21 research outputs found

    Microtubules as Platforms for Assaying Actin Polymerization In Vivo

    Get PDF
    The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process

    Dicing with dogma: de-branching the lamellipodium

    Get PDF
    The primary event in the movement of a migrating eukaryotic cell is the extension of cytoplasmic sheets termed lamellipodia composed of networks of actin filaments. Lamellipodia networks are thought to arise through the branching of new filaments from the sides of old filaments, producing a dendritic array. Recent studies by electron tomography have revealed the three dimensional organization of lamellipodia and show, contrary to previous evidence, that actin filaments do not form dendritic arrays in vivo. These findings signal a reconsideration of the structural basis of protrusion and about the roles of the different actin nucleating and elongating complexes involved in the process

    Modeling of Protrusion Phenotypes Driven by the Actin-Membrane Interaction

    Get PDF
    We propose a mathematical model for simulating the leading-edge dynamics of a migrating cell from the interplay among elastic properties, architecture of the actin cytoskeleton, and the mechanics of the membrane. Our approach is based on the description of the length and attachment dynamics of actin filaments in the lamellipodium network. It is used to determine the total force exerted on the membrane at each position along the leading edge and at each time step. The model reproduces the marked state switches in protrusion morphodynamics found experimentally between epithelial cells in control conditions and cells expressing constitutively active Rac, a signaling molecule involved in the regulation of lamellipodium network assembly. The model also suggests a mechanistic explanation of experimental distortions in protrusion morphodynamics induced by deregulation of Arp2/3 and cofilin activity
    corecore