391 research outputs found
Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays
A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV
The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
Measurement of the Λb0, Ξb-, and Ωb- Baryon Masses
Bottom baryons decaying to a J/ψ meson and a hyperon are reconstructed using 1.0 fb-1 of data collected in 2011 with the LHCb detector. Significant Λb0→J/ψΛ, Ξb-→J/ψΞ- and Ωb-→J/ψΩ- signals are observed and the corresponding masses are measured to be M(Λb0)=5619.53±0.13(stat.)±0.45(syst.) MeV/c2, M(Ξb-)=5795.8±0.9(stat.)±0.4(syst.) MeV/c2, M(Ωb-)=6046.0±2.2(stat.)±0.5(syst.) MeV/c2, while the differences with respect to the Λb0 mass are M(Ξb-)-M(Λb0)=176.2±0.9(stat.)±0.1(syst.) MeV/c2, M(Ωb-)-M(Λb0)=426.4±2.2(stat.)±0.4(syst.) MeV/c2. These are the most precise mass measurements of the Λb0, Ξb- and Ωb- baryons to date. Averaging the above Λb0 mass measurement with that published by LHCb using 35 pb-1 of data collected in 2010 yields M(Λb0)=5619.44±0.13(stat.)±0.38(syst.) MeV/c2
First Measurement of the Charge Asymmetry in Beauty-Quark Pair Production
The difference in the angular distributions between beauty quarks and antiquarks, referred to as the charge asymmetry, is measured for the first time in b (b) over bar pair production at a hadron collider. The data used correspond to an integrated luminosity of 1.0 fb(-1) collected at 7 TeV center-of-mass energy in proton-proton collisions with the LHCb detector. The measurement is performed in three regions of the invariant mass of the b (b) over bar system. The results obtained are A(C)(b (b) over bar) (40 10(5) GeV/c(2)) = 1.6 +/- 1.7 +/- 0.6%,where A(C)(b (b) over bar) is defined as the asymmetry in the difference in rapidity between jets formed from the beauty quark and antiquark, where in each case the first uncertainty is statistical and the second systematic. The beauty jets are required to satisfy 2 20 GeV, and have an opening angle in the transverse plane Delta phi > 2.6 rad. These measurements are consistent with the predictions of the standard model
Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+
Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses
The first observation of the decays
B
0
(
s
)
→
J
/
ψ
p
¯
p
is reported, using proton-proton collision data corresponding to an integrated luminosity of
5.2
fb
−
1
, collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are
B
(
B
0
→
J
/
ψ
p
¯
p
)
=
[
4.51
±
0.40
(
stat
)
±
0.44
(
syst
)
]
×
10
−
7
,
B
(
B
0
s
→
J
/
ψ
p
¯
p
)
=
[
3.58
±
0.19
(
stat
)
±
0.39
(
syst
)
]
×
10
−
6
. For the
B
0
s
meson, the result is much higher than the expected value of
O
(
10
−
9
)
. The small available phase space in these decays also allows for the most precise single measurement of both the
B
0
mass as
5279.74
±
0.30
(
stat
)
±
0.10
(
syst
)
MeV
and the
B
0
s
mass as
5366.85
±
0.19
(
stat
)
±
0.13
(
syst
)
MeV
Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV
The inclusive production asymmetry is measured in collisions
collected by the LHCb experiment at centre-of-mass energies of
and 8 TeV. Promptly produced mesons are used, which decay as
, with . The measurement is
performed in bins of transverse momentum, , and rapidity, ,
covering the range GeV and . No kinematic
dependence is observed. Evidence of nonzero production asymmetry is
found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm
Measurement of the B0s →J/ψη lifetime
Using a data set corresponding to an integrated luminosity of 3 fb−1, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψη decay mode, τeff, is measured to be
τeff=1.479±0.034 (stat)±0.011 (syst) ps. Assuming CP conservation, τeff corresponds to the lifetime of the light Bs0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode
Observation of B+c → D0K+ decays
Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb−1, recorded by
the LHCb detector at center-of-mass energies of 7 and 8 TeV, the B+
c → D0K+ decay is observed with a
statistical significance of 5.1 standard deviations. By normalizing to B+ → D¯ 0π+ decays, a measurement of
the branching fraction multiplied by the production rates for B+
c relative to B+ mesons in the LHCb
acceptance is obtained, R
D
0
K
=
(
f
c
/
f
u
)
×
B
(
B
+
c
→
D
0
K
+
)
=
(
9.
3
+
2.8
−
2.5
±
0.6
)
×
10
−
7, where the first
uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly
through weak annihilation and penguin amplitudes, and is the first B+
c decay of this nature to be observed
- …