143 research outputs found

    Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution

    Get PDF
    Cognitive control during conflict monitoring, error processing, and post-error adjustment appear to be associated with the occurrence of midfrontal theta (MFϴ). While this association is supported by correlational EEG studies, much less is known about the possible causal link between MFϴ and error and conflict processing. In the present study, we aimed to explore the role of band-specific effects in modulating the error system during a conflict resolution. In turn, we delivered transcranial alternating current stimulation (tACS) at different frequency bands (delta δ, theta θ, alpha α, beta β, gamma γ) and sham stimulation over the medial frontal cortex (MFC) in 36 healthy participants performing a modified version of the Flanker task. Task performance and reports about the sensations (e.g. visual flickering, cutaneous burning) induced by the different frequency bands, were also recorded. We found that online θ-tACS increased the response speed to congruent stimuli after error execution with respect to sham stimulation. Importantly, the accuracy following the errors did not decrease because of speed-accuracy trade off. Moreover, tACS evoked visual and somatosensory sensations were significantly stronger at α-tACS and β-tACS compared to other frequencies. Our findings suggest that theta activity plays a causative role in modulating behavioural adjustments during perceptual choices in a stimulus-response conflict task. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Lt

    Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective.

    Full text link
    Podeu consultar l'article comentat a: https://doi.org/10.3389/fnagi.2015.00107A commentary on: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective

    Primary motor cortex functionally contributes to language comprehension: An online rTMS study

    Get PDF
    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200 ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words – an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension

    Cortico-Cortical Connectivity between Right Parietal and Bilateral Primary Motor Cortices during Imagined and Observed Actions: A Combined TMS/tDCS Study

    Get PDF
    Previous transcranial magnetic stimulation (TMS) studies showed functional connections between the parietal cortex (PC) and the primary motor cortex (M1) during tasks of different reaching-to-grasp movements. Here, we tested whether the same network is involved in cognitive processes such as imagined or observed actions. Single pulse TMS of the right and left M1 during rest and during a motor imagery and an action observation task (i.e., an index–thumb pinch grip in both cases) was used to measure corticospinal excitability changes before and after conditioning of the right PC by 10 min of cathodal, anodal, or sham transcranial direct current stimulation (tDCS). Corticospinal excitability was indexed by the size of motor-evoked potentials (MEPs) from the contralateral first dorsal interosseous (FDI; target) and abductor digiti minimi muscle (control) muscles. Results showed selective ipsilateral effects on the M1 excitability, exclusively for motor imagery processes: anodal tDCS enhanced the MEPs’ size from the FDI muscle, whereas cathodal tDCS decreased it. Only cathodal tDCS impacted corticospinal facilitation induced by action observation. Sham stimulation was always uneffective. These results suggest that motor imagery, differently from action observation, is sustained by a strictly ipsilateral parieto-motor cortex circuits. Results might have implication for neuromodulatory rehabilitative purposes

    Individual and sex-related differences in pain and relief responsiveness are associated with differences in resting-state functional networks in healthy volunteers

    Get PDF
    Pain processing is associated with neural activity in a number of widespread brain regions. Here, we investigated whether functional connectivity at rest between these brain regions is associated with individual and sex-related differences in thermal pain and relief responsiveness. Twenty healthy volunteers (ten females) were scanned with functional magnetic resonance imaging in resting conditions. Half an hour after scanning, we administered thermal pain on the back of their right hand and collected pain and relief ratings in two separate runs of twelve stimuli each. Across the whole group, mean pain ratings were associated with decreased connectivity at rest between brain regions belonging to the default mode and the visual resting-state network. In men, pain measures correlated with increased connectivity within the visual resting-state network. In women, in contrast, decreased connectivity between this network and parietal and prefrontal brain regions implicated in affective cognitive control were associated with both pain and relief ratings. Our findings indicate that the well documented individual variability and sex differences in pain sensitivity may be explained, at least in part, by network dynamics at rest in these brain regions

    No Effect of the Right Posterior Parietal Cortex tDCS in Dual-Target Visual Search

    Get PDF
    “Subsequent search misses” represent a decrease in accuracy at detecting a second target in a visual search task. In this study, we tested the possibility to modulate this effect via inhibition of the right posterior parietal cortex trough transcranial direct current stimulation (tDCS). The target stimuli were T-shapes presented among L-shaped distractors. The participant’s task was to detect targets or to report their absence. For each trial, targets could be represented by one high-salient target, one low-salient target, two different targets (one high salient and one low salient), two high salient targets, two low salient targets, or no targets at all (catch-trials). Offline tDCS was applied over the right (target site) or left (control site) posterior parietal cortex. Sham stimulation over the right posterior parietal cortex was included as a control (placebo). Stimulation lasted for 10 min. Afterward, participants were asked to perform the experiment. Our findings suggest that stimulation did not modulate any of the task conditions, suggesting potential limitation of the study: either tDCS was not enough powerful to modulate the task performance or the task was too easy to be modulated by stimulation

    A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) on episodic memory

    Get PDF
    Background: In the past decade, several studies have examined the effects of transcranial direct current stimulation (tDCS) on long-term episodic memory formation and retrieval. These studies yielded conflicting results, likely due to differences in stimulation parameters, experimental design and outcome measures. Objectives: In this work we aimed to assess the robustness of tDCS effects on long-term episodic memory using a meta-analytical approach. Methods: We conducted four meta-analyses to analyse the effects of anodal and cathodal tDCS on memory accuracy and response times. We also used a moderator analysis to examine whether the size of tDCS effects varied as a function of specific stimulation parameters and experimental conditions. Results: Although all selected studies reported a significant effect of tDCS in at least one condition in the published paper, the results of the four meta-analyses showed only statistically non-significant close-to-zero effects. A moderator analysis suggested that for anodal tDCS, the duration of the stimulation and the task used to probe memory moderated the effectiveness of tDCS. For cathodal tDCS, site of stimulation was a significant moderator, although this result was based on few observations. Conclusions: To warrant theoretical advancement and practical implications, more rigorous research is needed to fully understand whether tDCS reliably modulates episodic memory, and the specific circumstances under which this modulation does, and does not, occur

    Examining the effects of transcranial direct current stimulation on human episodic memory with machine learning

    Get PDF
    We aimed to replicate a published effect of transcranial direct-current stimulation (tDCS)-induced recognition enhancement over the human ventrolateral prefrontal cortex (VLPFC) and analyse the data with machine learning. We investigated effects over an adjacent region, the dorsolateral prefrontal cortex (DLPFC). In total, we analyzed data from 97 participants after exclusions. We found weak or absent effects over the VLPFC and DLPFC. We conducted machine learning studies to examine the effects of semantic and phonetic features on memorization, which revealed no effect of VLPFC tDCS on the original dataset or the current data. The highest contributing factor to memory performance was individual differences in memory not explained by word features, tDCS group, or sample size, while semantic, phonetic, and orthographic word characteristics did not contribute significantly. To our knowledge, this is the first tDCS study to investigate cognitive effects with machine learning, and future studies may benefit from studying physiological as well as cognitive effects with data-driven approaches and computational models

    Online and offline effects of transcranial alternating current stimulation of the primary motor cortex

    Get PDF
    Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations
    • …
    corecore