264 research outputs found
The narrative self, distributed memory, and evocative objects
In this article, I outline various ways in which artifacts are interwoven with autobiographical memory systems and conceptualize what this implies for the self. I first sketch the narrative approach to the self, arguing that who we are as persons is essentially our (unfolding) life story, which, in turn, determines our present beliefs and desires, but also directs our future goals and actions. I then argue that our autobiographical memory is partly anchored in our embodied interactions with an ecology of artifacts in our environment. Lifelogs, photos, videos, journals, diaries, souvenirs, jewelry, books, works of art, and many other meaningful objects trigger and sometimes constitute emotionally-laden autobiographical memories. Autobiographical memory is thus distributed across embodied agents and various environmental structures. To defend this claim, I draw on and integrate distributed cognition theory and empirical research in human-technology interaction. Based on this, I conclude that the self is neither defined by psychological states realized by the brain nor by biological states realized by the organism, but should be seen as a distributed and relational construct
Response of bone turnover markers to raloxifene treatment in postmenopausal women with osteopenia.
Introduction: The change in bone turnover markers (BTM) in response to osteoporosis therapy can be assessed by a decrease beyond the least significant change (LSC) or below the mean of the reference interval (RI). We compared the performance of these two approaches in women treated with raloxifene. Methods: Fifty postmenopausal osteopenic women, (age 51-72y) were randomised to raloxifene or no treatment for 2 years. Blood samples were collected for the measurement of BTM. The LSC for each marker was calculated from the untreated women and the RI obtained from healthy premenopausal women (age 35-40y). Bone mineral density (BMD) was measured at the spine and hip. Results: There was a decrease in BTM in response to raloxifene treatment; percentage change at 12 weeks, CTX -39% (95% CI -48 to -28) and PINP -32% (95% CI -40 to -23) P<0.001. The proportion of women classified as responding to treatment using LSC at 12 weeks was: CTX 38%, PINP 52%, at 48 weeks CTX 60%, PINP 65%. For the RI approach; at 12 weeks CTX and PINP 38%, at 48 weeks CTX 40%, PINP 45%. There was a significant difference in the change in spine BMD in the raloxifene treated group compared to the no-treatment group at week 48; difference 0.031 g/cm2, (95% CI 0.016 to 0.046, P<0.001). Conclusions: The two approaches identified women that reached the target for treatment using BTM. Both LSC and RI criteria appear useful in identifying treatment response but the two approaches do not fully overlap and may be complementary
Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature
Imaging techniques are the standard method for assessment of fracture healing processes. However, these methods are perhaps not entirely reliable for early detection of complications, the most frequent of these being delayed union and non-union. A prompt diagnosis of such disorders could prevent prolonged patient distress and disability. Efforts should be directed towards the development of new technologies for improving accuracy in diagnosing complications following bone fractures. The variation in the levels of bone turnover markers (BTMs) have been assessed with regard to there ability to predict impaired fracture healing at an early stage, nevertheless the conclusions of some studies are not consensual. In this article the authors have revised the potential of BTMs as early predictors of prognosis in adult patients presenting traumatic bone fractures but who did not suffer from osteopenia or postmenopausal osteoporosis. The available information from the different studies performed in this field was systematized in order to highlight the most promising BTMs for the assessment of fracture healing outcome.As técnicas imagiológicas são o método convencional para a avaliação dos processos de cicatrização das fraturas. No entanto, estes métodos não são talvez totalmente confiáveis para a deteção precoce de complicações, as mais frequentes destas sendo o atraso da união e a não-união. Um diagnóstico eficaz destas desordens poderia prevenir a dor e a incapacidade prolongada do paciente. Esforços devem ser dirigidos no sentido do desenvolvimento de novas tecnologias para melhorar a exatidão no diagnóstico de complicações após fraturas ósseas. A variação nos níveis dos marcadores do turnover ósseo (BTMs) têm sido avaliados com vista à sua capacidade para prever o comprometimento da cicatrização das fraturas numa fase inicial, no entanto, as conclusões de alguns estudos não são consensuais. Neste artigo os autores fizeram uma revisão do potencial dos BTMs como fatores de previsibilidade precoce do prognóstico em doentes adultos que apresentavam fraturas ósseas traumáticas mas que não sofriam de osteopenia ou osteoporose pós-menopausa. A informação disponível nos diferentes estudos realizados neste campo foi sistematizada com vista a evidenciar-se os BTMs mais promissores para a avaliação da evolução da cicatrização das fraturas.SFRH/BD/45018/200
Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability.
