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a b s t r a c t

We consider tests for structural change, based on the SupF and Cramer–von-Mises type statistics of
Andrews (1993) and Nyblom (1989), respectively, in the slope and/or intercept parameters of a predictive
regression model where the predictors display strong persistence. The SupF type tests are motivated
by alternatives where the parameters display a small number of breaks at deterministic points in the
sample, while the Cramer–von-Mises alternative is one where the coefficients are random and slowly
evolve through time. In order to allow for an unknown degree of persistence in the predictors, and
for both conditional and unconditional heteroskedasticity in the data, we implement the tests using a
fixed regressor wild bootstrap procedure. The asymptotic validity of the bootstrap tests is established by
showing that the asymptotic distributions of the bootstrap parameter constancy statistics, conditional
on the data, coincide with those of the asymptotic null distributions of the corresponding statistics
computed on the original data, conditional on the predictors. Monte Carlo simulations suggest that the
bootstrap parameter stability tests work well in finite samples, with the tests based on the Cramer–von-
Mises principle seemingly the most useful in practice. An empirical application to U.S. stock returns data
demonstrates the practical usefulness of these methods.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Predictive regression (hereafter PR) is a widely used tool in ap-
plied finance and economics. A leading example concerns whether
future stock returns can be predicted by current information. In
this context PR methods have been extensively utilised in studies
of mutual fund performance, tests of the conditional CAPM and
studies of optimal asset allocation; see Paye and Timmermann
(2006, pp. 274–275) and references therein. Predictors commonly
considered for returns include the dividend yield, the term struc-
ture of interest rates, and default premia. It is often found that the
posited predictor (e.g. the dividend yield) exhibits strongly persis-
tent behaviour akin to that of a (near-) unit root autoregressive
process, whilst the variable being predicted (e.g. the stock return)
resembles a (near-) martingale difference sequence [m.d.s.].

Predictability tests which are asymptotically valid when the
putative predictor is strongly persistent and driven by innovations
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which are correlated with the series being predicted (the latter is
often thought to be the case; e.g., the stock price is a component
of both the return and the dividend yield) have been proposed in
Cavanagh et al. (1995), Campbell and Yogo (2006), Kostakis et al.
(2015), Breitung and Demetrescu (2015), Elliott et al. (2015) and
Jansson and Moreira (2006), inter alia. These approaches are all
based on themaintained assumption that the coefficients of the PR
model are constant over time. There is, however, a growing body
of empirical evidence casting doubt on this assumption. Henkel et
al. (2011), for example, find that return predictability in the stock
market appears to be closely linked to economic recessions with
dividend yield and term structure variables displaying predictive
power only during recessions. Johannes et al. (2014) find strong
empirical evidence of time-variation in the parameters of PRs for
returns, including evidence of non-constant volatility. Timmer-
mann (2008) argues that for most time periods stock returns are
not predictable but that there are ‘pockets in time’ where evidence
of local predictability is seen. Paye and Timmermann (2006) also
cite a number of applied studies which find significant evidence of
in-sample (ex post) predictability in returns data but yet find very
weak evidence of out-of-sample (ex ante) predictability, and argue
that a possible explanation is structural instability in the predictive
relations involved.

Paye and Timmermann (2006) use a variety of well-known
structural change tests designed against abrupt (deterministic)
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changes in a model’s parameters to investigate the structural
stability of PRs for stock returns related to structural breaks in
the coefficients of state variables (including the lagged dividend
yield, short interest rate, term spread and default premium) for
a data-set of monthly stock returns for ten OECD countries. They
find evidence of instability for the vast majority of these coun-
tries, arguing that the ‘‘Empirical evidence of predictability is not
uniform over time and is concentrated in certain periods’’. op.cit.
p. 312. They also present simulation evidence into the size and
power of the structural change tests they consider for the case
where the predictors involved are I(0) and a one-time break is
allowed in the coefficient on a single predictor, and conclude in
favour of the approach of Bai and Perron (1998, 2003). A significant
drawback of applying the Bai and Perron approach to the PRmodel,
however, is that it is not asymptotically valid in cases where the
predictive variables are (near-) unit root processes. Moreover, as
argued by Cai et al. (2015, p. 954) and the references therein, its
focus on models of abrupt deterministic coefficient change might
be considered unattractive in practice relative to tests designed
for the case where the parameters of the PR are random and
evolve smoothly over time. Indeed, using Bayesianmodel selection
and averaging methods, Dangl and Halling (2012) conclude that
time-variation in the coefficients of return prediction models is
very important with a randomwalk coefficients model performing
best in practice, quickly adapting to changes in environment. They
also find evidence suggestive that predictability is linked to the
business cycle. The Bai and Perron approach also requires that the
variables in the PR do not display unconditional heteroskedasticity
which would again appear to considerably limit their applicability
for financial data; see, e.g., Johannes et al. (2014).

Our aim here is to address these shortcomings and develop
structural change tests that can bemore reasonably applied to em-
pirically testing the constancy of the intercept and slope parame-
ters in a PRmodel driven by heteroskedastic innovations. In earlier
work, Georgiev et al. (2018) [GHLT hereafter], we investigated a
variant of the stationarity test of Kwiatkowski et al. (1992) [KPSS]
in the context of the PR model. This is a test of the instability
of the regression intercept and can be viewed as a test against
the alternative that the error in the PR model follows a near-unit
root process. As such, GHLT interpret this as a test for spurious
predictability. The present paper extends the work in GHLT to
cover tests on all or a subset of the parameters of the PR model,
not just the intercept, thereby allowing us to also investigate the
constancy or otherwise of the slope parameter on the predictive
regressor.

In the light of the arguments above, we consider parameter
constancy tests based on the SupF type statistics of Andrews (1993)
and the Cramer–von-Mises type statistics of Nyblom (1989). The
former are designed for abrupt deterministic change models and
the latter for (near-) unit root coefficient models. Although orig-
inally developed for asymptotically stationary regressors, Hansen
(1992a) examines the large sample properties of these statistics
for the case of pure unit root regressors, showing how these limits
differ from the asymptotically stationary case. However, in the
context of the PR model we need to go further and allow for the
case where the predictive regressor is a near-unit root process.
Doing so introduces the considerable complication relative to the
case of a pure unit root regressor that the limiting null distributions
of the parameter constancy statistics depend on the local-to-unity
(persistence) parameter of the putative predictor. In principle, this
makes it very difficult to control the size of the tests given that
this parameter is unknown in practice and cannot be consistently
estimated.1

1 Cai et al. (2015) also develop a test against smooth parameter variation in the
parameters of the PR model based on a non-parametric L2-type statistic. However,
their proposed statistic requires the variables in the PR to be homoskedastic. We
therefore do not consider their approach further here.

To resolve this problem we use bootstrap implementations of
the parameter constancy tests which treat the putative predictor
as a fixed regressor; i.e., the observed data on the predictor is used
in calculating the bootstrap analogues of the structural change
statistics. Because, as noted above, many economic and financial
time series are thought to display non-stationary volatility and/or
conditional heteroskedasticity, it is also important for our pro-
posed bootstrap tests to be (asymptotically) robust to these ef-
fects. To achieve this we use a heteroskedasticity-robust variant of
the fixed regressor bootstrap approach proposed in Hansen (2000).
We show that this approach yields asymptotically size-controlled
tests, without requiring knowledge of the local-to-unity parameter
or the form of any heteroskedasticity present, and delivers tests
which are powerful against both forms of coefficient variation con-
sidered. Moreover, the bootstrap tests are also valid when the pre-
dictive regressors are asymptotically stationary or contain amix of
both asymptotically stationary and strongly persistent regressors.
They are also valid for regressors whose marginal distributions
are subject to structural change, meaning that rejection by the
bootstrap tests can be unambiguously interpreted as evidence for
structural instability in the slope coefficients of the PR, evenwhere
the predictors themselves display structural change.

Closely related to this paper, Hansen (2000) also applies the
fixed regressor bootstrap to the Andrews (1993) and Nyblom
(1989) statistics we consider here, and Paye and Timmermann
(2006) include the fixed regressor bootstrap implementation of the
Andrews (1993) test in their simulation study. Although Hansen
(2000) employs assumptions that allow for pure and near-unit root
behaviour in the regressor variables, we demonstrate that his for-
mal analysis needs an amendment. Hansen (2000) justifies boot-
strap validity by claiming equivalence of the limiting distribution
of the bootstrap parameter constancy statistics given the data and
the unconditional limiting distribution of the original test statistics
under the null. We show that this equivalence does not occur; in
particular, the limits of the bootstrap statistics in his Theorems 5
and 6 on page 107 are both imprecisely stated when the predictive
regressors are (near-) unit root processes. We establish that the
fixed regressor bootstrap is nevertheless valid, at least in the PR
set-up we consider, in the sense that the bootstrap parameter
instability tests are asymptotically size-controlled. This is done
by demonstrating that the limiting distributions of the bootstrap
statistics, conditional on the data, are the same as the limiting
null distributions of the corresponding statistics computed on the
original data, conditional on the predictors.

The paper is organised as follows. Section 2 outlines our basic
time-varying parameter PR model. To aid lucidity, we expound
our approach through a single predictor variable whose innova-
tions are serially uncorrelated. Generalisations to allow for mul-
tiple predictors and weak dependence are discussed in Section 6.
Section 3 outlines the structural change statistics and derives
their asymptotic distributions. Section 4 details the fixed regressor
wild bootstrap tests based on these statistics and establishes their
asymptotic validity. The asymptotic local power of the bootstrap
tests is examined in Section 5, while Section 7 presents Monte
Carlo simulation results investigating their finite sample perfor-
mance. An empirical application tomonthly U.S. stock returns data
is presented in Section 8. Section 9 concludes. Proofs appear in
Appendix A. Additional material relating to the limiting distribu-
tions of the statistics given in Section 3 is provided in an accompa-
nying on-line supplementary appendix.

2. The predictive regression model with structural change

The basic PR model allowing for structural change that we
consider for observed yt is given by

yt = αt + βtxt−1 + ϵyt , t = 1, . . . , T (1)
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where ϵyt is a mean zero innovation process and xt is an observed
process, specified according to the data generating process [DGP]

xt = µ + sxt , t = 0, . . . , T (2)

sxt = ρxsxt−1 + ϵxt , t = 1, . . . , T (3)

where ρx := 1 − cxT−1 with cx ≥ 0 such that xt is a strongly
persistent unit root or local-to-unit root autoregressive process
with mean zero innovation process ϵxt . We let sx0 be an Op(1)
variate. Exact conditions on the innovations ϵyt and ϵxt will be given
in Assumption 1 below.

The DGP in (1) generalises the constant parameter PR model
by allowing the intercept and slope coefficients to vary over time.
To nest the constant parameter PR within (1) we formulate the
time-varying intercept and slope coefficients as: αt := (α + asαt )
and βt := (β + bsβt ). The parameter instability tests we discuss
in this paper are, by construction, invariant to the values of α
and β . However, in the context of a time-invariant PR (i.e., αt =

α, βt = β) with near-unit root predictors it is usual to follow
Cavanagh et al. (1995) and parameterise β to be local-to-zero at an
appropriate rate; precisely, β = g∗T−1 where g∗ is some constant.
This entails that under parameter constancy, and when g∗ is non-
zero, yt is a near-m.d.s. process. Where β is fixed, as in Shin (1994),
(1) should rightly be interpreted as a co-integrating regression
because yt will be a (near-) unit root process. However, because
no particular parameterisation is needed for the theoretical results
which follow (only for the PR interpretation of (1)) we do not
directly impose a localisation on β . This is because in the case
where xt is (asymptotically) stationary no such standardisation of
β is needed for a PR interpretation of (1).

In the context of (1) our focus will centre on testing the null
hypotheses that the intercept and slope parameters are constant
over time against the alternative that they vary over time through
the sequences of associated time-varying coefficients, sαt and sβt .
This can be done by testing the restrictions that a = 0 and b = 0
in (1). We will consider two possible mechanisms.

S: Stochastic Coefficient Variation

The first mechanism we consider for time variation in αt and βt in
(1), in the spirit of Nyblom (1989), is one where sαt and sβt follow
(near-) unit root processes. That is,[
sαt
sβt

]
=

[
ρα 0
0 ρβ

][
sαt−1

sβt−1

]
+

[
ϵαt

ϵβt

]
(4)

where ρα := 1 − cαT−1, ρβ := 1 − cβT−1 with cα ≥ 0,
cβ ≥ 0 which are unit root or local-to-unit root autoregressive
processes.2 Precise m.d.s.-based assumptions on the innovations
ϵαt and ϵβt will be given in Assumption 1. The coefficient processes
are initialised at sα0 = sβ0 = 0.

In the context of (4), the PR in (1) reduces to a fixed coefficient
model when a = 0 and b = 0. The intercept alone is random
if a ̸= 0 while b = 0. In this situation, if (1) is treated as a
fixed coefficient regression model, it is then under-specified by an
unobserved (local- to) unit root autoregressive process; this is akin
to the omission of a valid (local- to) unit root predictive regressor,
as studied in GHLT. If a = 0 while b ̸= 0, treating (1) as a fixed
coefficient regression model ignores the fact that the relationship
between yt and the predictive regressor xt−1 is not stable but is
evolving through time. If a ̸= 0 and b ̸= 0, then both forms of
mis-specification are present together when (1) is assumed to be
a fixed coefficient model. In terms of hypothesis testing, then, we
summarise these possibilities via the following taxonomy covering

2 For (1) to be interpreted as a PR the parameter a should, parallelling the
discussion surrounding β above, be localised as a = gαT−1 under (4), otherwise
yt will be a (near-) unit root process.

the null, H0, and various alternatives, HS , in the context of (1) and
(4):

H0 : a = 0, b = 0 both intercept and xt−1 slope coefficient
are fixed

HS
1 : a ̸= 0, b = 0 intercept only varies

HS
x : a = 0, b ̸= 0 xt−1 slope coefficient only varies

HS
1x : a ̸= 0 ∪ b ̸= 0 either the intercept or xt−1

slope coefficient, or both, vary.

N: Non-stochastic Coefficient Variation

The second mechanism we consider for time variation in αt and
βt in (1) follows, among others, Andrews (1993) and is one where
they are subject to abrupt changeswhich occur at a fixed number of
deterministic points in the sample. For simplicity we will expound
our analysis through the case of a one-time break, although the
extension to allow for multiple such breaks is straightforward.
However, where it is thought that multiple breaks are possible, the
stochastic coefficient variation case might be considered a more
natural framework; see also Remark 3 below. In the one-timebreak
case sαt and sβt are modelled as

sαt = sβt = Dt (⌊τ0T⌋) (5)

where Dt (⌊τT⌋) := I(t ≥ ⌊τT⌋) with ⌊τT⌋ denoting a generic shift
point with associated break fraction τ , ⌊·⌋ the integer part of its
argument and I(.) the indicator function. We take the true shift
fraction τ0 as unknown to the practitioner but to satisfy τ0 ∈ Λ,
where Λ = [τL, τU ] with 0 < τL < τU < 1. Here then, at time
⌊τ0T⌋, the intercept changes value from α to α + a; the coefficient
on xt−1 changes value fromβ toβ+b. The corresponding taxonomy
covering the null, H0, and various alternatives, HN , in the context
of (1) and (5) is then:

H0 : a = 0, b = 0 both intercept and xt−1 slope
coefficient are fixed

HN
1 : a ̸= 0, b = 0 intercept only shifts

HN
x : a = 0, b ̸= 0 xt−1 slope coefficient only shifts

HN
1x : a ̸= 0 ∪ b ̸= 0 either the intercept or xt−1 slope

coefficient, or both, shift.

We conclude this section by detailing in Assumption 1 the con-
ditions that we will place on the innovation vector ϵt := [ϵxt ,
ϵyt , ϵαt , ϵβt ]

′ in what follows, noting that only the assumptions
pertaining to the leading two elements of ϵt are germane under
scheme N. Some remarks follow.

Assumption 1. The innovation process ϵt can be written as ϵt =

HDtet where:
(a) H and Dt are the 4 × 4 non-stochastic matrices

H :=

⎡⎢⎢⎣
1 0 0 0
h21 1 0 0
h31 h32 1 0
h41 h42 h43 1

⎤⎥⎥⎦ , Dt :=

⎡⎢⎢⎣
d1t 0 0 0
0 d2t 0 0
0 0 d3t 0
0 0 0 d4t

⎤⎥⎥⎦
with hij ∈ R, (i = 2, 3, 4, j = 1, 2, 3), such that HH ′ is strictly
positive definite. The volatility terms dit satisfy dit = di (t/T ),
where di (·) ∈ D := D1, Dk

:= Dk[0, 1] denoting the space of right
continuous with left limit (càdlàg) Rk-valued functions on [0, 1]
equippedwith the Skorokhod topology, are non-stochastic, strictly
positive functions with

∫ 1
0 d2i (s) = 1, i = 3, 4.

(b) et is a 4 × 1 vector m.d.s. with respect to a filtration Ft ,
to which it is adapted, with conditional covariance matrix σt :=

E(ete′
t |Ft−1) satisfying: (i) T−1∑T

t=1σt
p

→ E(ete′
t ) = I4,

p
→ denoting

convergence in probability as T → ∞, and (ii) suptE∥et∥4+δ
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< ∞ for some δ > 0, where for any vector, x, ∥x∥ denotes the
usual Euclidean norm, ∥x∥ :=

(
x′x
)1/2.

Remark 1. Assumption 1 implies that ϵt is a vector m.d.s. relative
to Ft , with conditional variance matrix Ωt|t−1 := E(ϵtϵ′

t |Ft−1) =

(HDt )σt (HDt )′, and time-varying unconditional variance matrix
Ωt := E

(
ϵtϵ

′
t

)
= (HDt )(HDt )′ > 0.3 Stationary conditional

heteroskedasticity and non-stationary unconditional volatility are
obtained as special cases with di(·) = di, i = 1, 2, 3, 4 (constant
unconditional variance, hence only conditional heteroskedastic-
ity), and σt = I4 (so Ωt|t−1 = Ωt = Ω(t/T ), only unconditional
non-stationary volatility), respectively. Assumption 1(a) implies
that the elements of Ωt are only required to be bounded and
to display a countable number of jumps, therefore allowing for
a wide class of models for the behaviour of the variance matrix
of ϵt (subject to the structure imposed by H), including single or
multiple (co-) variance shifts, variances which follow a broken
trend, and smooth transition variance shifts. Assumption 1(b) co-
incides with the m.d.s. conditions in Assumption 1 of Breitung
and Demetrescu (2015), except that the cross product moment
summability condition given there is not required as we do not
allow ϵxt to be serially correlated at this stage. We will discuss
extensions to allow for this in Section 6.1 where a correspond-
ing condition will be introduced. Deo (2000) provides exam-
ples of commonly used stochastic volatility and generalised
autoregressive-conditional heteroskedasticity (GARCH) processes
that satisfy Assumption 1(b). □

Remark 2. Assumption 1 permits correlation between the ele-
ments of ϵt through the elements hij, i = 2, 3, 4, j = 1, 2, 3, of the
matrixH . In particular, where h21 ̸= 0, then yt and the innovations
driving xt , ϵxt , are correlated. □

Remark 3. Where cα = cβ = 0 such that ρα = ρβ = 1,
Assumption 1 entails that

[
sαt , sβt

]′ in (4) is a martingale of the
form considered in Equation (2.1) of Nyblom (1989, p. 224). This
permits αt and βt to undergo either a deterministic or a random
number of jumps of randommagnitude, with the number of jumps
remaining (on average) a non-vanishing fraction of the sub-sample
size, in every sub-sample. Where the (expected) number of jumps
is lower than the sample size, they occur at random points in the
sample.Where cα > 0, cβ > 0,

[
sαt , sβt

]′ is a near-martingale and
the coefficient processes αt and βt display long runmean reversion
(towards α and β respectively). □

3. Parameter constancy tests

We first outline the structural change statistics that we will
consider for testing parameter constancy in the PR in (1). We will
then establish the large sample properties of these statistics.

3.1. Structural change test statistics

S: Stochastic Coefficient Variation

To test H0 against HS we adopt the LM statistic of Nyblom (1989).
Under certain conditions, including homoskedasticity and the re-
quirement that ρα = ρβ = 1 in (4), then, conditional on xt , this test
statistic has a Locally Best Invariant (LBI) property. For testing H0
against HS

1x, the relevant LM statistic is given by

LM1x :=
1

T σ̂ 2

T∑
i=1

(
i∑

t=1

a′

t êt

)(
T∑

t=1

ata′

t

)−1 ( i∑
t=1

at êt

)
(6)

3 Notice that the assumptions that E(ete′
t ) = I4 made in part (b)i and that the

leading diagonal elements of H are unity involve no loss of generality.

where at := [1 xt−1]′, with σ̂ 2
:= T−1∑T

t=1ê
2
t , with êt the OLS

residual from the fitted regression

yt = α̂ + β̂xt−1 + β̂0∆xt + êt , t = 1, . . . , T . (7)

As in Shin (1994), (7) contains the additional regressor ∆xt , to
account for the possibility of a non-zero correlation between ϵxt
and ϵyt (which occurs when h21 ̸= 0 in Assumption 1). The same
will be needed in the context of the SupF statistics considered
below.

We can also consider the corresponding single parameter LM
statistics. These are given by

LM1 :=
1

T 2σ̂ 2

T∑
i=1

(
i∑

t=1

êt

)2

and

LMx :=
1

(T σ̂ 2
∑T

t=1 x
2
t−1)

T∑
i=1

(
i∑

t=1

xt−1êt

)2

(8)

for the test statistics relating to the intercept alone and to the slope
coefficient alone, respectively. Therefore LM1 is appropriate for
testingHS

1 , while LMx is appropriate for testingHS
x . The LM1 statistic

coincides with the statistic proposed in GHLT.

N: Nonstochastic Coefficient Variation
To test H0 against HN we use the SupF statistic of Andrews (1993).
In a rather general, but asymptotically stationary setting, Andrews
(1993) shows that a test based on this statistic has certain weak
asymptotic local optimality properties against this form of param-
eter variation. For testing H0 against HN

1x in (1) and (5), this statistic
is given by

SupF 1x := sup
τ∈Λ

F (τ ), F (τ ) := T
σ̂ 2

− σ̂ 2(τ )
σ̂ 2(τ )

(9)

with σ̂ 2 defined as above, and σ̂ 2(τ ) := T−1∑T
t=1ê

2
t (τ ), êt (τ ) from

the fitted OLS regression

yt = α̂ + α̂∗Dt (⌊τT⌋) + β̂xt−1 + β̂∗Dt (⌊τT⌋)xt−1

+ β̂0∆xt + êt (τ ), t = 1, . . . , T . (10)

To test against HN
1 , exclude Dt (⌊τT⌋)xt−1 from (10); denote the

resulting statistic by SupF 1. For testing against HN
x , Dt (⌊τT⌋) is

excluded from (10), and we denote this statistic by SupF x.

