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PHYSICAL REVIEW D, VOLUME 64, 123510

Fine-tuning solution for hybrid inflation in dissipative chaotic dynamics

Rudnei O. Ramds
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755-3528
and Departamento de’Bica Tégica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, Rio de Janeiro! Brazil
(Received 23 April 2001; published 26 November 2001

We study the presence of chaotic behavior in phase space in the preinflationary stage of hybrid inflation
models. This is closely related to the problem of initial conditions associated with these inflationary types of
model. We then show how an expected dissipative dynamics of fields just before the onset of inflation can
solve or ease considerably the problem of initial conditions, driving the system naturally toward inflation. The
chaotic behavior of the corresponding dynamical system is studied by computation of the fractal dimension of
the boundary in phase space separating inflationary from noninflationary trajectories. The fractal dimension for
this boundary is determined as a function of the dissipation coefficients appearing in the effective equations of
motion for the fields.

DOI: 10.1103/PhysRevD.64.123510 PACS nunier98.80.Cq

[. INTRODUCTION coupled to the inflaton, over regions extending far beyond a
few Hubble lengths.

Among the various proposed models for implementing A few solutions to this homogeneity or fine-tuning prob-
inflation, the hybrid inflation mod€]1] is one of the most lem have been proposed. The authors in Réf, for ex-
attractive because of the possibility of its implementation inample, propose two-stage inflation models where a first short
the context of supersymmetry and supergravity mofi2]s inflationary phase would smooth a large enough region in
The principle behind these models for inflation is based orphase space to make possible a later, longer, second infla-
models where the inflaton is coupled to one or more scalationary phase. In Ref.7] the possibility of solution of the
fields. The inflationary phase is characterized by an initiafine-tuning problem is analyzed in the context of more com-
phase in the evolution of the fields where the inflaton fieldplicated generalizations of the hybrid inflation model as mo-
S|0w|y moves toward a zero vacuum expectation Va|ue, untitivated from higher-dimenSional scalar field models or brane
it approaches a critical value that then induces spontaneo@smology.

symmetry breaking in one of the other fields coupled to the Here | will be interested in investigating the possible role
inflaton, after which the fields quickly evolve to their of effective field interactions in shedding further light on this

vacuum states and inflation ends fine-tuning problem in the preinflationary phase. This is

It has been shown in the con.text of supergravity moti_mostly motivated by several works on the effective dynamics
vated model$3] that for inflaton field amplitudes larger than O;;gﬁl?sr ;‘:]etlr?lné:i(égl;:gur?ég)gnst, |¥1VThC: f?;\ée dszgm?gitadss"
the Planck mass there will appear large quantum correctiorr‘% yp y '

in the inflaton’s effect tential. destroving the flat h particular, the role of dissipation has been emphasized in
N the intia ?ns elective potential, destroying the Tlatness ol yase works. We can trace the origin of these effects by
the inflaton’s potential as required by the slow-roll condi-

X ) ! , : considering the dynamics of a given system that interacts
tions for inflation. The question then turns to whether infla- i 4 sufficiently large environmeriin the sense of degrees

