46 research outputs found

    Echolocation-related reversal of information flow in a cortical vocalization network

    Get PDF
    The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model

    Transcranial alternating current stimulation (tACS) at 40 Hz enhances face and object perception

    Get PDF
    Neurophysiological evidence suggests that face and object recognition relies on the coordinated activity of neural populations (i.e., neural oscillations) in the gamma-band range (> 30 Hz) over the occipito-temporal cortex. To test the causal effect of gamma-band oscillations on face and object perception we applied transcranial Alternating Current Stimulation (tACS) in healthy volunteers (N = 60). In this single-blind, sham-controlled study, we examined whether the administration of offline tACS at gamma-frequency (40 Hz) over the right occipital cortex enhances performance of perception and memory of face and object stimuli. We hypothesized that gamma tACS would enhance the perception of both categories of visual stimuli. Results, in line with our hypothesis, show that 40 Hz tACS enhanced both face and object perception. This effect is process-specific (i.e., it does not affect memory), frequency-specific (i.e., stimulation at 5 Hz did not cause any behavioural change), and site-specific (i.e., stimulation of the sensory-motor cortex did not affect performance). Our findings show that high-frequency tACS modulates human visual perception, and it is in line with neurophysiological studies showing that the perception of visual stimuli (i.e., faces and objects) is mediated by oscillations in the gamma-band range. Furthermore, this study adds insight about the design of effective neuromodulation protocols that might have implications for interventions in clinical settings

    Inconsistent effects of parietal α-tACS on Pseudoneglect across two experiments:A failed internal replication

    Get PDF
    Transcranial electrical stimulation (tES) is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two “inhibitory” tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each) with a montage targeting right parietal cortex (right parietal–left frontal, electrode-sizes: 3cm × 3cm–7 cm × 5 cm), while performing a perceptual line bisection (landmark) task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control). In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS) (expected to entrain “inhibitory” alpha oscillations) and to cathodal transcranial direct current stimulation (c-tDCS) (shown to suppress neuronal spiking activity). In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham). However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice

    A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement

    Get PDF
    Background: Low intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation (tACS or tDCS), applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional magnetic resonance imaging (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. Objective: To develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency, and reproducibility (ContES Checklist). Methods: A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists (EP) through the International Network of the tES-fMRI (INTF) Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC based on a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed using the checklist. Results: Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (1) technological factors, (2) safety and noise tests, and (3) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. Conclusions: Use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies, and increase methodological transparency and reproducibility

    Matlab Code

    No full text

    tACS modulates auditory entrainment

    No full text

    Example Data

    No full text

    Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation

    No full text
    Brain oscillations are regarded as important for perception as they open and close time windows for neural spiking to enable the effective communication within and across brain regions. In the past, studies on perception primarily relied on the use of electrophysiological techniques for probing a correlative link between brain oscillations and perception. The emergence of noninvasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) provides the possibility to study the causal contribution of specific oscillatory frequencies to perception. Here, we review the studies on visual, auditory, and somatosensory perception that employed tACS to probe the causality of brain oscillations for perception. The current literature is consistent with a causal role of alpha and gamma oscillations in parieto-occipital regions for visual perception and theta and gamma oscillations in auditory cortices for auditory perception. In addition, the sensory gating by alpha oscillations applies not only to the visual but also to the somatosensory domain. We conclude that albeit more refined perceptual paradigms and individualized stimulation practices remain to be systematically adopted, tACS is a promising tool for establishing a causal link between neural oscillations and perception

    Reliability of neural entrainment in the human auditory system

    No full text
    Auditory stimuli are often rhythmic in nature. Brain activity synchronizes with auditory rhythms via neural entrainment, and entrainment seems to be beneficial for auditory perception. However, it is not clear to what extent neural entrainment in the auditory system is reliable over time, which is a necessary prerequisite for targeted intervention. The current study aimed to establish the reliability of neural entrainment over time and to predict individual differences in auditory perception from associated neural activity. Across two different sessions, human listeners (21 females, 17 males) detected silent gaps presented at different phase locations of a 2 Hz frequency-modulated (FM) noise while EEG activity was recorded. As expected, neural activity was entrained by the 2 Hz FM noise. Moreover, gap detection was sinusoidally modulated by the phase of the 2 Hz FM into which the gap fell. Critically, both the strength of neural entrainment as well as the modulation of performance by the stimulus rhythm were highly reliable over sessions. Moreover, gap detection was predictable from pregap neural 2 Hz phase and alpha amplitude. Our results demonstrate that neural entrainment in the auditory system and the resulting behavioral modulation are reliable over time, and both entrained delta and nonentrained alpha oscillatory activity contribute to near-threshold stimulus perception. The latter suggests that improving auditory perception might require simultaneously targeting entrained brain rhythms as well as the alpha rhythm.Version of record published February 2, 2022
    corecore