Remark 4. The LMand SupF statistics are used to test the samenull
hypothesis, H0, but differ in which alternative hypothesis they are
directed towards. Still, as Hansen (1992a, p. 325) points out they
will ‘‘. . . tend to have power in similar directions. . . ’’ The numerical
results reported later in this paper accord with this view. Hansen
argues that, as a result, the choice between the testsmight bemade
on computational grounds and argues that this favours the LM
statistic. He also argues that the purpose of the test is important
and that if one is looking to test against a rapid change in regime
then the SupF statistics would be appropriate, while ‘‘. . . if one is
simply interested in testing whether or not the specified model
is a good model that captures a stable relationship, the notion of
martingale parameters is more appropriate, since it captures the
notion of an unstable model that gradually shifts over time". op.
cit. p. 325. □

3.2. Asymptotic distribution theory

Under Assumption 1, the conditions of Lemma 1 of Boswijk et
al. (2016) are satisfied such that(
T−1/2

⌊T ·⌋∑
t=1

ϵt , T−1
T∑

t=1

t−1∑
s=1

ϵsϵ
′

t

)
w
→

(
Mη(·),

∫ 1

0
Mη(s)dMη(s)′

)
(11)
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where
w
→ denotes weak convergence as T → ∞, and Mη(·) :=

[Mηx (·) ,Mηy (·) ,Mηα (·) ,Mηβ (·)]′ is a Gaussian martingale satis-
fying

⎡⎢⎢⎢⎢⎢⎣
Mηx(·)

Mηy(·)

Mηα (·)

Mηβ (·)

⎤⎥⎥⎥⎥⎥⎦ := H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
·

0
d1(s)dB1(s)∫

·

0
d2(s)dB2(s)∫

·

0
d3(s)dB3(s)∫

·

0
d4(s)dB4(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{∫ 1

0
d21(s)

}1/2

0 0 0

h21

{∫ 1

0
d21(s)

}1/2 {∫ 1

0
d22(s)

}1/2

0 0

h31

{∫ 1

0
d21(s)

}1/2

h32

{∫ 1

0
d22(s)

}1/2

1 0

h41

{∫ 1

0
d21(s)

}1/2

h42

{∫ 1

0
d22(s)

}1/2

h43 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎣
Bη1(·)

Bη2(·)

Bη3(·)

Bη4(·)

⎤⎥⎥⎥⎥⎥⎦

with Bηi(·) := {
∫ 1
0 d2i (s)}

−1/2
∫

·

0 di(s)dBi(s), i = 1, 2, 3, 4, and
[B1 (·) , B2(·), B3(·), B4(·)]′ a standard Brownian motion in R4. We
can also write Bηi(·)

d
= Bi(ηi(·)), i = 1, 2, 3, 4, where ηi(·) denotes

the variance profile ηi(·) := {
∫ 1
0 d2i (s)}

−1
∫

·

0 d
2
i (s)ds, i = 1, 2, 3, 4,

such that Bηi(·) is a variance-transformed Brownian motion; see,
for example, Davidson (1994, p. 484). Under unconditional ho-
moskedasticity, ηi(s) = s.

It will also prove convenient to define the Ornstein–Uhlenbeck
[OU] type processes Bη1,cx (r) :=

∫ r
0 e−(r−s)cxdBη1(s), Mηα,cα (·) :=∫ r

0 e−(r−s)cαdMηα(s) and Mηβ,cβ (·) :=
∫ r
0 e−(r−s)cβ dMηβ (s), for r ∈

[0, 1] , along with Mηx,cx (·) := {
∫ 1
0 d21(s)ds}

1/2Bη1,cx (·) and its de-
meaned analogue, M̄ηx,cx (·) := Mηx,cx (·) −

∫ 1
0 Mηx,cx (s)ds.

In order to examine the asymptotic local power properties of
the tests we discuss we will specify HS and HN as local- to H0
by normalising the parameters a and b to be local-to-zero. The
relevant normalisations are different for a and b and differ accord-
ing to which form of coefficient variability is being considered.
Specifically, under scheme S these are given by a = gαT−1 in HS

1
and HS

1x and b = gβT−3/2 in HS
x and HS

1x, while under scheme N
these are given by a = gαT−1/2 in HN

1 and HN
1x and b = gβT−1 in HN

x
and HN

1x. In each case gα and gβ are fixed Pitman drift constants.
Notice also that in these local settings HS and HN reduce to H0
when gα = gβ = 0. In what follows, reference to these alternative
hypotheses is understood to be made under these localisations,
unless otherwise stated.

We now provide representations for the asymptotic distribu-
tions of the LM and SupF statistics under the local alternatives
stated above. In Theorem 1we do this for LM1x and SupF 1x in terms
of matrix-valued processes. Alternative expressions for these lim-
iting distributions in terms of scalar processes, together with those
for the single parameter LM1, LMx, SupF 1 and SupF x statistics are
provided in the on-line supplement.

Theorem 1. Consider the model in (1)–(3) and let Assumption 1 hold.
Then under the null hypothesis and the local alternatives outlined
above,

LM1x
w
→

∫ 1

0
J′(r){V(1)}−1J(r)dr

SupF 1x
w
→ sup

r∈Λ

(
J(r)′{V (r) − V (r)V(1)−1V (r)}−1J(r)

)
,

where J(r) :=
∫ r
0 A (s) dY (s) − V(r)V(1)−1

∫ 1
0 A (s) dY (s) and V (r)

:=
∫ r
0 A (s)A′ (s) ds with A (r) := [1, M̄ηx,cx (r)]

′ and Y (r) :=

Bη2(r) +

{∫ 1
0 d22(s)ds

}−1/2 ∫ r
0 Q (s)ds. Finally, the process Q (r), r ∈

[0, 1] is defined such that Q (r) := gαMηα,cα (r) + gβMηβ,cβ
(r)Mηx,cx (r) under scheme S, while under scheme N, Q (r) := {gα +

gβMηx,cx (r)}I(r ≥ τ0).

Remark 5. The limit expressions given in Theorem 1 for the LM1x
and SupF 1x statistics can be regarded as statistics of the LM and
SupF type, respectively, in the context of a continuous-time least
squares regression of dY (r) on dr and M̄ηx,cx (r)dr . Under the null
hypothesis of parameter stability, Q (r) = 0 for all r in these rep-
resentations, while under the alternative hypotheses considered,
the presence of parameter instability affects the limit distributions
of both test statistics through the process Q (·) which is a function
of the Pitman drifts, gα and gβ . Although motivated under specific
forms of instability, both statistics can therefore be seen to be
sensitive to both of the considered alternatives. □

Remark 6. The representations in Theorem 1 for the limiting
distributions of LM1x and SupF 1x depend, under both the null,
H0, and the local alternatives considered, on the local-to-unity
parameter, cx, characterising the degree of persistence in xt . For
LM1x this dependence can be seen more clearly in the alternative
representation of its limiting distribution in Corollary S.1 in the
supplement. For SupF 1x, consider for simplicity the benchmark
case of unconditional homoskedasticity in ϵt , and observe first
that the limiting processes J(·), V (·) and Q (·) all depend on cx.
Under H0, for fixed r ∈ Λ, dependence on cx disappears from the
distribution of {V (r) − V (r)V(1)−1V (r)}−1/2J(r) d

= N(0, I2), both
conditionally on {A (s)}s∈[0,1] and unconditionally, because in this
case J(·) conditional on {A (s)}s∈[0,1] is a zero-mean Gaussian pro-
cess with covariance function E{J(r1)J′(r2)|{A (s)}s∈[0,1]} = V (r1) −

V (r1)V(1)−1V (r2) for r1 ≤ r2. It follows that the limiting null
distribution of F (τ ) from (9) under unconditional homoskedastic-
ity is χ2(2) regardless of whether xt−1 is a pure unit root (cx = 0),
a near-unit root (cx > 0), or even an asymptotically stationary
process (see Andrews, 1993 for the latter). However, upon taking
the supremum over r ∈ Λ, the distribution of the resulting
functional SupF 1x conditional on {A (s)}s∈[0,1] depends on all the
conditional covariances of {V (r) − V (r)V(1)−1V (r)}−1/2J(r) and
not just on its trivial conditional variance, and so depends on cx.
This dependence carries over to the unconditional distribution of
SupF 1x. □

Remark 7. It can also be seen from the representations given in
Theorem 1 that the limiting distributions of the structural change
statistics do not depend on any of the elements of the matrix H in
Assumption 1, under either the constant parameter null hypoth-
esis, H0, or the local alternatives involving non-stochastic coeffi-
cient variation N. They do, however, depend on any unconditional
non-stationary volatility present in the innovations through the
variance transformed Brownian motion Bη2(r) and the variance
transformed OU process Mηx,cx (r); that is, from any unconditional
heteroskedasticity present in ϵyt and ϵxt . Where the local alter-
natives pertain to the stochastic coefficient variation scheme S in
(4), these limiting distributions also depend on any unconditional
heteroskedasticity present in ϵαt when gα ̸= 0 and in ϵβt when
gβ ̸= 0, and on the correlation between ϵyt , ϵxt and ϵαt , ϵβt . □

Remark 8. The representations given in Theorem 1 fit with the
generic representations given in Theorem 2 of Hansen (2000).
Hansen (2000, p. 98) gives a set of high-level conditions governing
theweak convergence of the samplemoments of the data and gives
representations for the limiting distributions of the parameter
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constancy statistics under those conditions. Themodel set-upwith
associated assumptions that we consider here is, in the benchmark
case of unconditional homoskedasticity in ϵt and of no correlation
between ϵyt and ϵxt (i.e., h21 = 0), an example which satisfies
Hansen’s conditions and so we would expect our result to accord
with his generic result. This is indeed seen to be so on noting that
the processes V (·) and

∫
·

0 A (s) dY (s) which appear in Theorem 1
coincide with the generic M(·) and N(·) processes, respectively, in
Theorem 2 of Hansen (2000) under the specific conditions of the
benchmark case outlined above. □

Remark 9. Where xt−1 is asymptotically stationary (in the sense
of Definition 1 of Hansen (2000)), and the error term d2te2t
is homoskedastic, the asymptotic null distributions of the LM1x
and SupF 1x statistics are, by Theorem 1 of Hansen (2000), of
the form given in Equation (3.3) of Nyblom (1989, p. 226) and
Theorem 3 of Andrews (1993, p. 838), respectively. More gen-
erally, consider the case where T−1∑⌊T ·⌋

t=1[1, xt−1]
′
[1, xt−1] and

T−1∑⌊T ·⌋

t=1[1, xt−1]
′
[1, xt−1]d22te

2
2t , r ∈ [0, 1], converge in proba-

bility to deterministic processes (say, Ṽ (·) and Ṽη(·), respectively),
which are continuous and, for r > 0, positive definite. Further sup-
pose that T−1/2∑⌊T ·⌋

t=1[1, xt−1]
′d2te2t converges weakly to a zero-

mean Gaussian process (say, J̃0(·)) with independent increments
and variance function Ṽη(·), and let xt−1 be such that the inclusion
of ∆xt in (7) eliminates the effects of h21d1te1t from the residual,
êt . Then the asymptotic null distributions of the LM1x and SupF 1x

statistics are as given in Theorem 1, but with
{∫ 1

0 d22(s)
}−1/2

J̃0
and Ṽ replacing

∫
·

0 AdY and V, respectively.4 The dependence
of these distributions on (among other things) heteroskedasticity
introduced by a general function d2(·) of the form given in Assump-
tion 1 would make the use of a bootstrap approximation desirable
and, by the arguments of Theorems 5 and 6 of Hansen (2000),
the fixed regressor wild bootstrap we outline in Section 4 would
be asymptotically valid. Because in this case the fixed regressor
bootstrap statistics would converge to non-random distributions,
the focus on conditioning which characterises the central results
of this paper for the case of strongly persistent regressors becomes
unnecessary. However, the key point is that the fixed regressor
wild bootstrap implementations of the structural change tests
we consider will be asymptotically valid regardless of whether xt
satisfies the conditions outlined in Section 2 (the proof of which
is given in Section 4.1) or the generic conditions outlined above,
and can therefore be validly used regardless of which of these two
set-ups holds for xt , or, when allowing for multiple predictors (see
Section 6.2), the case where both types are present; indeed, they
are also asymptotically valid in cases where the degree of persis-
tence of the variables in xt changes over the sample. Moreover, as
demonstrated in Theorems 5 and 6 of Hansen (2000), the fixed
regressor bootstrap tests will also be asymptotically valid if the
set of predictors includes regressors whose marginal distributions
are subject to structural change of the form given in Section 4 of
Hansen (2000). □

4. Fixed regressor wild bootstrap tests

As the results in the previous section show, implementing tests
based on the LM and SupF statistics will require us to address
the fact that their limiting null distributions depend on any un-
conditional heteroskedasticity present in ϵxt and ϵyt , and on the
persistence parameter cx. To account for the former we employ
a wild bootstrap procedure based on the residuals êt of the fitted

4 The corresponding limiting distributions under local alternatives can be ob-
tained by appropriately modifying the limiting process Q (·) in Theorem 1.

regression (7), while for the latter we use the observed outcome on
x := [x0, x1, . . . , xT ]′ as a fixed regressor when implementing the
bootstrap procedure.

We now outline our fixed regressor wild bootstrap approach
in Algorithm 1. To aid exposition we do so for the bootstrap tests
based on the LM1x statistic, but it should be entirely clear how the
same approach can be applied to the LM1, LMx, SupF 1x, SupF 1 and
SupF x statistics, with the resulting bootstrap analogues of these
statistics correspondingly denoted by LM∗

1, LM
∗
x , SupF

∗

1x, SupF
∗

1 and
SupF∗

x , respectively.

Algorithm 1 (Fixed Regressor Wild Bootstrap):

(i) Construct the wild bootstrap innovations y∗
t := wt êt , where

wt , t = 1, . . . , T , is an IID N(0, 1) sequence independent of
the data.

(ii) Calculate the fixed regressor wild bootstrap analogue of
LM1x as outlined in Section 3, but with y∗

t in place of yt
and with the regressor ∆xt omitted. Denote the resulting
bootstrap statistic as LM∗

1x.
(iii) Define the corresponding p-value as P∗

T := 1 − G∗

T

(
LM∗

1x

)
,

with G∗

T (·) denoting the conditional (on the original data)
cumulative distribution function (cdf) of LM∗

1x. In practice,
G∗

T (·) will be unknown, but can be simulated in the usual
way.

(iv) The wild bootstrap test of H0 at level ξ rejects if P∗

T ≤ ξ .

Remark 10. Although êt depends on gα and/or gβ unless H0 is true
wewill show in the next subsection that this does not translate into
large sample dependence of LM∗

1x and SupF∗

1x on these parameters.
In the case of developing bootstrap tests based on the SupF 1x,
SupF 1 and SupF x statistics and where it was thought that scheme
N applied then one could also consider replacing êt in step (i) of
Algorithm 1 by the residuals êt (τ̂ ) where τ̂ := arg supτ∈ΛF (τ ).
This would not alter the large sample results which follow and in
Monte Carlo experiments we found almost no difference between
this approach and that outlined in Algorithm 1. □

Remark 11. Notice that in the bootstrap regression in step (ii)
of Algorithm 1 we do not need to include ∆xt as an additional
regressor. This is because the êt used to construct y∗

t are free of
any effects arising from the correlation between ϵxt and ϵyt . Also
observe that we can assume that α = β = 0 with no loss
of generality when generating the bootstrap y∗

t data in step (i)
because of the invariance of the residuals êt to the values of α and
β in (1). □

Remark 12. An alternative approach to account for unconditional
heteroskedasticity in the context of the SupF tests is to replace F (τ )
in (9) with a corresponding robust Wald statistic based around a
heteroskedastic-robust variance estimate; seeWhite (1982). How-
ever, although the marginal limiting null distributions for these
statistics, for a fixed value of τ , do not depend on any uncondi-
tional heteroskedasticity present in ϵxt and ϵyt , the suprema of
the sequences of such statistics taken over all τ ∈ Λ do still
depend, in general, on the heteroskedasticity, and hence a wild
bootstrap would still be needed to obtain asymptotic size control.
The limiting distributions of these sup-Wald statistics differ from
those of the corresponding SupF statistics under both the null and
local alternatives and, as a result, their local power functions do
not coincide. Similarly, one could also consider heteroskedasticity-
corrected versions of the LM statistics, as discussed in Hansen
(1992b), but the limiting distributions for these statistics are also
not invariant to unconditional heteroskedasticity and so again a
wild bootstrap would still be needed. In unreported finite sample
simulations comparing these alternative approaches with those
based on the tests outlined in Section 3, we found neither ap-
proach to dominate the other overall in terms of size and power
performance. □
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4.1. Asymptotic theory for the bootstrap tests

We first show that the limiting behaviour of the bootstrap
statistics LM∗

1x and SupF∗

1x, conditional on the data, cannot be
described in the standard terms ofweak convergence in probability
to a non-randomdistribution. Rather, to formulate a useful asymp-
totic result, a weaker convergence mode and a more general form
of the limit are required. Using the concept of weak convergence of
random measures, we demonstrate that the distributions of LM∗

1x
and SupF∗

1x, given the data, converge to the random distributions
which obtain by conditioning the limiting null distributions given
in Theorem 1 on the weak limit B1 of T−1/2∑⌊T ·⌋

t=1e1t . Second, we
establish that under H0 and a strengthening of Assumption 1,
the distributions of the LM1x and SupF 1x statistics, conditional
on x := [x0, x1, . . . , xT ]′, converge weakly to the same random
distributions referred to above. This result allows us to establish
the asymptotic validity of our bootstrap test. As in GHLT, in order
to proceed we strengthen Assumption 1 as follows:

Assumption 2. Let Assumption 1 hold, together with the following
conditions:

(a) et is drawn from a doubly infinite strictly stationary and
ergodic sequence {et}∞t=−∞

which is a martingale difference w.r.t.
its own past.

(b) {e2:4,t}∞t=−∞
, with e2:4,t := [e2t , e3t , e4t ]′, is an m.d.s. also

w.r.t. X ∨ Ft , where X and Ft are the σ -algebras generated by
{e1s}∞s=−∞

and {e2:4,s}ts=−∞
, respectively, and X ∨ Ft denotes the

smallest σ -algebra containing both X and Ft .
(c) The initial value sx,0 is measurable w.r.t. X (in particular, it

could be a fixed constant).

Remark 13. A detailed discussion of the implications of
Assumption 2 is given in GHLT to which we refer the reader.
Assumption 2 enables us to invoke a conditional (on x) functional
central limit theorem, together with a bootstrap analogue of that
result for T−1/2∑⌊T ·⌋

t=1y
∗
t conditional on all of the data (x and y :=

[y1, . . . , yT ]′). Taken together with further results on conditional
convergence to stochastic integrals adapted from GHLT, these re-
sults allow us to obtain the limiting distributions of the original
statistics LM1x and SupF 1x, conditional on x, together with the
limiting distributions of the corresponding bootstrap LM∗

1x and
SupF∗

1x statistics from Algorithm 1, conditional on the data. These
are now reported in Theorem 2 and underlie the validity of our
bootstrap approach. □

Theorem 2. Consider the model in (1)–(3) and let Assumption 2 hold.
Under the null hypothesis and under the same local alternatives as
were considered in the context of Theorem 1, the following converge
jointly as T → ∞, in the sense of weak convergence of random mea-
sures on R: LM1x| x

w
→

∫ 1
0 J′(r){V(1)}−1J(r)dr

⏐⏐⏐ B1, and LM∗

1x

⏐⏐ x, y
w
→

∫ 1
0 J′0(r){V(1)}

−1J0(r)dr
⏐⏐⏐ B1, where J0(r) :=

∫ r
0 A(s)dY (s), r ∈

[0, 1], with J, V, A and Y defined in Theorem 1. Again in the
sense of weak convergence of random measures on R, the follow-
ing converge jointly as T → ∞: SupF 1x

⏐⏐ x w
→ supr∈Λ

(
J′(r)

{V (r) − V (r)V(1)−1V (r)}−1J(r)
)⏐⏐ B1 and SupF∗

1x

⏐⏐ x, y w
→ supr∈Λ(

J′0(r){V (r) − V (r)V(1)−1V (r)}−1J0(r)
)⏐⏐ B1.

Remark 14. For the precise meaning of joint weak convergence
of random measures, we refer the reader to Appendix A and to
the discussion on this point in section 4.3 of GHLT. The concept
is weaker than weak convergence in probability, although it re-
duces to the latter when the limit distribution is non-random.
Nevertheless, jointweak convergence of randommeasures implies
convergence of the (conditional) distribution functions in a way
that is still sufficient in order to yield consistency of the boot-
strap in the usual p-value sense, as we will subsequently show in
Corollary 1. □

Remark 15. Under the null hypothesis, the process J coincides
with the process J0 whose form is invariant as to which of the
null and local alternatives considered in this paper holds. As a
result, the limiting distributions of the bootstrap statistics are the
same under both the null and local alternatives and, moreover,
coincide with the limiting null distributions, conditional on B1, of
the corresponding original test statistics. □

Remark 16. As discussed in Remark 6, in the case of un-
conditional homoskedasticity, the random variable J′0(r){V (r) −

V (r)V(1)−1V (r)}−1J0(r) conditional on B1 has a χ2(2) distribution
for every fixed r ∈ Λ and, in particular, is independent ofB1. Never-
theless, even in this case, the conditional limiting null distribution
of SupF 1x and SupF∗

1x is genuinely random (non-degenerate). This is
so because the non-contemporaneous autocovariances of {V (r) −

V (r)V(1)−1V (r)}−1/2J0(r) conditional on B1 depend on V, and
thus, onB1 which is random.As a result, upon taking the supremum
over r ∈ Λ, the distribution of the functional obtained, conditional
on B1, still depends on B1 and is, therefore, random. Regarding
LM1x and LM∗

1x, the randomness of their conditional limiting null
distributions is even more obvious because, even for fixed r ∈ Λ,
the distribution of J′0(r){V(1)}

−1J0(r) given B1 is not independent of
B1, as V(1) is not the conditional variance of J0(r). □

Remark 17. With a slight abuse of terminology, we could think
of the random distributional limits of SupF 1x and SupF∗

1x (and
likewise, of LM1x and LM∗

1x) as random draws from a family of dis-
tributions indexed by B1. Such random draws are distinct from the
non-randommixture distribution obtained by averaging the family
of distributions over B1. Since the limit of SupF∗

1x in Theorem 2 is
distinct from this mixture distribution, it follows that the mixture
distribution cannot be a weak limit in probability of SupF∗

1x, be-
cause weak convergence in probability implies convergence to the
same limit also in the mode employed in Theorem 2. Furthermore,
as the limits in Theorem 2 are invariant to the value of h21, and
our unconditionally homoskedastic case with h21 = 0 satisfies
Assumption 2 of Hansen (2000) (see also Example 3 therein), we
can conclude that the part of Theorem6 inHansen (2000) asserting
the weak convergence in probability of Hansen’s counterpart of
SupF∗

1x to the un conditional (and hence, non-random mixture)
null limit distribution of SupF 1x given in Theorem 1, is not correct.
The same error appears in Theorem 3 of Cavaliere and Taylor
(2006, p. 626) who discuss fixed regressor wild bootstrap imple-
mentations of the Shin (1994) tests for the null of co-integration.
Nevertheless, the ultimate claim in Hansen (2000), Corollary 2,
that the bootstrap p-values under H0 are asymptotically uniformly
distributed (and, thus, that the fixed regressor wild bootstrap is
asymptotically valid in this sense) can still be shown to hold true
for the testing problem considered in this paper, though as a
consequence of our Theorem 2 (see Corollary 1). By similar con-
siderations, the fixed regressor wild bootstrap implementations of
the Shin (1994) tests in Cavaliere and Taylor (2006) could be shown
to be asymptotically valid in the same sense. □

Aswe have seen in Theorem 2, the bootstrap statistics LM∗

1x and
SupF∗

1x, conditional on the data, and the original statistics LM1x and
SupF 1x, conditional on x, share the same asymptotic distribution
under the null hypothesis. We can obtain as an implication, now
formalised in Corollary 1, that the bootstrap tests based on LM∗

1x
and SupF∗

1x are asymptotically valid. We state the result for LM1x
and SupF 1x but the same conclusions hold for LM1, LMx, SupF 1
and SupF x. As usual, validity is formulated in terms of bootstrap
p-values.

Corollary 1. Let the conditions of Theorem 2 hold. Then, under H0,
as T → ∞, P∗

T ,LM := P∗(LM∗

1x ≤ LM1x)
w
→ U[0, 1] and P∗

T ,F :=

P∗(SupF∗

1x ≤ SupF 1x)
w
→ U[0, 1], where P∗ denotes probability

conditional on the data x, y.
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(a) cα = cβ = 0, HS
1 , gα = 3g/5. (b) cα = cβ = 0, HS

x , gβ = 3g . (c) cα = cβ = 0, HS
1x , gα = 3g/5, gβ = 3g .

(d) cα = cβ = 10, HS
1 , gα = 3g/5. (e) cα = cβ = 10, HS

x , gβ = 3g . (f) cα = cβ = 10, HS
1x , gα = 3g/5, gβ = 3g .

Fig. 1. Asymptotic local power of tests under HS : LMB
1 : , LMB

x : , LMB
1x: , SupF B

1 : , SupF B
x : , SupF B

1x: .

The practical implication of Corollary 1 is that comparison of
one of the original statistics, for example LM1x, with a ξ level
empirical bootstrap critical value (calculated as the upper tail ξ

percentile from the order statistic formed from B independent
simulated bootstrap LM∗

1x statistics), whichwewill denote by cvξ,B,
will result in a bootstrap test that under H0 will have asymptotic
size that for sufficiently large B will be as close as desired to the
given nominal level ξ . Size in this context is understood to mean
the rejection frequency in a thought experiment where the boot-
strap test is applied to a large number of data samples constituting
different realisations of the regressor {xt}. This is distinct from the
interpretation of the stronger results (also derived in the proof
of Corollary 1) that P∗

T ,LM |x
w
→p U[0, 1] and P∗

T ,F |x
w
→p U[0, 1] under

H0, in the sense of weak convergence in probability; these results
can be interpreted as also establishing the asymptotic validity of
the bootstrap for fixed realisations of {xt}. Under local alternatives
cvξ,B will remain as under H0 (at least in the limit), while the
distribution of LM1x conditional on x will vary with gα and gβ and
so asymptotic local power of the bootstrap tests will be a function
of those drift parameters. In what follows, as amatter of shorthand
notation,wewill denote by LMB

1x the fixed regressorwild bootstrap
procedure outlined in Algorithm 1, whereby the original statistic is
compared to its empirical bootstrap critical value, cvξ,B.

5. Asymptotic local power

We now turn to a consideration of the asymptotic local power
of the fixed regressor wild bootstrap procedures. In accordance
with the interpretation given to the results in Corollary 1, we
focus on asymptotic power understood as the rejection rate in a
thought experiment with a large number of different realisations
of the process B1. We simulate the functionals in the limit distribu-
tions using 3000Monte Carlo replications with different Brownian
motion processes in each replication, approximated as random
walks with IID N(0, 1) increments over a grid of 1000 points. For

each replication, the simulated limit bootstrap critical value for
ξ = 0.10 is obtained by simulating the appropriate bootstrap limit
distribution using B = 499 bootstrap replications, conditioning on
the simulated B1 for that Monte Carlo replication.

In calculating asymptotic powers, in Dt we abstract from any
role that non-stationary volatility plays by setting dit = 1, for all
i and t . We induce a correlation of −0.8 between ϵxt and ϵyt by
setting h21 = −4/3; the other non-diagonal elements of H are
set to 0. We also set cx = 10. As regards the various alternatives,
using a 30-step grid of values denoted g between 0 and 50, under
stochastic parameter variation, S, we have inHS : gα = 3g/5 forHS

1 ,
gβ = 3g for HS

x and gα = 3g/5, gβ = 3g for HS
1x and we consider

cα = cβ = {0, 10}. Under non-stochastic parameter variation, N,
we have in HN : gα = g/5 for HN

1 , gβ = g for HN
x and gα = g/5,

gβ = g for HN
1x and we consider sαt = sβt = I(t > ⌊τ0T⌋) with the

break fractions τ0 = {1/2, 3/4} with τL = 0.1 and τU = 0.9. Here,
the strength of the alternatives increaseswith g , the null being true
for g = 0.

Fig. 1(a)–(c) report results for the stochastic parameter vari-
ation of HS with cα = cβ = 0. In Fig. 1(a) the alternative
is HS

1 (intercept variation only). Here it might be expected that
LMB

1 would provide most power. However, there is very little to
choose between this procedure and LMB

1x, SupF
B
1 and SupF B

1x. What
is noticeable is that SupF B

x and especially LMB
x , the two procedures

that do not permit intercept variation of either type, perform
significantly worse than those that do. Fig. 1(b) shows results for
the alternative HS

x (slope parameter variation) where LMB
x might

be expected to perform best. Here there is little difference be-
tween this procedure and LMB

1x, SupF
B
x and SupF B

1x. We also observe
that LMB

1 and SupF B
1 perform much worst, with LMB

1 being least
powerful of all. In Fig. 1(c) the alternative is HS

1x (intercept and
slope parameter variation). The two best procedures are LMB

1x
and SupF B

1x and there is little to choose between them. None
of the other procedures performs particularly poorly, however.
Fig. 1(d)–(f) repeat the same analysis with cα = cβ = 10. The
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(a) τ0 = 1/2, HN
1 , gα = g/5. (b) τ0 = 1/2, HN

x , gβ = g . (c) τ0 = 1/2, HN
1x , gα = g/5, gβ = g .

(d) τ0 = 3/4, HN
1 , gα = g/5. (e) τ0 = 3/4, HN

x , gβ = g . (f) τ0 = 3/4, HN
1x , gα = g/5, gβ = g .

Fig. 2. Asymptotic local power of tests under HN : LMB
1 : , LMB

x : , LMB
1x: , SupF B

1 : , SupF B
x : , SupF B

1x: .

powers of all procedures are now lower than when cα = cβ = 0,
as would be expected. Otherwise, broadly speaking, the comments
made for Fig. 1(a)–(c) apply here also.

In Fig. 2(a)–(c) we give results for the non-stochastic param-
eter variation of HN for a mid-sample break, τ0 = 1/2. For
Fig. 2 (a) the alternative is HN

1 (intercept variation only). While
we might expect SupF B

1 to provide most power, it is clear that
this role is actually fulfilled by LMB

1, followed by SupF B
1 and LMB

1x,
and then SupF B

1x. As regards LMB
x and SupF B

x , the procedures that
do not permit intercept variation, their power is again very low
in comparison to the others. Fig. 2(b), where the alternative is
HN

x (slope parameter variation) reveals LMB
x to be the best per-

forming procedure, outperforming SupF B
x . Here it is the power of

LMB
1 and SupF B

1 that are the lowest by some margin. In Fig. 2(c)
the alternative is HN

1x (intercept and slope parameter variation)
and we see that the best procedure is LMB

1x, followed by SupF B
1x.

The others have noticeably lower power compared to these two,
though none of them performs badly. The analysis is repeated in
Fig. 2 (d)–(f) for a late break, τ0 = 3/4. Fig. 2(d), where the alter-
native is HN

1 (intercept variation), reveals that all the procedures
that include this alternative now have fairly similar power; the
power advantage previously seen for LMB

1 over SupF B
1 is no longer

in evidence, with both showing similar levels of power. Likewise,
in Fig. 2(e) under the alternative HN

x (slope parameter variation),
we see that LMB

x and SupF B
x also now have similar power levels.

For the alternative HN
1x (intercept and slope parameter variation)

in Fig. 2(f), SupF B
1x generally appears more powerful than LMB

1x,
thereby reversing the previous ranking. Once more, we see that
procedures which exclude parameter variation (of either type)
perform badly when it is present in the alternative.

Summarising the findings of Figs. 1 and 2,what is clear through-
out is that procedures which incorrectly exclude the possibility of
parameter variation associated with a particular regressor when
it is present in the alternative in either form will lose power
compared to those procedures that do permit one or other form
of variation in that parameter. This is not really surprising. What

is perhaps more surprising is that employing a procedure that
specifies the correct form of parameter variation for a given al-
ternative (i.e. stochastic or non-stochastic) does not always yield
higher power than the corresponding procedure which specifies
the incorrect form. In fact, the incorrectly specified procedure may
have the higher power, as seen most obviously in the context of
non-stochastic variation when the break fraction is τ0 = 1/2; here
the LM-based procedures are consistently more powerful than
their SupF-based counterparts.

6. Extensions

6.1. Weak dependence

Thus far we have assumed that the noise, ϵxt , driving xt is
serially uncorrelated, by virtue of et being a m.d.s. More generally
we might consider a linear process assumption for ϵxt of the form

ϵxt =

∞∑
i=0

θivx,t−i (12)

where vx,t denotes the first element of HDtet and with the con-
ditions θ0 = 1,

∑
∞

i=0i |θi| < ∞ and
∑

∞

i=0θiz
i

̸= 0 for |z| ≤ 1
satisfied. Under homoskedasticity, thiswould include all stationary
and invertible ARMA processes. Notice that under this structure ϵyt
remains uncorrelated with the lagged increments of xt at all lags.

In this case, it may be shown that the limiting results given in
this paper would continue to hold provided in (7) and (10) we add
in the regressors ∆xt−1, . . . , ∆xt−p where p satisfies the standard
rate condition that 1/p + p3/T → 0, as T → ∞, and where
it is assumed that T 1/2∑∞

i=p+1|δi| → 0, where {δi}
∞

i=1 are the
coefficients of the AR(∞) process obtained by inverting theMA(∞)
process above.5 Similarly to Breitung and Demetrescu (2015),

5 These regressors would not need to be added to the bootstrap analogues of (7)
and (10) because the êt used to construct y∗

t are free of any effects arising fromweak
dependence in ϵxt .
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we would also need to restrict the amount of serial dependence
allowed in the conditional variances via the cross-productmoment
assumption that supi,j≥1

τij < ∞, where τij := E(ete′
t ⊗ et−ie′

t−j),
with ⊗ denoting the Kronecker product. As is standard in the PR
literature, we maintain the assumption that ϵyt is serially uncorre-
lated, which is why, unlike in the setting considered in Shin (1994),
we need only include lags of ∆xt , rather than both leads and lags
thereof.

6.2. Multiple predictors and deterministic components

The parameter constancy tests developed in the context of
(1)–(3)with a single predictive regressor, xt−1, and an intercept can
be straightforwardly generalised to the case where the PR contains
multiple predictors and/or a general deterministic component of
the form considered in section 3.2 of Breitung and Demetrescu
(2015).

Specifically, we may consider the case where the deterministic
component in (1) is of the form αt + τ′ft , with αt specified as
before, and where ft is as defined in section 3.2 of Breitung and
Demetrescu (2015), but is such that it does not span the space
of a constant; an obvious example is the linear trend case which
obtains for ft := t . To allow for multiple predictors, replace xt−1
in (1) by the k × 1 vector of predictive regressors as xt−1 :=

(x1,t−1, . . . ., xk,t−1)′ where each xi,t is generated by equations of
the form given in (2) and (3), and where the former can also
include the additional deterministic variables in ft . Wewould then
correspondingly construct the LM structural instability statistics
(which could be for single or joint parameter restrictions) with the
residuals êt now obtained from the regression of yt onto an inter-
cept, ft , xt−1 and∆xt−1 (and lags of∆xt−1 in the case considered in
Section 6.1) and setting at := [1, x′

t−1]
′ in the calculation of (6). The

bootstrap analogues of these statistics discussed in Section 4would
use the residuals from the regression of y∗

t (the wild bootstrap
analogue of yt ) onto an intercept, ft and xt−1. For the SupF-type
statistics the additional set of residuals êt (τ ) needed to compute
F (τ ) in (9) are obtained from the regressions above but augmented
withDt (⌊τT⌋) and/orDt (⌊τT⌋)xt−1 and computed for each possible
τ . For both the LM and SupF-type statistics, doing so alters the
form of the limit distributions given in Theorem 1, but would
not alter the primary conclusion given in Corollary 1, that the
fixed regressor wild bootstrap implementation of the instability
tests are asymptotically valid. In particular, the process A(·) along
with the Brownian-based processes which appear in Theorem 1
would need to be appropriately re-defined to the deterministic
component being considered,A(·)would now contain kOUderived
processes, analogous to M̄ηx,cx (·), corresponding to each of the k
elements of xt−1, while Q (·) would also now contain additional
terms, analogous toMηβ,cβ (·)Mηx,cx (·) under scheme S andMηx,cx (·)
under scheme N, corresponding to each of the k elements of xt−1.

7. Finite sample size and power

We now evaluate the finite sample size and power properties
of the bootstrap procedures, on average over different realisations
on x. We simulate the DGP (1)–(3) where we set µ = α = β = 0,
sx0 = 0 and generate et ∼ IID N(0, I4) for a sample size of T =

100.6 The simulations are again conducted using 3000Monte Carlo
replications, B = 499 bootstrap replications, and setting ξ = 0.10.
No lagged ∆xt terms are incorporated into any fitted regression
model for yt .

6 We also ran simulations for T = 200. These results were little different from
those discussed here for T = 100 and so are omitted in the interests of brevity.
These results can be obtained from the authors on request.

In order to meaningfully compare finite sample results with
the homoskedastic-case asymptotic results of the previous sec-
tion, in the simulation DGPs we first employ exactly the same
constellation of parameter settings as underpinned our reported
asymptotic results. Figs. 3 and 4 report our results for the finite
sample analogues of Figs. 1 and 2. Throughout, it is seen that each
procedure has empirical size near to the nominal 0.10 level. It
is also clear throughout that the finite sample powers generally
bear a strong resemblance to their asymptotic counterparts in
terms of the relative behaviour of the bootstrap procedures, and
hence the comments given in the previous section apply here also
(some discrepancies are simply due to small finite sample size
differences). In absolute terms, the finite sample powers tend to
be slightly lower than their asymptotic counterparts, although this
is hardly noticeable in the cases of alternativeswith non-stochastic
parameter variation (Fig. 4).

We next consider the impact of unconditional heteroskedastic-
ity, investigating the finite sample size and power of our bootstrap
procedures when two of the error processes, those for ϵxt and ϵyt
are subject to a contemporaneous single break in volatility of equal
magnitude. Specifically, we again simulate the DGP (1)-(3) with
T = 100 letting dit = 1 for t ≤ ⌊τ0hT⌋ and dit = σ for t > ⌊τ0hT⌋,
i = 1, 2, with τ0h = {1/2, 3/4} and we consider σ = {4, 1/4} thus
allowing for both upward and downward volatility shifts, with the
chosen magnitudes being substantial for illustrative purposes. The
other simulation DGP settings are as in Figs. 3 and 4, however for
brevitywe nowonly consider a subset of the values for g given by g
= {0, 15, 35}. The results are shown in Tables 1(a) and 1(b); these
include the previously-considered homoskedastic case (obtained
by setting σ = 1) as a benchmark for sizes and powers (note that
in the tables, SupF is abbreviated to SF ). Table 1(a) considers the
stochastic parameter variation ofHS , while Table 1(b) considers the
non-stochastic parameter variation ofHN . Size results are reported
only in Panel A of Table 1(a), to avoid unnecessary duplication.

In Panel A of Table 1(a) the alternative is HS
1 (intercept varia-

tion). Beginning with empirical sizes of our procedures (g = 0),
we see that heteroskedasticity has only a modest effect when
compared to the benchmark homoskedastic case (particularly for
the LM-based procedures). This suggests that the wild bootstrap
is performing reasonably well in reproducing the patterns of het-
eroskedasticity present. Turning to finite sample power, in general
terms we see that the upward volatility shift considered signifi-
cantly decreases powers relative to the benchmark homoskedastic
powers, while the downward shift considered has the opposite
effect. These effects are observed for both volatility break tim-
ings considered. An examination of the power levels between the
procedures reveals that under heteroskedasticity, the patterns of
relative powers are generally similar to those observed in the
homoskedastic case. For an alternative ofHS

x (slope parameter vari-
ation), from Panel B it appears that both upward and downward
volatility shifts can lead to a decrease in power when compared
to the homoskedastic benchmark (although this effect is rather
small for the downward shift). The patterns of relative power levels
between the procedures again largely mimic what we see under
homoskedasticity. As might be expected, under the alternative HS

1x
(intercept and slope parameter variation), Panel C shows that the
effect of a volatility shift on test power involves a mixture of the
effects seen under HS

1 and HS
x . In very general terms, the volatility

effect on LMB
1 and SupF B

1 under HS
1x is most similar to that for HS

1 ,
the impact on LMB

x and SupF B
x under HS

1x is closer to that for HS
x ,

while the effect of the volatility shift on LMB
1x and SupF B

1x for HS
1x

is a hybrid of the effects seen under HS
1 and HS

x . In Table 1(b),
where the alternatives are HN

1 , H
N
x and HN

1x, volatility shifts are
seen to have qualitatively similar effects on power, relative to the
homoskedastic case, to those seen in Table 1(a) for HS

1 , H
S
x and HS

1x,
respectively.
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(a) cα = cβ = 0, HS
1 , gα = 3g/5. (b) cα = cβ = 0, HS

x , gβ = 3g . (c) cα = cβ = 0, HS
1x , gα = 3g/5, gβ = 3g .

(d) cα = cβ = 10, HS
1 , gα = 3g/5. (e) cα = cβ = 10, HS

x , gβ = 3g . (f) cα = cβ = 10, HS
1x , gα = 3g/5, gβ = 3g .

Fig. 3. Finite sample power of tests under HS : LMB
1 : , LMB

x : , LMB
1x: , SupF B

1 : , SupF B
x : , SupF B

1x: .

(a) τ0 = 1/2, HN
1 , gα = g/5. (b) τ0 = 1/2, HN

x , gβ = g . (c) τ0 = 1/2, HN
1x , gα = g/5, gβ = g .

(d) τ0 = 3/4, HN
1 , gα = g/5. (e) τ0 = 3/4, HN

x , gβ = g . (f) τ0 = 3/4, HN
1x , gα = g/5, gβ = g .

Fig. 4. Finite sample power of tests under HN : LMB
1 : , LMB

x : , LMB
1x: , SupF B

1 : , SupF B
x : , SupF B

1x: .

8. An empirical application

To illustrate how our proposed instability test procedures may
be used in practice, we apply them to the U.S. annual equity series
analysed in Welch and Goyal (2008), which is updated to cover
the period 1926–2015 (T = 90) and is available at http://www.
hec.unil.ch/agoyal/. Our yt variables are Rt , the log of the total
return (including dividends) on the S&P 500 stock market index

from year t − 1 to t , and EPt , the equity premium, which subtracts
the corresponding risk-free rate (the Treasury Bill rate) from Rt .
The xt predictor variables (in each case included in the bivariate
PR with a one-period lag) are: the dividend yield, DYt , defined as
the difference between the log of dividends and the log of one-
period lagged prices; the dividend payout ratio, DEt , defined as the
difference between the log of dividends and the log of earnings;

http://www.hec.unil.ch/agoyal/
http://www.hec.unil.ch/agoyal/
http://www.hec.unil.ch/agoyal/
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Table 1(a)
Finite sample size of tests, and power of tests under HS .

τ0h σ g LMB
1 LMB

x LMB
1x SF B

1 SF B
x SF B

1x LMB
1 LMB

x LMB
1x SF B

1 SF B
x SF B

1x

Panel A. HS
1

cα = cβ = 0 cα = cβ = 10

– 1 0 0.100 0.101 0.094 0.110 0.085 0.071 0.100 0.101 0.094 0.110 0.085 0.071
15 0.784 0.477 0.767 0.811 0.484 0.734 0.331 0.213 0.330 0.369 0.203 0.266
35 0.954 0.740 0.961 0.968 0.777 0.952 0.697 0.469 0.726 0.778 0.496 0.717

1
2 4 0 0.102 0.102 0.104 0.124 0.103 0.099 0.102 0.102 0.104 0.124 0.103 0.099

15 0.354 0.154 0.331 0.292 0.145 0.219 0.132 0.112 0.130 0.140 0.108 0.117
35 0.695 0.321 0.673 0.647 0.321 0.534 0.249 0.155 0.245 0.229 0.146 0.177

1
4 0 0.101 0.104 0.106 0.121 0.107 0.094 0.101 0.104 0.106 0.121 0.107 0.094

15 0.865 0.567 0.874 0.860 0.585 0.795 0.440 0.270 0.461 0.421 0.257 0.333
35 0.972 0.803 0.977 0.979 0.846 0.972 0.801 0.578 0.834 0.848 0.627 0.803

3
4 4 0 0.095 0.117 0.107 0.130 0.137 0.141 0.095 0.117 0.107 0.130 0.137 0.141

15 0.436 0.219 0.424 0.297 0.200 0.244 0.144 0.136 0.160 0.151 0.145 0.155
35 0.774 0.440 0.772 0.684 0.418 0.603 0.312 0.224 0.329 0.245 0.201 0.222

1
4 0 0.101 0.100 0.104 0.116 0.092 0.080 0.101 0.100 0.104 0.116 0.092 0.080

15 0.847 0.526 0.840 0.846 0.568 0.779 0.416 0.227 0.405 0.414 0.229 0.303
35 0.971 0.773 0.970 0.976 0.840 0.970 0.776 0.500 0.801 0.826 0.586 0.765

Panel B. HS
x

cα = cβ = 0 cα = cβ = 10

– 1 15 0.489 0.771 0.746 0.569 0.767 0.717 0.218 0.372 0.338 0.260 0.360 0.305
35 0.748 0.937 0.937 0.824 0.948 0.936 0.468 0.685 0.685 0.557 0.724 0.689

1
2 4 15 0.359 0.601 0.550 0.392 0.589 0.527 0.178 0.290 0.254 0.226 0.278 0.256

35 0.625 0.866 0.844 0.669 0.865 0.842 0.369 0.616 0.569 0.436 0.605 0.570
1
4 15 0.379 0.646 0.587 0.404 0.604 0.540 0.192 0.312 0.271 0.213 0.301 0.247

35 0.669 0.891 0.872 0.706 0.891 0.870 0.404 0.629 0.589 0.443 0.633 0.591
3
4 4 15 0.325 0.647 0.551 0.325 0.551 0.461 0.144 0.276 0.222 0.186 0.268 0.220

35 0.589 0.868 0.838 0.607 0.834 0.783 0.291 0.570 0.501 0.339 0.522 0.454
1
4 15 0.484 0.721 0.696 0.521 0.700 0.656 0.225 0.357 0.339 0.245 0.349 0.306

35 0.750 0.911 0.924 0.791 0.925 0.919 0.481 0.672 0.681 0.529 0.700 0.672

Panel C. HS
1x

cα = cβ = 0 cα = cβ = 10

– 1 15 0.811 0.782 0.914 0.862 0.793 0.895 0.404 0.422 0.496 0.473 0.427 0.456
35 0.946 0.919 0.990 0.971 0.935 0.990 0.754 0.733 0.863 0.827 0.773 0.858

1
2 4 15 0.497 0.616 0.639 0.487 0.597 0.585 0.203 0.299 0.275 0.246 0.293 0.267

35 0.797 0.866 0.927 0.815 0.872 0.901 0.447 0.627 0.622 0.492 0.624 0.600
1
4 15 0.883 0.752 0.926 0.881 0.751 0.882 0.483 0.420 0.550 0.483 0.410 0.453

35 0.970 0.905 0.990 0.978 0.913 0.987 0.818 0.720 0.885 0.860 0.750 0.861
3
4 4 15 0.523 0.649 0.692 0.446 0.570 0.525 0.190 0.294 0.258 0.206 0.276 0.235

35 0.825 0.868 0.938 0.804 0.840 0.879 0.428 0.595 0.605 0.419 0.542 0.512
1
4 15 0.866 0.770 0.929 0.878 0.789 0.902 0.474 0.427 0.548 0.495 0.439 0.479

35 0.964 0.914 0.990 0.979 0.939 0.990 0.805 0.727 0.889 0.852 0.785 0.876

and the long term rate of returns, LTRt , the long term rate on
government bonds. While 1926–2015 represents the full sample
period, we also consider the sub-sample 1926–2007, which pre-
dates the global financial crisis, allowing analysis of any potential
differences when excluding the more recent years of instability.

The results are shown in Table 2(a). The main entries are
the computed values of the LMB

1, LMB
x , LMB

1x, SupF B
1, SupF B

x
and SupF B

1x statistics. For the LM-based procedures, the num-
ber of lagged difference terms in ∆xt added to the fitted re-
gression (7) is determined using BIC selection starting from a
maximum value of 6. The same number of lagged difference
terms is employed for the SupF-based procedures in the fitted
regression (10).

The entries in parentheses in the column labelled xt are boot-
strap p -values for a standard KPSS statistic applied to each pre-
dictor (with the long run variance estimate based on the quadratic
spectral kernel with automatic bandwidth selection), obtained us-
ing the wild bootstrap method of Cavaliere and Taylor (2005) with
499 bootstrap replications. These p-values are small in all cases,
implying rejection of the null of stationarity against the unit root
alternative for each series. As is well known, the KPSS test also

rejects stationarity with high probability when the series under
test displays local-to-unit root behaviour, so at the very least these
results are indicative of a high degree of persistence being present
in each of the predictor series.

The entries in parentheses underneath the main entries are
the bootstrap p -values for the LMB

1, LMB
x , LM

B
1x, SupF

B
1, SupF

B
x

and SupF B
1x statistics, based on B = 499 bootstrap replications.

Considering first the results for the full sample period 1926–2015,
strong evidence against H0 being true is provided by the LMB

1 and
LMB

x tests statistics for the Rt-DYt pairing, and, to a lesser extent, for
the EPt-DYt pairing via LMB

x . No evidence against H0 is seen (i.e. no
rejection at conventional significance levels) for the DEt and LTRt
predictors, regardless of whether Rt or EPt is employed. Turning
to the pre-crisis sub-sample, evidence against H0 is again seen for
Rt-DYt (now also including SupF B

1x at the 0.10-level). Some evi-
dence is also found again for EPt-DYt , this time via the SupF B

1x test
rather than the LMB

x test. The change of sample period has no effect
on the lack of rejections when using the DEt and LTRt predictors.

Table 2(a) also reports, under |IV |, the absolute value of the
heteroskedasticity-robust IV t-test of Breitung and Demetrescu
(2015) for predictability of yt by xt−1. This statistic combines frac-
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Table 1(b)
Finite sample power of tests under HN .

τ0h σ g LMB
1 LMB

x LMB
1x SF B

1 SF B
x SF B

1x LMB
1 LMB

x LMB
1x SF B

1 SF B
x SF B

1x

Panel A. HN
1

τ0 =
1
2 τ0 =

3
4

– 1 15 0.638 0.223 0.554 0.568 0.193 0.403 0.455 0.216 0.407 0.473 0.186 0.315
35 0.991 0.540 0.979 0.991 0.546 0.975 0.961 0.522 0.954 0.980 0.548 0.938

1
2 4 15 0.179 0.109 0.171 0.159 0.112 0.121 0.142 0.110 0.132 0.151 0.111 0.120

35 0.461 0.160 0.429 0.345 0.140 0.228 0.310 0.145 0.270 0.321 0.142 0.217
1
4 15 0.838 0.291 0.804 0.717 0.250 0.544 0.714 0.242 0.715 0.531 0.207 0.304

35 0.998 0.656 0.996 0.997 0.690 0.992 0.998 0.572 1.000 1.000 0.726 0.998
3
4 4 15 0.221 0.134 0.211 0.150 0.145 0.151 0.147 0.122 0.139 0.166 0.139 0.157

35 0.618 0.225 0.585 0.299 0.190 0.226 0.325 0.178 0.299 0.311 0.173 0.258
1
4 15 0.787 0.271 0.712 0.698 0.241 0.505 0.668 0.216 0.615 0.583 0.219 0.348

35 0.998 0.624 0.994 0.997 0.665 0.990 0.997 0.522 0.998 0.999 0.774 0.993

Panel B. HN
x

τ0 =
1
2 τ0 =

3
4

– 1 15 0.250 0.642 0.529 0.281 0.534 0.409 0.243 0.473 0.409 0.292 0.436 0.331
35 0.563 0.990 0.976 0.672 0.984 0.963 0.533 0.891 0.842 0.635 0.922 0.880

1
2 4 15 0.128 0.168 0.152 0.136 0.152 0.131 0.226 0.479 0.376 0.265 0.436 0.351

35 0.264 0.425 0.388 0.231 0.465 0.341 0.500 0.938 0.873 0.579 0.916 0.873
1
4 15 0.163 0.289 0.224 0.169 0.246 0.180 0.132 0.131 0.140 0.130 0.113 0.100

35 0.404 0.681 0.622 0.391 0.730 0.621 0.252 0.281 0.288 0.203 0.233 0.168
3
4 4 15 0.155 0.318 0.241 0.157 0.208 0.175 0.170 0.404 0.294 0.178 0.296 0.231

35 0.316 0.794 0.643 0.269 0.608 0.417 0.370 0.903 0.781 0.369 0.794 0.644
1
4 15 0.254 0.572 0.480 0.258 0.480 0.372 0.191 0.185 0.196 0.187 0.187 0.142

35 0.571 0.962 0.943 0.615 0.957 0.926 0.445 0.391 0.469 0.444 0.539 0.461

Panel C. HN
1x

τ0 =
1
2 τ0 =

3
4

– 1 15 0.607 0.607 0.740 0.606 0.536 0.660 0.482 0.460 0.572 0.532 0.452 0.525
35 0.906 0.916 0.996 0.928 0.904 0.994 0.795 0.762 0.899 0.848 0.776 0.943

1
2 4 15 0.208 0.184 0.225 0.174 0.167 0.158 0.249 0.474 0.389 0.305 0.436 0.377

35 0.511 0.443 0.585 0.430 0.477 0.492 0.553 0.927 0.879 0.635 0.908 0.894
1
4 15 0.815 0.397 0.816 0.724 0.390 0.622 0.693 0.268 0.696 0.543 0.261 0.342

35 0.995 0.704 0.997 0.993 0.761 0.994 0.990 0.544 0.992 0.990 0.662 0.977
3
4 4 15 0.257 0.331 0.317 0.177 0.217 0.190 0.201 0.409 0.315 0.221 0.298 0.246

35 0.617 0.761 0.808 0.470 0.605 0.574 0.501 0.877 0.828 0.486 0.776 0.714
1
4 15 0.723 0.553 0.799 0.691 0.505 0.687 0.633 0.260 0.616 0.602 0.350 0.451

35 0.960 0.850 0.997 0.965 0.863 0.997 0.935 0.499 0.946 0.946 0.665 0.936

tional and sine function instruments and tests the significance of
the estimated coefficient on xt−1, having a standard normal limit
distribution under the null of no predictability. Its p-value is re-
ported in parentheses. According to |IV |, there is strong evidence of
predictability in both the Rt-LTRt and EPt-LTRt relationships when
the 1926–2007 sub-sample is considered. Interestingly, neither of
these pairings were found to be subject to parameter instability
according to our battery of bootstrap procedures.

To informally examine the extent to which parameter instabil-
ity appears present in these PRs, Fig. 5 plots rolling window IV
coefficient estimates and approximate 0.10-level standard error
bounds. These are based on a rolling window length set at ⌊0.25T⌋

observations, and the horizontal axis dates correspond to the end
of a given window sub-sample. Although it is difficult to make
any firm conclusions, on examining Fig. 5, we might be led to ten-
tatively conclude that the most pronounced parameter variation
is associated with the Rt-DYt and EPt-DYt pairings (Fig. 5(a) and
5(d)). This would be in line with our bootstrap test outcomes in
Table 2(a). Also, it is credible to consider that the least pronounced
parameter variation observed is associated with Rt-DEt and EPt-
DEt (Fig. 5(b) and 5(e)), which would tie in with the generally
large p-values for the associated instability tests. The estimated
parameter values are also generally fairly close to zero, which is
in line with |IV | in Table 2(a) finding no evidence of predictability.
The parameter estimates for Rt-LTRt and EPt-LTRt (Fig. 5(c) and

5(f)) display relative constancy at positive values over much of the
sample period, which is compatible with our instability tests not
rejecting, yet at the same time |IV | indicating predictability for the
earlier sub-sample. That the rolling parameter estimates reduce to
insignificant levels towards the end of the full sample period could
explain why |IV | does not reject for the full sample; on the other
hand, it appears from the instability test results that this change
is not substantial enough, in either magnitude or duration, to be
detected by our test procedures.

In Table 2(b) we consider instability tests allowing for multiple
predictors, using two predictors together by combining DYt , the
predictor for which most evidence of instability was found, with
either DEt or LTRt in the PR. For each test we use subscripts
to denote the regressor coefficients permitted to vary under the
alternative, with x1 = DY and x2 = DE or x2 = LTR. For brevity we
only showa subset of the possible statistics that could be computed
(we do not report statistics that allow for variability in both the
intercept and a single predictor alone). Interestingly, the pre-crisis
1926–2007 period shows little in the way of parameter instability
whenever DYt and LTRt are combined together (LMB

x1x2 being the
exception). In Table 2(a), parameter instabilitywas indicatedwhen
usingDYt alone as a predictor, but it appears thatwhen LTRt (which
was identified as a potentially valid predictor for this period) is
included in the PR, the appearance of parameter instability in the
DYt coefficient is removed, suggesting that Table 2(a) instability
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(a) yt = Rt , xt = DYt . (b) yt = Rt , xt = DEt . (c) yt = Rt , xt = LTRt .

(d) yt = EPt , xt = DYt . (e) yt = EPt , xt = DEt . (f) yt = EPt , xt = LTRt .

Fig. 5. Rolling predictive regression IV coefficient estimates and standard error bands: yt = α̂ + β̂xt−1; β̂: —, ±1.645s.e.: - - -.

