314 research outputs found

    Testing for a change in persistence in the presence of non-stationary volatility

    Full text link
    In this paper we consider tests for the null of (trend-) stationarity against the alternative of a change in persistence at some (known or unknown) point in the observed sample, either from I(0) to I(1) behaviour or vice versa, of, inter alia, (Kim, J., 2000. Detection of change in persistence of a linear time series. Journal of Econometrics 95, 97–116). We show that in circumstances where the innovation process displays non-stationary unconditional volatility of a very general form, which includes single and multiple volatility breaks as special cases, the ratio-based statistics used to test for persistence change do not have pivotal limiting null distributions. Numerical evidence suggests that this can cause severe over-sizing in the tests. In practice it may therefore be hard to discriminate between persistence change processes and processes with constant persistence but which display time-varying unconditional volatility. We solve the identified inference problem by proposing wild bootstrap-based implementations of the tests. Monte Carlo evidence suggests that the bootstrap tests perform well in finite samples. An empirical illustration using US price inflation data is provided

    Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility

    Get PDF
    A number of recently published papers have focused on the problem of testing for a unit root inthe case where the driving shocks may be unconditionally heteroskedastic. These papers have,however, assumed that the lag length in the unit root test regression is a deterministic functionof the sample size, rather than data-determined, the latter being standard empirical practice. Inthis paper we investigate the finite sample impact of unconditional heteroskedasticity onconventional data-dependent methods of lag selection in augmented Dickey-Fuller type unit roottest regressions and propose new lag selection criteria which allow for the presence ofheteroskedasticity in the shocks. We show that standard lag selection methods show a tendency toover-fit the lag order under heteroskedasticity, which results in significant power losses in the(wild bootstrap implementation of the) augmented Dickey-Fuller tests under the alternative. Thenew lag selection criteria we propose are shown to avoid this problem yet deliver unit root testswith almost identical finite sample size and power properties as the corresponding tests based onconventional lag selection methods when the shocks are homoskedastic.econometrics;

    Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility

    Get PDF
    A number of recently published papers have focused on the problem of testing for a unit root in the case where the driving shocks may be unconditionally heteroskedastic. These papers have, however, assumed that the lag length in the unit root test regression is a deterministic function of the sample size, rather than data-determined, the latter being standard empirical practice. In this paper we investigate the finite sample impact of unconditional heteroskedasticity on conventional data-dependent methods of lag selection in augmented Dickey-Fuller type unit root test regressions and propose new lag selection criteria which allow for the presence of heteroskedasticity in the shocks. We show that standard lag selection methods show a tendency to over-fit the lag order under heteroskedasticity, which results in significant power losses in the (wild bootstrap implementation of the) augmented Dickey-Fuller tests under the alternative. The new lag selection criteria we propose are shown to avoid this problem yet deliver unit roots with almost identical finite sample size and power properties as the corresponding tests based on conventional lag selection methods when the shocks are homoskedastic.Unit root test, Lag selection, Information criteria, Wild bootstrap, Nonstationary volatility

    Bootstrap determination of the co-integration rank in VAR models

    Get PDF
    This paper discusses a consistent bootstrap implementation of the likelihood ratio [LR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates of the underlying VAR model which obtain under the reduced rank null hypothesis. A full asymptotic theory is provided which shows that, unlike the bootstrap procedure in Swensen (2006) where a combination of unrestricted and restricted estimates from the VAR model is used, the resulting bootstrap data are I(1) and satisfy the null co-integration rank, regardless of the true rank. This ensures that the bootstrap LR test is asymptotically correctly sized and that the probability that the bootstrap sequential procedure selects a rank smaller than the true rank converges to zero. Monte Carlo evidence suggests that our bootstrap procedures work very well in practice

    Wild bootstrap of the mean in the infinite variance case

    Get PDF
    It is well known that the standard i.i.d. bootstrap of the mean is inconsistent in a location model with infinite variance (alfa-stable) innovations. This occurs because the bootstrap distribution of a normalised sum of infinite variance random variables tends to a random distribution. Consistent bootstrap algorithms based on subsampling methods have been proposed but have the drawback that they deliver much wider confidence sets than those generated by the i.i.d. bootstrap owing to the fact that they eliminate the dependence of the bootstrap distribution on the sample extremes. In this paper we propose sufficient conditions that allow a simple modification of the bootstrap (Wu, 1986, Ann.Stat.) to be consistent (in a conditional sense) yet to also reproduce the narrower confidence sets of the i.i.d. bootstrap. Numerical results demonstrate that our proposed bootstrap method works very well in practice delivering coverage rates very close to the nominal level and significantly narrower confidence sets than other consistent methods

    Bootstrap determination of the co-integration rank in VAR models

    Get PDF
    This paper discusses a consistent bootstrap implementation of the likelihood ratio [LR] co-integration rank test and associated sequential rank determination procedure of Johansen (1996). The bootstrap samples are constructed using the restricted parameter estimates of the underlying VAR model which obtain under the reduced rank null hypothesis. A full asymptotic theory is provided which shows that, unlike the bootstrap procedure in Swensen (2006) where a combination of unrestricted and restricted estimates from the VAR model is used, the resulting bootstrap data are I(1) and satisfy the null co-integration rank, regardless of the true rank. This ensures that the bootstrap LR test is asymptotically correctly sized and that the probability that the bootstrap sequential procedure selects a rank smaller than the true rank converges to zero. Monte Carlo evidence suggests that our bootstrap procedures work very well in practice