tion can be achieved in these models for initial inflaton field ¢ freedom. One well known example of this, in the context
amplitudes smaller than the Planck scale, where a reliablgf statistical mechanics, is the model of an oscillator, taken
model could be constructed. But in this case it has beeng being the system, in interaction with a large number of
shown[4] that small fluctuations of the other fields coupled harmonic oscillators, which are taken as representing the en-
to the inflaton are able to efficiently prevent the onset ofvironment. By functionally integrating over the environment
inflation, or quickly drive previous inflationary trajectories to degrees of freedom we can then show that the dynamics of
noninflationary trajectories, therefore making inflation endthe system oscillator will be dissipative, with an equation of
before enougte-folds of inflation have been produce®l{  motion of the form of a Langevin-like oré 6,14.
=70 is requireglto solve the usual cosmological horizon and  The dynamics of interacting fields has being the subject of
flatness problems. This is related to the homogeneity requirdatense study, in both Minkowski space-ti&,10,19 and
ment over Hubble size distancgs] in order for inflation to  Friedmann-Robertson-Walke(FRW) space-times[11,12,
begin. In the context of hybrid inflation this problem is evenwith special interest in studying the dynamics of the inflaton
more severe, requiring an extreme fine-tuning of the initiaffield both during and immediately after the inflationary
conditions in order to have sufficient homogeneity, with neg-phase. In particular, in Ref§17,18 the importance of con-
ligible spatial and time derivatives of the other fields that aresidering dissipative effectéue to inflaton’s decayduring
inflation was shown. The authors [df7] showed how dissi-
pation can influence the usual scenario of inflation, and also
*Email address: rudnei@peterpan.dartmouth.edu the effect of dissipation on the field trajectories in phase
"Permanent address. space. Strongly dissipative regimes for field evolution have
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particularly motivated the implementation of new inflation- quantifying chaos is thus particularly useful in the cosmo-
ary models called “warm inflation[19]. The viability of the  logical preinflationary scenario context that we are studying,
construction of microscopically motivated models of in which case other methods may be ambiguous, for ex-
strongly dissipative inflation has been shown in the contexample, the determination of Lyapunov exponents, which
of superstring inspired models in R¢R0] and argued also does not give a coordinate invariant measure for chaos, as
possible for more general models[ia1]. discussed ir125,26. Also, other methods for studying cha-
On very general grounds, we are then led to enquire abouitic systems, for example, by Poincactions, are not suit-
the possible role of field dissipation also at the early stages ddble in the case we are interested in, where chaos is mostly a
inflation and in particular its role in smoothing large regionstransitory phenomenofit ends by the time the fields reach
in phase space and thus easing considerably the homogeneifig potential minima, or when the inflaton enters the infla-
requirements for the onset of inflation and, consequentlytionary region. By computing the fractal dimension charac-
providing a natural solution for the problem of fine-tuning terizing this chaotic behavior, which is related to the uncer-
associated with hybrid inflation. It is easy to understand thdainty in the system parameter values in predicting the final
effect of dissipation on the initial condition problem. For the outcome from a given initial conditiotwe may say that the
regime of initial inflaton amplitude below the Planck scaleboundaries of initial conditions that lead to inflation or evo-
the energy density is small at the beginning of inflation, re-lution toward the potential minima are mixeave are able to
sulting in a small Hubble parametét, which determines infer the naturalness of inflation for different settings of the
how fast the inflaton energy is converted to expansion. Foinitial conditions. To my knowledge, this is the first time that
small values ofH the coupling of the fields to the back- this kind of study has been performed in the context of a
ground metric of gravity is small and the corresponding fric-dissipative dynamical system in cosmology and applied to

tionlike term in the equations of motion, of the forrmd, is the initial Cond_ition prqblem of inflation in particular. _
small. This results in a very long evolution of the fields, 1N€ Paper is organized as follows. In Sec. II, I give the

where those fields coupled to the inflaton oscillate around@SiC equations defining the dynamical system and discuss

zero several times, generating strong sensitivity to very smaffome of their properties. In Sec. Ill, | present the numerical

variations of the initial conditions and resulting in a complete2nalysis of the dynamical system and the computation of the
indetermination of the final outcome of the fields’ trajecto- fractal dimension as a function of the magnitude of dissipa-
ries, which can be evolution toward an inflationary regime ortion. From this analysis one will be able to draw conclusions

to the minima of the potential. The behavior of the fielgs’ @bout the general effect of dissipation in the evolution of the

trajectories in the early times before a required long inflafi€!ds and how it works in favor of the inflationary regime.
in Sec. IV, | give the concluding remarks.

tionary regime is then extremally chaotic. In the language of "nally;
dynamical systems we have two types of attractor in the
system, represented by the inflationary regime and the [l. THE MODEL AND ITS PROPERTIES
minima of the potential. The presence of dissipation works in
damping the fluctuations of the fields in this initial critical
time, suppressing the chaotic motions, which we then expec
from the results of Refl17], will bias the inflaton field tra-
jectory toward the inflationary one. In fact, recently a study
done by the author of Ref22] has indicated that additional 2 2
. , . : . N m g
damping terms in the inflaton equation of motion could alle- V(¢,0)= (02— M?)2+ — 2+ =202, (2.1
viate many of the problems related to the homogeneity re- 4 2 2
quirements before inflation. Another study done by the au- )
thors of Ref.[23], using a supersymmetric hybrid inflation Where the parametesl?>,m* and the couplings., g are
model, has also indicated that particle production may be Rositive. In the following I will treat only the case of homo-
way to relax the extreme homogeneity requirements for hygeneous fieldsg= ¢(t) and o=o(t), which is the usual
brid inflation. case in work dealing with the initial condition problem in
Here | W|” be Concerned W|th determining for What mag_ hyb”d inflation. The interpretation of inflation from the pO'
nitude of dissipation the outcome of the evolution of thetential(2.1) is the standard one. For values #flarger than
fields tends mostly toward the inflationary regime, or, in thea critical valueg,,, where ¢2=\M?/g?, there is no sym-
dynamical system approach, how fast dissipation will changénetry breaking in ther field direction ando=0 is a local
the chaotic regime, characterized by unstable inflationary traminimum of the potential. We are interested in the region
jectories, to a nonchaotic one, with stable inflationary trajecwhere M§,> ¢*= $2, where inflation takes placéhe false
tories. | study chaos in the dynamical system of equations byacuum dominated regimeAfter the inflaton field drops be-
means of the measure of the fractal dimengimndimension low ¢, symmetry breaking occurs in the field direction
information (for a review and definitions, see, e.g., Ref. of the potential. At this point the fields quickly move toward
[24]), which gives a topological measure of chaos for differ-the minimac=+M, ¢=0 and inflation ends.
ent space-time settings and is a quantity invariant under co- The chaotic properties of the classicdlomogeneoys
ordinate transformations, thus providing an unambiguougquations of motion, in Minkowski space-time, for a model
signal for chaos in cosmology and general relativity prob-with potential similar to the one given by E.1), were
lems in generd]25,26. The method | apply in this work for studied in Ref.[27], while the full effective equations of

The model | will study here consists of the simplest hy-
Prid inflation model, with a scalar fieldy (the inflaton
Coupled to another scalar fietd, which triggers the end of
inflation. The potential i$1]

123510-2



FINE-TUNING SOLUTION FOR HYBRID INFLATION . .. PHYSICAL REVIEW D64 123510

motion in Minkowski space-time were studied by Ramos andavailable, and the expanding metric. In fact the magnitude of
Navarro in Ref[28]. In Ref.[28] the general form expected the dissipation terms may be controlled by these couplings,
for the equations of motion for the fields, for potentials of theas shown in Refd.15,21,28.
form of Eq.(2.1), was derived and a detailed account of the In analogy to the results obtained in RgZ8] we write the
dissipative terms appearing in these equations was giverquations of motion fogp and o in the fornt
The chaotic behavior of the equations of motion for the fields ) ) .
was quantified by means of the fractal dimension and theb+ 3H ¢+ m2p+g2po?+ n,p?d+ nzdpoo=0 (2.9
authors studied in detail how dissipation of the fields, due to
decaying modes, changed the chaotic behavior of the dynan%nd
ics. | will here extend the results of R¢R8] to the case of . . 5 3 o o 5 -
an expanding background, a flat Friedmann-Robertson- ¢ T 3Ho—=AM“o+N o+ g 0"+ n0°0+ 730 =0,
Walker background metric. (2.5

