248 research outputs found

    Seebeck Effect in Magnetic Tunnel Junctions

    Full text link
    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, i.e., the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In that respect, it is the analog to the tunneling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configuration are in the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. Experimentally, we realized 8.8 % magneto-Seebeck effect, which results from a voltage change of about -8.7 {\mu}V/K from the antiparallel to the parallel direction close to the predicted value of -12.1 {\mu}V/K.Comment: 16 pages, 7 figures, 2 table

    Acoustic spin pumping as the origin of the long-range spin Seebeck effect

    Full text link
    The spin Seebeck effect (SSE) is known as the generation of 'spin voltage' in a magnet as a result of a temperature gradient. Spin voltage stands for the potential for spins, which drives a spin current. The SSE is of crucial importance in spintronics and energy-conversion technology, since it enables simple and versatile generation of spin currents from heat. The SSE has been observed in a variety of materials ranging from magnetic metals and semiconductors to magnetic insulators. However, the mechanism, the long-range nature, of the SSE in metals is still to be clarified. Here we found that, using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate, the long-range spin voltage induced by the SSE in magnetic metals is due to phonons. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is direct evidence that the SSE is attributed to the coupling of spins and phonons. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding opens the door to "acoustic spintronics" in which phonons are exploited for constructing spin-based devices.Comment: 18 pages, 6 figure

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Cooling and heating with electron spins: Observation of the spin Peltier effect

    Get PDF
    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. Connecting two materials with different Peltier coefficients causes a net heat flow towards or away from the interface, resulting in cooling or heating at the interface - the Peltier effect. Spintronics describes the transport of charge and angular momentum by making use of separate spin-up and spin-down channels. Recently, the merger of thermoelectricity with spintronics has given rise to a novel and rich research field named spin caloritronics. Here, we report the first direct experimental observation of refrigeration/heating driven by a spin current, a new spin thermoelectric effect which we call the spin Peltier effect. The heat flow is generated by the spin dependency of the Peltier coefficient inside the ferromagnetic material. We explored the effect in a specifically designed spin valve pillar structure by measuring the temperature using an electrically isolated thermocouple. The difference in heat flow between the two magnetic configurations leads to a change in temperature. With the help of 3-D finite element modeling, we extracted permalloy spin Peltier coefficients in the range of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and provide new functionality for future spintronic devices

    Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers

    Get PDF
    The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devicesopen4

    Giant thermoelectric effect in Al2O3 magnetic tunnel junctions

    Full text link
    Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report on giant magnetothermoelectric effect in Al2O3 magnetic tunnel junctions. The thermovoltage in this geometry can reach 1 mV. Moreover a magneto-thermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.Comment: 9 pages, 7 figures, added reference

    Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX 2 (X = S, Se and Te)

    Get PDF
    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore