99 research outputs found

    Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces

    Get PDF
    The key to obtaining the model-free description of the dynamics of a macromolecule is the optimisation of the model-free and Brownian rotational diffusion parameters using the collected R1, R2 and steady-state NOE relaxation data. The problem of optimising the chi-squared value is often assumed to be trivial, however, the long chain of dependencies required for its calculation complicates the model-free chi-squared space. Convolutions are induced by the Lorentzian form of the spectral density functions, the linear recombinations of certain spectral density values to obtain the relaxation rates, the calculation of the NOE using the ratio of two of these rates, and finally the quadratic form of the chi-squared equation itself. Two major topological features of the model-free space complicate optimisation. The first is a long, shallow valley which commences at infinite correlation times and gradually approaches the minimum. The most severe convolution occurs for motions on two timescales in which the minimum is often located at the end of a long, deep, curved tunnel or multidimensional valley through the space. A large number of optimisation algorithms will be investigated and their performance compared to determine which techniques are suitable for use in model-free analysis. Local optimisation algorithms will be shown to be sufficient for minimisation not only within the model-free space but also for the minimisation of the Brownian rotational diffusion tensor. In addition the performance of the programs Modelfree and Dasha are investigated. A number of model-free optimisation failures were identified: the inability to slide along the limits, the singular matrix failure of the Levenberg–Marquardt minimisation algorithm, the low precision of both programs, and a bug in Modelfree. Significantly, the singular matrix failure of the Levenberg–Marquardt algorithm occurs when internal correlation times are undefined and is greatly amplified in model-free analysis by both the grid search and constraint algorithms. The program relax (http://www.nmr-relax.com) is also presented as a new software package designed for the analysis of macromolecular dynamics through the use of NMR relaxation data and which alleviates all of the problems inherent within model-free analysis

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Compensatory Evolution of pbp Mutations Restores the Fitness Cost Imposed by β-Lactam Resistance in Streptococcus pneumoniae

    Get PDF
    The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae

    Colorectal carcinomas in MUTYH-associated polyposis display histopathological similarities to microsatellite unstable carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MUTYH-associated polyposis (MAP) is a recessively inherited disorder which predisposes biallelic carriers for a high risk of polyposis and colorectal carcinoma (CRC). Since about one third of the biallelic MAP patients in population based CRC series has no adenomas, this study aimed to identify specific clinicopathological characteristics of MAP CRCs and compare these with reported data on sporadic and Lynch CRCs.</p> <p>Methods</p> <p>From 44 MAP patients who developed ≥ 1 CRCs, 42 of 58 tumours were analyzed histologically and 35 immunohistochemically for p53 and beta-catenin. Cell densities of CD3, CD8, CD57, and granzyme B positive lymphocytes were determined. <it>KRAS2</it>, the mutation cluster region (MCR) of <it>APC, p53</it>, and <it>SMAD4 </it>were analyzed for somatic mutations.</p> <p>Results</p> <p>MAP CRCs frequently localized to the proximal colon (69%, 40/58), were mucinous in 21% (9/42), and had a conspicuous Crohn's like infiltrate reaction in 33% (13/40); all of these parameters occurred at a higher rate than reported for sporadic CRCs. Tumour infiltrating lymphocytes (TILs) were also highly prevalent in MAP CRCs. Somatic <it>APC </it>MCR mutations occurred in 14% (5/36) while 64% (23/36) had <it>KRAS2 </it>mutations (22/23 c.34G>T). G>T tranversions were found in <it>p53 </it>and <it>SMAD4</it>, although the relative frequency compared to other mutations was low.</p> <p>Conclusion</p> <p>MAP CRCs show some similarities to micro-satellite unstable cancers, with a preferential proximal location, a high rate of mucinous histotype and increased presence of TILs. These features should direct the practicing pathologist towards a MAP aetiology of CRC as an alternative for a mismatch repair deficient cause. High frequent G>T transversions in <it>APC </it>and <it>KRAS2 </it>(mutated in early tumour development) but not in <it>P53 </it>and <it>SMAD4 </it>(implicated in tumour progression) might indicate a predominant MUTYH effect in <it>early </it>carcinogenesis.</p

    A High-Resolution View of Genome-Wide Pneumococcal Transformation

    Get PDF
    Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10−4 bp−1. This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore