2,875 research outputs found
Two semi-Lagrangian fast methods for Hamilton-Jacobi-Bellman equations
In this paper we apply the Fast Iterative Method (FIM) for solving general
Hamilton-Jacobi-Bellman (HJB) equations and we compare the results with an
accelerated version of the Fast Sweeping Method (FSM). We find that FIM can be
indeed used to solve HJB equations with no relevant modifications with respect
to the original algorithm proposed for the eikonal equation, and that it
overcomes FSM in many cases. Observing the evolution of the active list of
nodes for FIM, we recover another numerical validation of the arguments
recently discussed in [Cacace et al., SISC 36 (2014), A570-A587] about the
impossibility of creating local single-pass methods for HJB equations
Professional breastfeeding support for first-time mothers: a multicentre cluster randomised controlled trial
Conference Theme: Translating Health Research into Policy and Practice for Health of the PopulationPoster Presentations: Delivery of Health Servicespublished_or_final_versio
Professional breastfeeding support for first-time mothers: a multicentre cluster randomised controlled trial
Objective To evaluate the effect of two postnatal professional support interventions on the duration of any and exclusive breastfeeding. Design Multicentre, three-arm, cluster randomised controlled trial. Population A cohort of 722 primiparous breastfeeding mothers with uncomplicated, full-term pregnancies. Methods The three study interventions were: (1) standard postnatal maternity care; (2) standard care plus three in-hospital professional breastfeeding support sessions, of 30–45 minutes in duration; or (2) standard care plus weekly post-discharge breastfeeding telephone support, of 20–30 minutes in duration, for 4 weeks. The interventions were delivered by four trained research nurses, who were either highly experienced registered midwives or certified lactation consultants. Main outcome measures Prevalence of any and exclusive breastfeeding at 1, 2, and 3 months postpartum. Results Rates of any and exclusive breastfeeding were higher among participants in the two intervention groups at all follow-up points, when compared with those who received standard care. Participants receiving telephone support were significantly more likely to continue any breastfeeding at 1 month (76.2 versus 67.3%; odds ratio, OR 1.63, 95% confidence interval, 95% CI 1.10–2.41) and at 2 months (58.6 versus 48.9%; OR 1.48, 95% CI 1.04–2.10), and to be exclusively breastfeeding at 1 month (28.4 versus 16.9%; OR 1.89, 95% CI 1.24–2.90). Participants in the in-hospital support group were also more likely to be breastfeeding at all time points, but the effect was not statistically significant. Conclusions Professional breastfeeding telephone support provided early in the postnatal period, and continued for the first month postpartum, improves breastfeeding duration among first-time mothers. It is also possible that it was the continuing nature of the support that increased the effectiveness of the intervention, rather than the delivery of the support by telephone specifically.postprin
Knocking down 10-formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement
[[incitationindex]]SC
Scalp acupuncture for acute ischemic stroke: a meta-analysis of randomized controlled trials
Scalp acupuncture (SA) is a commonly used therapeutic approach for stroke throughout China and elsewhere in the world. The objective of this study was to assess clinical efficacy and safety of SA for acute ischemic stroke. A systematical literature search of 6 databases was conducted to identify randomized controlled trials (RCTs) of SA for acute ischemic stroke compared with western conventional medicines (WCMs). All statistical analyses were performed by the Rev Man Version 5.0. Eight studies with 538 participants were included in the studies. The studies were deemed to have an unclear risk of bias based on the Cochrane Back Review Group. Compared with the WCM, 6 RCTs showed significant effects of SA for improving neurological deficit scores (P < 0.01); 4 RCTs showed significant effects of SA for favoring the clinical effective rate (P < 0.01) However, the adverse events have not been documented. In conclusion, SA appears to be able to improve neurological deficit score and the clinical effective rate when compared with WCM, though the beneficial effect from SA is possibly overvalued because of generally low methodology of the included trials. No evidence is available for adverse effects. Rigorous well-designed clinical trials are needed.published_or_final_versio
Microbial fuel cells: a green and alternative source for bioenergy production
Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)
Emergence of scale-free close-knit friendship structure in online social networks
Despite the structural properties of online social networks have attracted
much attention, the properties of the close-knit friendship structures remain
an important question. Here, we mainly focus on how these mesoscale structures
are affected by the local and global structural properties. Analyzing the data
of four large-scale online social networks reveals several common structural
properties. It is found that not only the local structures given by the
indegree, outdegree, and reciprocal degree distributions follow a similar
scaling behavior, the mesoscale structures represented by the distributions of
close-knit friendship structures also exhibit a similar scaling law. The degree
correlation is very weak over a wide range of the degrees. We propose a simple
directed network model that captures the observed properties. The model
incorporates two mechanisms: reciprocation and preferential attachment. Through
rate equation analysis of our model, the local-scale and mesoscale structural
properties are derived. In the local-scale, the same scaling behavior of
indegree and outdegree distributions stems from indegree and outdegree of nodes
both growing as the same function of the introduction time, and the reciprocal
degree distribution also shows the same power-law due to the linear
relationship between the reciprocal degree and in/outdegree of nodes. In the
mesoscale, the distributions of four closed triples representing close-knit
friendship structures are found to exhibit identical power-laws, a behavior
attributed to the negligible degree correlations. Intriguingly, all the
power-law exponents of the distributions in the local-scale and mesoscale
depend only on one global parameter -- the mean in/outdegree, while both the
mean in/outdegree and the reciprocity together determine the ratio of the
reciprocal degree of a node to its in/outdegree.Comment: 48 pages, 34 figure
Structure–property relation and relevance of beam theories for microtubules: a coupled molecular and continuum mechanics study
Quasi-one-dimensional microtubules (MTs) in cells enjoy high axial rigidity but large transverse flexibility due to the inter-protofilament (PF) sliding. This study aims to explore the structure–property relation for MTs and examine the relevance of the beam theories to their unique features. A molecular structural mechanics (MSM) model was used to identify the origin of the inter-PF sliding and its role in bending and vibration of MTs. The beam models were then fitted to the MSM to reveal how they cope with the distinct mechanical responses induced by the inter-PF sliding. Clear evidence showed that the inter-PF sliding is due to the soft inter-PF bonds and leads to the length-dependent bending stiffness. The Euler beam theory is found to adequately describe MT deformation when the inter-PF sliding is largely prohibited. Nevertheless, neither shear deformation nor the nonlocal effect considered in the ‘more accurate’ beam theories can fully capture the effect of the inter-PF sliding. This reflects the distinct deformation mechanisms between an MT and its equivalent continuous body
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
