensionless units!, sepa-
rated by a61025 variation, is shown in Fig. 1. Here we can
distinguish the inflationary trajectory represented by the
straight line atx50, which shows the evolution of the fields
in phase space along the valley of local minima of the po-
tential,s50 for f.fcr . This trajectory is characterized by
a very long evolution in which the Universe expands expo-
nentially. The number ofe-folds produced by the end of the
inflationary phase, when the inflaton reachesf&fcr , for
this particular trajectory isNe;350. The other two oscilla-
tory trajectories, which evolve towardx561, represent the
noninflationary trajectories, where the fields quickly evolve
toward the potential minimas56M andf50. In Fig. 2 we
show an enlargement of the initial time evolution of Fig. 1. It
clearly shows highly oscillatory chaoticlike behavior.

The chaotic behavior of the dynamical system is quanti-
fied by means of the determination of the fractal dimension
of the boundary separating the inflationary trajectories from
those that are not inflationary, i.e., the ones that evolve to-
ward the minima of the potentialf50 and s56M . The
fractal dimension is associated with the possible different
exit modes under small changes of the initial conditions at
t50, and it will give a measure of the degree of chaos of our
dynamical system. The exit modes we refer to above are
those of the symmetry breaking minima in thes field direc-
tion, s56M , f50, and the inflationary one, which are
attractors of field trajectories in phase space. The method we

FIG. 1. A typical evolution of three trajectories in the absence of
dissipation with initial conditions separated by a61025 variation

around thet50 valuesf543fcr , ḟ50, s5231022M , ṡ50
andH determined by Eq.~2.6!.
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employ to determine the fractal dimension is the box-
counting method which is a standard method for determining
the fractal dimension of boundaries@24#. Its definition and
the specific numerical implementation we use here have been
described in detail in Ref.@29#.

The basic procedure is as follows. Given a set of initial
conditionsx0 at t5t0, which lead to a certain outcome for
the trajectory in phase space, we perturb them by an amount
d and study whether there will be a change of outcome for
the trajectory or not~whether the perturbation will lead to a
different attractor or not!. Given a volume region in phase
space around a boundary between different attractors and
perturbing a large set of initial conditions inside that region,
the fraction of uncertain trajectoriesf (d) that result in a
different outcome under a small perturbation can be shown
to scale with the perturbationd as@24# f (d);de, wheree is
called the uncertainty exponent. The box-counting dimension
of the boundary in phase space separating different attrac-
tors, or fractal dimensionf d , is given by @24# f d5d2e,
where d denotes the dimension of the phase space. For a
fractal boundaryf d.d21, implying thate,1, whereas for
a nonfractal boundaryf d5d21, ande51.

Following the method of box counting we thus consider a
box in phase space~for the dimensionless variables! of size
1025, around the initial conditions used in Figs. 1 and 2,
inside which a large number of random points are taken~a
total of 100 000 random points were used in each run!. All
initial conditions are then numerically evolved by using an
eighth-order Runge-Kutta integration method and the fractal
dimension is obtained by statistically studying the outcome
of each initial condition for each run of the large set of
points. Special care is taken to keep the statistical error in the
results always below;1%. From these numerical simula-
tions we obtain for the zero dissipative regime of Fig. 1 the
result for the fractal dimensionf d.5.8060.05. This corre-
sponds to the dimension of the dynamical system Eq.~2.14!

corresponding here tod56, minus the uncertainty coeffi-
cient e ~which gives a measure of how chaotic the system is
@29#!, f d562e. The results obtained by increasing the value
of the dissipation coefficients$h% while keeping the same
initial condition used above, around which the perturbations
are taken, are shown in Fig. 3. This figure shows that the
system quickly changes to a nonchaotic behavior for a dissi-
pation coefficient around$h%;3.131024. For this and
higher values of the dissipation all trajectories are inflation-
ary ones withNe@60. At that point we then have the break-
down of the fractal structure of the boundary between infla-
tionary and noninflationary trajectories. The boundary
becomes smooth and we can reliably predict that the initial
conditions will evolve toward the inflationary region.

In order to study the efficiency of dissipation in driving
noninflationary trajectories toward the inflationary region,
which is characterized byä.0, we show in Fig. 4 the results
for the number ofe-folds of inflation as a function of dissi-
pation for an initial trajectory that in the absence of dissipa-
tion would be a noninflationary one. The particular initial
conditions we take purposefully correspond to fields well
below the Planck scalef53.5M , s5M , and nonvanishing
field derivatives ḟ52.531022M2 and ṡ5531024M2,
which in the absence of dissipation would be quickly driven
to one of the minima of the potential~and therefore corre-
sponding to a noninflationary behavior!. We see that above
some value of dissipation coefficientsh;1 the number of
e-folds of inflation increases fast for a rather small increase
of dissipation. We then clearly see using the set of initial
conditions above how dissipation acts in turning noninfla-
tionary trajetories into inflationary ones, shifting the system
deep into the inflationary region as dissipation is increased.
The radiation energy density in this case, as in the previous
one, is taken initially as zero and always remains smaller

FIG. 2. An enlargement of the initial time evolution of the tra-
jectories shown in Fig. 1. FIG. 3. The fractal dimension as a function of dissipation, from

the box-counting method applied to a box in phase space centered
around the initial conditions used in Fig. 1.
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than the vacuum energy density during the whole evolution
of the inflaton. In particular, for the values of dissipation
coefficients we have studied here, after a fewe-folds of in-
flation the radiation energy density is a negligible fraction of
the vacuum energy density, and right before the end of infla-
tion the radiation energy density is a tiny fraction of the
vacuum energy density,r r /rv;10214. A detailed treatment
of the radiation liberated to the medium and its eventual
translation to a temperature depends of course on how the
radiation thermalization rateG rad, which is determined by
the microscopic physics, compares to the expansion rateH.

It is also useful to compare the regimes of field dissipation
corresponding, for instance, to the ones studied in Fig. 3 and
Fig. 4 and their relation to the warm inflation scenario. In
warm inflation @15,20# we are usually interested in the re-
gime of strong dissipation in the effective equation of motion
for the inflaton, as compared with the expansion term 3Hḟ.
From Eq. ~2.4! dissipation is dominated by the term
h1f2ḟ5h(f)ḟ. From the values of parameters and initial
conditions used in Fig. 3 we find that 3H/h(f);5 for the
largest value of dissipation studied, while for the parameters
and initial conditions used in Fig. 4 we have that 3H/h(f)
;0.008 and we are therefore deep in the regime of warm
inflation. We can easily see then that the warm inflation kind
of model does not seem to suffer from the initial condition
problem seen in standard hybrid inflation models. In particu-
lar, for the parameters used in Fig. 3, for values of dissipa-
tion h*0.0015, we enter into the warm inflation regime and
the system has become nonchaotic well before, with stable
inflationary trajectories.

IV. CONCLUSIONS

I have examined a dynamical system describing hybrid
inflation in the presence of dissipation for both the inflaton

and the field that triggers the end of inflation. Dissipation is
taken as being present throughout the system’s evolution. In
the absence of dissipation the dynamical system is shown to
be highly chaotic by means of the measure of the fractal
dimension. The fractal dimension gives a coordinate invari-
ant measure for chaos and therefore is an appropriate way to
quantify chaos in cosmology.

For a given initial condition that evolves to an inflationary
region, if we vary it by a small perturbation we completely
lose track of its final outcome; it may still evolve toward the
inflationary region, characterized by evolution along the val-
ley of local minima of the potential, or it may undergo fast
evolution toward one of the symmetry breaking minima. The
time evolution of the fields is shown to be highly oscillatory
for a very long time, which eventually changes the inflation-
ary trajectories to noninflationary ones. This is the main
characteristic in the evolution of the fields and gives rise to
the initial condition problem in hybrid inflation~and to a
lesser degree in any inflationary model!. The long oscillatory
behavior of the fields is highly chaotic. By measuring the
magnitude of chaos in the system we can then infer the se-
verity of the initial condition problem.

However, by changing the magnitude of dissipation, I
have shown that the highly chaotic evolution of the system,
with unstable inflationary trajectories, can change quickly to
a nonchaotic, stable one, where all trajectories eventually
evolve toward the inflationary region. Dissipation acts by
damping the initial oscillatory behavior of the fields and thus
making it possible to provide a solution for the initial condi-
tion problem. I have shown that this solution can be obtained
with relatively very small dissipation of the initial inflaton
amplitude, with rates of conversion of vacuum energy to
radiation as small as;10214. Here dissipation works in two
ways. By damping the fluctuations associated with the fields
coupled to the inflaton, the fine-tuning problem associated
with hybrid inflation models is avoided, and at the same time
it becomes possible for initial inflationary trajectories to en-
ter faster in to the inflationary region~characterized byä
.0) and stay there longer.

The method used here to study the initial condition prob-
lem can also be easily extented to include other variants of
the hybrid inflation model, for example, in the context of
supersymmetric motivated potentials, where more than one
field is coupled to the inflaton. The additional equations of
motions will also generically be dissipative equations and the
same changes of behavior due to dissipation observed here
are also expected to appear in these more complicated mod-
els.

There have been previous studies on chaos in hybrid in-
flation models@30–32#, but these studies concentrated on the
reheating period after the inflationary phase. In that context,
the effect of dissipation, which would be inherently present
in the field equations during this period also, has been ne-
glected. It would be interesting to investigate the effect of
dissipation in those cases also, and its role, for example, in
the phenomenon of parametric resonance during preheating
in hybrid inflation models@33,34#. We are currently investi-
gating this and other applications and we expect to report on
them soon.

FIG. 4. The total number ofe-folds of inflation as a function of

dissipation for the initial conditions att50: f53.5M , s5M , ḟ

52.531022M2, ṡ5531024M2, andr r(t50)50.
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