    Testing for unit roots under multiple possible trend breaks and non-stationary volatility using bootstrap minimum Dickey-Fuller statistics

    Get PDF
    In a recent paper, Harvey et al. (2013) [HLT] propose a new unit root test that allows for the possibility of multiple breaks in trend. Their proposed test is based on the infimum of the sequence (across all candidate break points) of local GLS detrended augmented Dickey-Fuller-type statistics. HLT show that the power of their unit root test is robust to the magnitude of any trend breaks. In contrast, HLT show that the power of the only alternative available procedure of Carrion-i-Silvestre et al. (2009), which employs a pre-test-based approach, can be very low indeed (even zero) for the magnitudes of trend breaks typically observed in practice. Both HLT and Carrion-i-Silvestre et al. (2009) base their approaches on the assumption of homoskedastic shocks. In this paper we analyse the impact of non-stationary volatility (for example single and multiple abrupt variance breaks, smooth transition variance breaks, and trending variances) on the tests proposed in HLT. We show that the limiting null distribution of the HLT unit root test statistic is not pivotal under non- stationary volatility. A solution to the problem, which does not require the practitioner to specify a parametric model for volatility, is provided using the wild bootstrap and is shown to perform well in practice. A number of dfferent possible implementations of the bootstrap algorithm are discussed

    Inference on co-integration parameters in heteroskedastic vector autoregressions

    Get PDF
    We consider estimation and hypothesis testing on the coefficients of the co-integrating relations and the adjustment coefficients in vector autoregressions driven by shocks which display both conditional and unconditional heteroskedasticity of a quite general and unknown form. We show that the conventional results in Johansen (1996) for the maximum likelihood estimators and associated likelihood ratio tests derived under homoskedasticity do not in general hold under heteroskedasticity. As a result, standard confidence intervals and hypothesis tests on these coefficients are potentially unreliable. Solutions based on Wald tests (using a “sandwich” estimator of the variance matrix) and on the use of the wild bootstrap are discussed. These do not require the practitioner to specify a parametric model for volatility. We establish the conditions under which these methods are asymptotically valid. A Monte Carlo simulation study demonstrates that significant improvements in finite sample size can be obtained by the bootstrap over the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments. An application to the term structure of interest rates in the US illustrates the difference between standard and bootstrap inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients

    Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form

    Get PDF
    We consider the problem of conducting estimation and inference on the parameters of univariate heteroskedastic fractionally integrated time series models. We first extend existing results in the literature, developed for conditional sum-of-squares estimators in the context of parametric fractional time series models driven by conditionally homoskedastic shocks, to allow for conditional and unconditional heteroskedasticity both of a quite general and unknown form. Global consistency and asymptotic normality are shown to still obtain; however, the covariance matrix of the limiting distribution of the estimator now depends on nuisance parameters derived both from the weak dependence and heteroskedasticity present in the shocks. We then investigate classical methods of inference based on the Wald, likelihood ratio and Lagrange multiplier tests for linear hypotheses on either or both of the long and short memory parameters of the model. The limiting null distributions of these test statistics are shown to be non-pivotal under heteroskedasticity, while that of a robust Wald statistic (based around a sandwich estimator of the variance) is pivotal. We show that wild bootstrap implementations of the tests deliver asymptotically pivotal inference under the null. We demonstrate the consistency and asymptotic normality of the bootstrap estimators, and further establish the global consistency of the asymptotic and bootstrap tests under fixed alternatives. Monte Carlo simulations highlight significant improvements in finite sample behavior using the bootstrap in both heteroskedastic and homoskedastic environments. Our theoretical developments and Monte Carlo simulations include two bootstrap algorithms which are based on model estimates obtained either under the null hypothesis or unrestrictedly. Our simulation results suggest that the former is preferable to the latter, displaying superior size control yet largely comparable power

    Testing for parameter instability in predictive regression models

    Get PDF
    We consider tests for structural change, based on the SupF and Cramer-von-Mises type statistics of Andrews (1993) and Nyblom (1989), respectively, in the slope and/or intercept parameters of a predictive regression model where the predictors display strong persistence. The SupF type tests are motivated by alternatives where the parameters display a small number of breaks at deterministic points in the sample, while the Cramer-von-Mises alternative is one where the coefficients are random and slowly evolve through time. In order to allow for an unknown degree of persistence in the predictors, and for both conditional and unconditional heteroskedasticity in the data, we implement the tests using a fixed regressor wild bootstrap procedure. The asymptotic validity of the bootstrap tests is established by showing that the asymptotic distributions of the bootstrap parameter constancy statistics, conditional on the data, coincide with those of the asymptotic null distributions of the corresponding statistics computed on the original data, conditional on the predictors. Monte Carlo simulations suggest that the bootstrap parameter stability tests work well in finite samples, with the tests based on the Cramer-von-Mises type principle seemingly the most useful in practice. An empirical application to U.S. stock returns data demonstrates the practical usefulness of these methods
    corecore