As shown in Refs[15,28,2] dissipation comes from the \yere ;. 5, and 7, denote the dissipation coefficients. In
coupling of the system fieldg and o (here taken as back- 4qgition to the coupled equations of moti@4) and (2.5)
ground field configurationsto a bath made of a set of other \ye 550 have the Friedmann equation and the evolution equa-

fields, for example, made o, ferr_mons:,bi_ and/orN, sca- tion for the Hubble parametéi =a/a, wherea is the scale
lars x;. The general form of the interactions can be of the :
factor, given as usual by

form
Ny HZZ%(Pm'I'Pr)_E- (2.6
2, (g5 + 90K (2.2 3 a’
for scalar fieldsy; and 2H +3H2+ 52=—87TG(pm+ P, 2.7
Ny 2
igl (fotidti+t o) (2.3  whereG=1/m3,, with mp the Planck mas&=0,+1,— 1 for

a flat, closed, or open Universe, respectivplygy andpy
are the energy density and pressure for maftadiation,

for fermion fields ¢;. The coupled effective equations of respectively. We also have the standard relations
motion for ¢ and o are usually expected to be complicated

nonlocal equations of motion with typical non-Markovian 1., 1.,

dissipative kernels. 1h28] we showed that at high tempera- Pm= §¢ + 29 +V(e,0), 28

ture and in the largeN,, N, limit for the (therma) bath

fields we can find an approximate Markovian limit for the 1. 1.

kernels, from which we can express the equations of motion Pm= §¢2+ EUZ—V(QMT). 2.9

for the fields in terms of dissipative local equations. In Ref.

[21] we studied in detail the general equations for the non- 4 p.=1p .

Markovian dissipative _kernels at zero temperature and The matter and radiation energy densities and p,

showed that for a certain class of field decaying modes thg,,gve in time as

Markovian approximation is also a valid assumption. The

results obtained in Ref.21] show that we can evade the . 3p4(2+ 52)+ 5, p2¢2+ 79,0202+ 2 apopor=0

assumption of an initial high-temperature thermal bath as

used in Ref[28] to derive the local equations of motion for (210

the fields and makes it, therefore, more appropriate to thand(from the energy conservation law

application we intend here, which is a study of the initial . . ) o

condition problem for the onset of inflation in hybrid infla- pr+4Hp, — 5,10% P — n0%0?— 23T po=0.

tion models characterized by potentials like E2.1). (2.11
I will just use the general form of the coupled effective

equations of motion obtained in R¢28] without a complete

specification of the dissipative coefficients, which | will take

as free parameters. This is a valid analysis here since | will

Assuming a flat universek&0), from Eg. (2.6), we can
consider

42 "2
mostly be interested in how the general dissipation expected _ 3 2_p = 3 H2— ‘i_‘f__v(d) o)
for the fields¢ ando in their coupled effective equations of " 87G m 87wG 2 2 ’
motion will change the chaotic properties of the dynamical (2.12

system, which, as explained in the Introduction, are directly

related to the initial condition problem. The detailed form of

the dissipative coefficients depends on the microscopic phys-'This should be compared with Eq&.1) and (5.2) of Ref. [28].
ics of the specific model under study, such as the coupling dih the notation used here we have that in those equatignrs ¢,
the system fields with the bath fields, the decaying modes,— o, m3—m?, m3—xM?2, x,—0, \,—~6\, andg—g.

123510-3
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as the first integral of Eq2.11). Using Eqs(2.6)—(2.9), we T
can also express the equation for the acceleration in the fol- 10l
lowing form: )
a 8wG o
3= 3 (Pm—p)—AmG(¢7+0”). (2.13 05}

The field equationg2.4) and (2.5 with Eq. (2.13 form a c/M
dissipative dynamical system that we will study numerically. 0.0
Using Eq.(2.12 in Eq.(2.13 and defining the dimensionless
variablesy=\87G¢, x=0/M, 7=Mt, the constantsy?
=m?/M?2, B2=8mwGM?, and the rescaled dissipative coeffi-
cients 7,=M 7, 7,=M 7,, and 7,,=M 73, the system of 05
equations(2.4), (2.5, and (2.13 can then be rewritten in
terms of dimensionless variables in the form of the following
system of first order differential equations: 1.0

x'=z, 0 ]

, Mt/200
y =w,
FIG. 1. Atypical evolution of three trajectories in the absence of
a'=u, dissipation with initial conditions separated by+al0™° variation
around thet=0 values¢p=4X ¢, $=0, 0=2x10"2M, =0
g° 1 andH determined by Eq(2.6).