To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID-associated genes using targeted next-generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss-of-function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%-15% yield from array CGH alone.Action Medical Research (SP4640); the Birth Defect Foundation (RG45448); the Cambridge National Institute for Health Research Biomedical Research Centre (RG64219); the NIHR Rare Diseases BioResource (RBAG163); Wellcome Trust award WT091310; The Cell lines and DNA bank of Rett Syndrome, X-linked mental retardation and other genetic diseases (member of the Telethon Network of Genetic Biobanks (project no. GTB12001); the Genetic Origins of Congenital Heart Disease Study (GO-CHD)- funded by British Heart Foundation (BHF)This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/humu.2290
Stepwise and independent origins of roots among land plants
Roots are one of the three fundamental organ systems of vascular plants1, where they play roles in anchorage, symbiosis, nutrient and water uptake2–4. However, the fragmentary nature of the fossil record obscures their origins and makes it difficult to identify the sole defining characteristic of extant roots – the presence of self-renewing structures called root meristems covered by a root cap at their apex1–9. Here we report the discovery of the oldest meristems of rooting axes preserved in the 407 million year old Rhynie chert, the earliest preserved terrestrial ecosystem10. These meristems, of the lycopsid Asteroxylon mackiei11–14, lacked root caps and instead developed a continuous epidermis over the surface of the meristem. A. mackiei rooting axes and meristems are therefore unique among vascular plants. These data support the hypothesis that roots, as defined in extant vascular plants by the presence of a root cap7, were a late innovation in the vascular lineage. Roots therefore acquired traits in a stepwise fashion. The relatively late origin of roots with caps in lycophytes is consistent with the hypothesis that roots evolved multiple times2, rather than having a single origin1, and the extensive similarities between lycophyte and euphyllophyte roots15–18 therefore represent examples of convergent evolution. The key phylogenetic position of A. mackiei, with its transitional rooting organ, between early diverging land plants that lacked roots and the derived plants that developed roots, demonstrates how roots were “assembled” during the course of plant evolution
Adherence and profile of non-persistence in patients treated for osteoporosis—a large-scale, long-term retrospective study in The Netherlands
We analyzed 12-month compliance for all ten oral osteoporosis drugs in the Netherlands by medication possession ratio (MPR a parts per thousand yenaEuro parts per thousand 80%) in 105,506 patients, and persistence in 8,626 starters indicated high MPR (91%), low persistence (43%), and no restart in 78% of the stoppers after 18 months. We studied compliance and persistence for all available oral osteoporosis medications on a national scale in the Netherlands. We analyzed the IMS Health's longitudinal prescription database, which represents 73% of all pharmacies in the Netherlands. Twelve-month compliance was measured by medication possession ratio (MPR) in a cross-sectional cohort of 105,506 patients who received at least three prescriptions. Twelve-month persistence (no gap in refills for > 6 months) was measured in all 8,626 consecutive patients starting therapy, with a further follow-up in non-persistent patients during an additional 18 months for evaluation of switching, restart, or definitive stopping oral medication. Multivariate logistic regression analysis was used to analyze the odds ratios (ORs) with 95% confidence intervals (CI) of characteristics of non-persistence. MPR of a parts per thousand yen80% was found in 91% of patients. Persistence was 43% (range, 29-52%). Persistence was related to age > 60 years (ORs, 1.41 to 1.64), pharmacy outside very dense urban area (ORs, 1.39 to 1.44), additional use of calcium and/or vitamin D supplementation (OR, 1.26 and CI, 1.13, 1.39) and use of glucocorticoids (OR, 0.65 and CI, 0.59, 0.72) or cardiovascular medication (OR, 0.88 and CI, 0.79, 0.97). Of non-persistent patients, 22% restarted within 18 months with oral osteoporosis drugs. One-year compliance for all available oral osteoporosis medications was high, but 1-year persistence was low. Most stoppers did not restart or switch during an additional 18-month follow-up. These data indicate a major failure to adequately treat patients at high risk for fractures in daily practice.Amgen provided funds to IMS for data analysis. The preparation of this article was not supported by external funding. J.C. Netelenbos and P.P. Geusens have no conflict of interest, including specific financial interest and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript. Buijs and Ypma are employees of IMS Health
Oral bisphosphonate compliance and persistence: a matter of choice?
Compliance to oral bisphosphonates is suboptimal, with negative consequences of increased healthcare utilization and less effective fracture risk reduction. Extending dose interval increased adherence only moderately. We used literature derived from multiple chronic conditions to examine the problem of noncompliance with osteoporosis medication. We reviewed the literature on adherence to osteoporosis medication as well as that across multiple chronic conditions to understand what is known about the cause of the poor adherence. Poor compliance to oral medications is due mostly, not to forgetfulness, but to deliberate choice. Gender differences and style of healthcare management also play a role. Preliminary data suggest psychobehavioral interventions may help to improve motivation. We need to understand better reasons for poor compliance before effective interventions can be developed. Forgetfulness is only a small part of poor compliance. Patient preferences must be considered in medication decision making
Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)
ABSTRACT: BACKGROUND: Skeletal uptake of 99mTc labelled methylene diphosphonate (99mTc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99mTc-MDP. METHODS: 22 postmenopausal women (52-80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99mTc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). RESULTS: The median TSU of 99mTc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. CONCLUSION: In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99mTc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption
TRAF-6 Dependent Signaling Pathway Is Essential for TNF-Related Apoptosis-Inducing Ligand (TRAIL) Induces Osteoclast Differentiation
Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. Recent evidence indicates that in addition to triggering apoptosis, the TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. To understand TRAIL-mediated signal transduction mechanism in osteoclastogenesis, we demonstrated that TRAIL induces osteoclast differentiation via a Tumor necrosis factor receptor-associated factor 6 (TRAF-6)-dependent signaling pathway. TRAIL-induced osteoclast differentiation was significantly inhibited by treatment with TRAF-6 siRNA and TRAF6 decoy peptides in both human monocytes and murine RAW264.7 macrophage cell lines, as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Moreover, TRAIL-induced osteoclast differentiation was also abolished in TRAF6 knockout bone marrow macrophages. In addition to induction of NFATc1, treatment of TRAIL also induced ubiquitination of TRAF6 in osteoclast differentiation. Thus, our data demonstrate that TRAIL induces osteoclastic differentiation via a TRAF-6 dependent signaling pathway. This study suggests TRAF6-dependent signaling may be a central pathway in osteoclast differentiation, and that TNF superfamily molecules other than RANKL may modify RANK signaling by interaction with TRAF6-associated signaling
Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy
FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein
- …