7'=- 3§z+ AX— M= = XY= X2 — — XYW,
B B [28]. Small variations of the magnitude among these coeffi-
cients are not critical here, since the dissipation in 2dL4)
W = _3EW_ a?y— g2yxe— i nyyzw— M XYZ is dor_nin_ate(_j by the term corrgsp_oljc_iingﬁwzéﬁ. We _take
a 2 the dissipation coefficients with initial values as given by
1m=(nx,my,m%)=(0,0,0) and increase them until the
. u? a 92 2 o 2 o chaotic behavior of the system changes to nonchaotic.
U'=——~gBZHW = BN+ 2NEX For {#}=0 a typical result for three trajectories around
the initial values of the fieldéin dimensionless unifssepa-
—\Bx*—2a%y?—29°x%y?), (2.149  rated by a+ 10 ° variation, is shown in Fig. 1. Here we can
L o , distinguish the inflationary trajectory represented by the
where the prime indicates the derivative with respect t0 thgaight line ax=0, which shows the evolution of the fields
dimensionless time, e.g.,x’=dx/dr. 5 in phase space along the valley of local minima of the po-
_ For convenience we use the values Xorg '2M’ andmas  ential, o=0 for ¢> ¢,,. This trajectory is characterized by
given by Mendes and Liddle in Ref7]: A=g°=1, M=2 5 yery long evolution in which the Universe expands expo-
X107?Mp, andm=5x10"°Mp,, whereMp=1/y87G is  nentially. The number oé-folds produced by the end of the
t_he reduced Planck mass. Fro_m these valuem ahdM we inflationary phase, when the inflaton reachgs ¢, for
find for th% constantsy andzﬁ in Eq. (2.14 the valuesa  thjs particular trajectory &~ 350. The other two oscilla-
=2.5x10"" and B=2X10"*. In terms of these values we tory trajectories, which evolve toward= = 1, represent the
also have that the critical value for the inflaton fieisl,, i noninflationary trajectories, where the fields quickly evolve

the dimensionless variables is given ypy=2x10"7. toward the potential minima=+M and¢=0. In Fig. 2 we
show an enlargement of the initial time evolution of Fig. 1. It
lll. CHAOS AND THE FRACTAL DIMENSION clearly shows highly oscillatory chaoticlike behavior.

The chaotic behavior of the dynamical system is quanti-

We next numerically solve the system of equations in Eqfied by means of the determination of the fractal dimension

\(/\?i'trlfi)n?:rrlga?nagrc dr}sfsoi;);tri]gr?tligfggniﬁis{i;?ydcgzvgiégf};hzh?g:?gf the boundary separating the inflationary trajectories from
T o ' s those that are not inflationary, i.e., the ones that evolve to-
lowing |n|t|z_;1I conditions att=0: ¢=4X ¢, ¢=0, 0=2  \ward the minima of the potentiap=0 ando=+M. The
X 10 %M, ¢=0, andH determined initially by Eq(2.6), fractal dimension is associated with the possible different
with zero initial radiation energy density. These values guarexit modes under small changes of the initial conditions at
antee that the stable inflationary trajectories will correspond=0, and it will give a measure of the degree of chaos of our
to at leastN,=60 e-folds of inflation. For the dissipation dynamical system. The exit modes we refer to above are
coefficientsz,, »,, andz,,, for convenience, we will con- those of the symmetry breaking minima in threfield direc-
sider them all with the same value, which is consistent withtion, o= +M, ¢=0, and the inflationary one, which are
the recent findings in Ref21], or the calculations in Ref. attractors of field trajectories in phase space. The method we
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000 ——F——7T 7T T T T 7 i T i T j T i T T T T T
5.8% 4
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-0.005 fi ]I} 1Y - .
I 52 ..
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FIG. 2. An enlargement of the initial time evolution of the tra-
jectories shown in Fig. 1. FIG. 3. The fractal dimension as a function of dissipation, from

the box-counting method applied to a box in phase space centered
employ to determine the fractal dimension is the box-around the initial conditions used in Fig. 1.
counting method which is a standard method for determining ) ) ) ]
the fractal dimension of boundari§g4]. Its definition and corresponding here td=6, minus the uncertainty coeffi-

the specific numerical implementation we use here have beg€nte (which gives a measure of how chaotic the system is
described in detail in Ref29]. [29]), f4=6— €. The results obtained by increasing the value

The basic procedure is as follows. Given a set of initialof the dissipation coefficient,} while keeping the same
conditionsx, at t=t,, which lead to a certain outcome for initial condition used apove_, around_whllch the perturbations
the trajectory in phase space, we perturb them by an amou@f€ taken, are shown in Fig. 3. This figure shows that the
8 and study whether there will be a change of outcome foSyStém quickly changes to a nonchaot|c4behaV|or_for a dissi-
the trajectory or notwhether the perturbation will lead to a Pation coefficient around 7;~3.1X10"". For this and
different attractor or not Given a volume region in phase higher valu_es of the dlSSlpatlon_ all trajectories are inflation-
space around a boundary between different attractors arRly Ones withN¢>60. At that point we then have the break-
perturbing a large set of initial conditions inside that region,down of the fractal structure of the boundary between infla-
the fraction of uncertain trajectoriel(s) that result in a tionary and noninflationary trajectories. The boundary
different outcome under a small perturbation can be showRecomes smooth and we can reliably predict that the initial
to scale with the perturbatiod as[24] f(8)~ ¢, wheree is conditions will evolve towar_d_the mflaﬂpngry region.
called the uncertainty exponent. The box-counting dimension N order to study the efficiency of dissipation in driving
of the boundary in phase space separating different attradoninflationary trajector_|_es toward the inflationary region,
tors, or fractal dimensiorfy, is given by[24] fy=d—e, which is characterized bg>0, we show in Fig. 4 the results
where d denotes the dimension of the phase space. For #r the number ok-folds of inflation as a function of dissi-
fractal boundaryf ;>d— 1, implying thate<1, whereas for pation for an initial trajectory that in the absence of dissipa-
a nonfractal boundar§y=d—1, ande=1. tion would be a noninflationary one. The particular initial

Following the method of box counting we thus consider aconditions we take purposefully correspond to fields well
box in phase spacéor the dimensionless variablesf size ~ below the Planck scal¢g=3.5M, =M, and nonvanishing
10"°, around the initial conditions used in Figs. 1 and 2,field derivatives ¢=2.5x10"2M?2 and o=5X10"*M?2,
inside which a large number of random points are tak®n which in the absence of dissipation would be quickly driven
total of 100000 random points were used in each).ri to one of the minima of the potentigand therefore corre-
initial conditions are then numerically evolved by using ansponding to a noninflationary behavioWe see that above
eighth-order Runge-Kutta integration method and the fractabome value of dissipation coefficienis~1 the number of
dimension is obtained by statistically studying the outcomee-folds of inflation increases fast for a rather small increase
of each initial condition for each run of the large set of of dissipation. We then clearly see using the set of initial
points. Special care is taken to keep the statistical error in theonditions above how dissipation acts in turning noninfla-
results always below-1%. From these numerical simula- tionary trajetories into inflationary ones, shifting the system
tions we obtain for the zero dissipative regime of Fig. 1 thedeep into the inflationary region as dissipation is increased.
result for the fractal dimensiofy=5.80+0.05. This corre- The radiation energy density in this case, as in the previous
sponds to the dimension of the dynamical system(BZd.4  one, is taken initially as zero and always remains smaller
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300 - . - - : and the field that triggers the end of inflation. Dissipation is
taken as being present throughout the system’s evolution. In
the absence of dissipation the dynamical system is shown to

250 - be highly chaotic by means of the measure of the fractal
dimension. The fractal dimension gives a coordinate invari-
200 - ant measure for chaos and therefore is an appropriate way to
quantify chaos in cosmology.
Ne For a given initial condition that evolves to an inflationary
150 |- region, if we vary it by a small perturbation we completely
lose track of its final outcome; it may still evolve toward the
100 | inflationary region, characterized by evolution along the val-

ley of local minima of the potential, or it may undergo fast
evolution toward one of the symmetry breaking minima. The
50 | i time evolution of the fields is shown to be highly oscillatory
for a very long time, which eventually changes the inflation-
j ary trajectories to noninflationary ones. This is the main
0_31724 ' 0_91'726 ' 0_91'728 T 0.91730 char_agt_eristic ir! _the evolution_of the fiel_ds and gives rise to
the initial condition problem in hybrid inflatiotand to a
{ﬂ} lesser degree in any inflationary moddihe long oscillatory
behavior of the fields is highly chaotic. By measuring the
magnitude of chaos in the system we can then infer the se-
verity of the initial condition problem.
However, by changing the magnitude of dissipation, |
_ ) _ have shown that the highly chaotic evolution of the system,
than the vacuum energy density during the whole evolutionyjth ynstable inflationary trajectories, can change quickly to
of the inflaton. In particular, for the values of dissipation 5 nonchaotic, stable one, where all trajectories eventually
coefficients we have studied here, after a fefolds of in-  gyolve toward the inflationary region. Dissipation acts by
flation the radiation energy density is a negligible fraction of 43 mping the initial oscillatory behavior of the fields and thus
the vacuum energy density, and right before the end of inflagyaking it possible to provide a solution for the initial condi-
tion the radiation energy densnyljls a tiny fraction of the tion problem. | have shown that this solution can be obtained
vacuum energy density, /p,~10""". A detailed treatment it relatively very small dissipation of the initial inflaton
of the radiation liberated to the medium and its eventuabmp"tude, with rates of conversion of vacuum energy to
translation to a temperature depends of course on how thggiation as small as 10~ 4 Here dissipation works in two
radiation thermalization raté',q, which is determined by \yays By damping the fluctuations associated with the fields
the microscopic physics, compares to the expansionHate copled to the inflaton, the fine-tuning problem associated
Itis also useful to compare the regimes of field dissipationyith hybrid inflation models is avoided, and at the same time
corresponding, for instance, to the ones studied in Fig. 3 anf pecomes possible for initial inflationary trajectories to en-

Fig. 4.and .thelr relation to the warm .|nflat|on scenario. Inter faster in to the inflationary regiofcharacterized bya
warm inflation[15,20 we are usually interested in the re-
>0) and stay there longer.

gime of strong dissipation in the effective equation of motlon The method used here to study the initial condition prob-

for the inflaton, as compared with the expansion tet3 e can also be easily extented to include other variants of
From Eq. (2.4) dissipation is dominated by the term the hyprid inflation model, for example, in the context of
md*p=n(¢)p. From the values of parameters and initial supersymmetric motivated potentials, where more than one
conditions used in Fig. 3 we find thaH3»(¢)~5 for the  field is coupled to the inflaton. The additional equations of
largest value of dissipation studied, while for the parametersnotions will also generically be dissipative equations and the
and initial conditions used in Fig. 4 we have that/3;(¢) same changes of behavior due to dissipation observed here
~0.008 and we are therefore deep in the regime of warnare also expected to appear in these more complicated mod-
inflation. We can easily see then that the warm inflation kindels.
of model does not seem to suffer from the initial condition There have been previous studies on chaos in hybrid in-
problem seen in standard hybrid inflation models. In particuflation modeld 30—37, but these studies concentrated on the
lar, for the parameters used in Fig. 3, for values of dissipareheating period after the inflationary phase. In that context,
tion =0.0015, we enter into the warm inflation regime andthe effect of dissipation, which would be inherently present
the system has become nonchaotic well before, with stabla the field equations during this period also, has been ne-
inflationary trajectories. glected. It would be interesting to investigate the effect of
dissipation in those cases also, and its role, for example, in
the phenomenon of parametric resonance during preheating
in hybrid inflation modeld33,34). We are currently investi-

| have examined a dynamical system describing hybridyating this and other applications and we expect to report on
inflation in the presence of dissipation for both the inflatonthem soon.

FIG. 4. The total number ad-folds of inflation as a function of
dissipation for the initial conditions @t=0: ¢=3.5M, o=M, ¢
=2.5x102M?, ¢=5%10"*M?, andp,(t=0)=0.

IV. CONCLUSIONS
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