Table 2(a)
Application to updated Welch and Goyal (2008) data: bivariate regressions.

yt xt LMB
1 LMB

x LMB
1x SupF B

1 SupF B
x SupF B

1x |IV |

Panel A. 1926–2015

Rt DY t 0.326 0.326 0.364 6.969 7.054 17.47 0.742
(0.014) (0.026) (0.022) (0.104) (0.265) (0.271) (0.146) (0.458)

DEt 0.132 0.119 0.152 4.986 3.853 4.993 0.684
(0.014) (0.315) (0.405) (0.772) (0.415) (0.601) (0.711) (0.494)

LTRt 0.057 0.165 0.265 2.346 4.950 11.18 1.376
(0.024) (0.830) (0.230) (0.333) (0.810) (0.361) (0.198) (0.169)

EP t DY t 0.192 0.220 0.315 9.395 9.046 16.79 1.109
(0.148) (0.082) (0.182) (0.156) (0.172) (0.154) (0.268)

DEt 0.161 0.119 0.202 4.904 4.344 5.010 0.306
(0.212) (0.429) (0.635) (0.407) (0.523) (0.701) (0.759)

LTRt 0.085 0.193 0.263 1.968 5.063 10.50 1.296
(0.655) (0.200) (0.375) (0.850) (0.291) (0.226) (0.195)

Panel B. 1926–2007

Rt DY t 0.352 0.365 0.414 6.899 6.849 23.73 0.821
(0.034) (0.042) (0.028) (0.106) (0.321) (0.347) (0.076) (0.412)

DEt 0.056 0.060 0.128 4.090 3.662 4.266 1.000
(0.008) (0.764) (0.719) (0.798) (0.579) (0.627) (0.794) (0.317)

LTRt 0.076 0.153 0.261 2.569 5.444 12.67 2.151
(0.018) (0.737) (0.301) (0.397) (0.794) (0.391) (0.186) (0.031)

EP t DY t 0.167 0.200 0.346 8.585 7.916 22.56 1.268
(0.222) (0.126) (0.166) (0.188) (0.248) (0.078) (0.205)

DEt 0.067 0.074 0.134 3.734 2.279 3.772 0.513
(0.657) (0.621) (0.752) (0.651) (0.860) (0.840) (0.608)

LTRt 0.190 0.248 0.349 4.395 6.761 11.77 1.947
(0.271) (0.168) (0.222) (0.477) (0.309) (0.226) (0.052)

Note: Entries in parentheses are bootstrap p-values.

results might be driven by under-specification of the PR. In the
full sample, parameter instability is still detected for the DYt and
LTRt combination; one possible explanation is the apparent late
change in the LTRt rolling coefficients observed in Fig. 5(c) and 5(d),
the impact of which could prevent a stable PR incorporating DYt
and LTRt from holding for the full sample period. We also see that

the addition of DEt to the Rt-DYt and EPt-DYt regressions results
in no evidence for instability, despite there being evidence for
DYt coefficient instability when considered in isolation. Given that
there was no evidence for DEt being a valid predictor, a possible
interpretation is that the addition of this regressor has reduced
the power of the instability tests. What it is clear is that allowing
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Table 2(b)
Application to updated Welch and Goyal (2008) data: multivariate regressions.

yt x1t , x2t LMB
1 LMB

x1 LMB
x2 LMB

x1x2 LMB
1x1x2 SupF B

1 SupF B
x1 SupF B

x2 SupF B
x1x2 SupF B

1x1x2

Panel A. 1926–2015

Rt DY t ,DEt 0.097 0.109 0.112 0.148 0.191 5.870 5.959 6.276 6.687 15.42
(0.311) (0.238) (0.349) (0.699) (0.768) (0.359) (0.353) (0.379) (0.561) (0.224)

DY t , LTRt 0.239 0.240 0.045 0.492 0.533 6.187 6.626 3.448 13.41 21.31
(0.082) (0.058) (0.705) (0.026) (0.098) (0.335) (0.323) (0.507) (0.146) (0.128)

EP t DY t ,DEt 0.114 0.129 0.178 0.205 0.396 8.561 8.420 8.746 9.605 15.46
(0.224) (0.162) (0.164) (0.523) (0.363) (0.146) (0.146) (0.202) (0.285) (0.200)

DY t , LTRt 0.143 0.163 0.074 0.398 0.536 9.220 8.153 4.336 12.05 20.11
(0.246) (0.166) (0.511) (0.068) (0.098) (0.152) (0.222) (0.417) (0.184) (0.148)

Panel B. 1926–2007

Rt DY t ,DEt 0.097 0.114 0.131 0.176 0.237 5.638 5.520 6.530 6.544 22.53
(0.309) (0.220) (0.232) (0.571) (0.659) (0.373) (0.383) (0.267) (0.501) (0.048)

DY t , LTRt 0.195 0.205 0.072 0.439 0.518 6.348 6.727 3.977 15.13 24.37
(0.170) (0.130) (0.517) (0.066) (0.150) (0.383) (0.365) (0.517) (0.126) (0.118)

EP t DY t ,DEt 0.095 0.111 0.152 0.209 0.428 7.164 7.103 7.966 8.168 22.66
(0.327) (0.230) (0.170) (0.483) (0.281) (0.214) (0.232) (0.166) (0.327) (0.044)

DY t , LTRt 0.112 0.122 0.134 0.339 0.580 8.044 7.114 5.001 13.58 23.00
(0.365) (0.313) (0.271) (0.156) (0.106) (0.236) (0.317) (0.429) (0.158) (0.116)

Note: Entries in parentheses are bootstrap p-values.

multiple predictors opens the door for rather complex interactions
in the parameter instability testing context.

9. Conclusions

We have developed asymptotically valid tests for structural
change in the slope and/or intercept parameters of a PR model,
based on the well known SupF and Cramer–von-Mises type struc-
tural instability test statistics of Andrews (1993) and Nyblom
(1989), respectively. To allow for an unknown degree of persis-
tence in the predictors, and for both conditional and unconditional
heteroskedasticity, a fixed regressor wild bootstrap test procedure
was proposed and its asymptotic validity established. Our validity
argument involved demonstrating that the asymptotic distribu-
tions of the bootstrap parameter constancy statistics, conditional
on the data, coincide with the asymptotic null distributions of the
corresponding statistics computed on the data, conditional on the
predictors. In doing so we have shown that the standard approach
to asymptotic bootstrap validity, based on bootstrap consistency
for the unconditional limiting distributions of the original test
statistics, is not generally applicable in cases where the bootstrap
procedure treats non-stationary regressors as fixed. Monte Carlo
simulations were reported which suggested that our proposed
methods work well. An empirical illustration using well-known
U.S. stock market data highlighted the potential value of our pro-
cedure in practice.

Appendix A

Preliminaries: In what follows we set sx,0 = 0 without loss of
generality. We also define the centred variables ẙt := yt − ȳ,
x̊t := xt − x̄−1 and ∆x̊t := ∆xt − ∆x, where ȳ = T−1∑T

t=1yt ,
x̄−1 := T−1∑T−1

t=0 xt and ∆x = T−1∑T
t=1∆xt .

By Lemma A.1 of Boswijk et al. (2016), we observe that under
Assumption 1,

T−1
T∑

t=1

ϵtϵ
′

t
p

→ H
[∫ 1

0
diag{d21(r), d

2
2(r), d

2
3(r), d

2
4(r)}dr

]
H ′, (A.1)

where diag{v} denotes a diagonal matrix with v on the main
diagonal. Next, by a routine argument, (11) implies the following

OU convergence result,

T−1/2

⎡⎣ x⌊T ·⌋

sα⌊T ·⌋

sβ⌊T ·⌋

⎤⎦ w
→

∫
·

0

⎡⎣ e−(·−s)cxdMηx(s)
e−(·−s)cαdMηα(s)
e−(·−s)cβ dMηβ (s)

⎤⎦
=

⎡⎣Mηx,cx (·)
Mηα,cα (·)
Mηβ,cβ (·)

⎤⎦ =: Mηc(·) (A.2)

and the associated convergence to stochastic integrals

T−1
⌊T ·⌋∑
t=1

⎡⎣ xt−1

sα,t−1

sβ,t−1

⎤⎦ [ϵ′

t , ∆xt , ∆sαt , ∆sβt ]

w
→

∫
·

0
Mηc(s)d[Mη(s)′,Mηc(s)′]. (A.3)

Proof of Theorem 1. In what follows we may set α = µ = 0
and β = −T−1cxh21, without loss of generality, noting that the
statistics of our interest depend on yt only through the residuals
êt and êt (τ ) which are invariant to the parameters α, µ and β .
We further define yxt := yt − h21∆xt , ẙxt := ẙt − h21∆x̊t and
ϵx
yt := ϵyt − h21d1te1t = d2te2t .
Corresponding to (6) and using invariance with respect to

nonsingular linear transformations of at , we have that LM1x :=
1

T σ̂2

∑T
i=1Ŝ

′

iV
−1
T Ŝi with Ŝi :=

1
T1/2

∑i
t=1DT åt−1êt =

1
T1/2

∑i
t=1[1,

T−1/2x̊t−1]
′êt , and Vi :=

1
T

∑i
t=1DT åt−1å′

t−1DT =
1
T

∑i
t=1[1, T

−1/2

x̊t−1]
′
[1, T−1/2x̊t−1], where DT := diag{1, T−1/2

} is a normalisation
matrix and åt := [1, x̊t ]′. Additionally, it is seen by means of a
standard argument that the process of F-statistics indexed by the
break fraction r simplifies to

F (r) =
Ŝ ′

⌊Tr⌋(V⌊Tr⌋ − V⌊Tr⌋V−1
T V⌊Tr⌋)−1Ŝ⌊Tr⌋

σ̂ 2(r)
+ op (1) (A.4)

uniformly over r ∈ Λ. The weak limit of V⌊Tr⌋ is straightforwardly
obtained using applications of the continuous mapping theorem
(CMT); in particular, DT å⌊Tr⌋

w
→ [1, M̄ηx,cx (r)]

′
:= A (r) and, hence,

V⌊Tr⌋
w
→
∫ r
0 A (s)A′ (s) ds =: V(r).

In contrast, establishing the weak limit of Ŝ⌊Tr⌋ requires some
preliminary work. To that end, consider first the limit of the partial
sum process for êt . Setting βz = T−1 and zt = T−pαgαsα,t+1 +



116 I. Georgiev et al. / Journal of Econometrics 204 (2018) 101–118

T−pβ gβxt1sβ,t+1, where pα = 0 and pβ = 1/2 for the stochastic
specification S, and pα = −1/2 and pβ = 0 for the non-stochastic
specification N, we can therefore write

yt = βxt−1 + βzzt−1 + ϵyt , t = 1, . . . , T , (A.5)

as in Eq. (1) of GHLT. Here T−1/2z⌊Tr⌋
w
→ gαMηα,cα (r) + gβMηx,cx

(r)Mηβ,cβ (r) for the stochastic specification S and T−1/2

z⌊Tr⌋
w
→ {gα + gβMηx,cx (r)}I(r ≥ τ0) for the non-stochastic

specification N, in D as T → ∞. In either case, we denote the
weak limit by Q (r) and the corresponding de-meaned process
by Q̄ (r) := Q (r) −

∫ 1
0 Q (s) ds. Since βz = O(T−1), as in GHLT,

and T−1/2z⌊Tr⌋ converges weakly in D, also as in GHLT (albeit to a
different limit), by the same argument as is used in the proof of
Theorem 2 in GHLT (which is based on orders of magnitude and
not the exact distribution of the weak limit of T−1/2z⌊Tr⌋), we can
conclude that

T−1/2
⌊Tr⌋∑
t=1

êt = T−1/2
⌊Tr⌋∑
t=1

ẙxt −

∑T
t=1 x̊t−1yxt

T−1
∑T

t=1 x̊
2
t−1

T−3/2
⌊Tr⌋∑
t=1

x̊t−1

+ ρT (r), (A.6)

where supr∈[0,1]|ρT (r)| = op(1). Furthermore,

T−1/2
⌊Tr⌋∑
t=1

ẙxt = T−1/2
⌊Tr⌋∑
t=1

ϵx
yt + T−1/2βz

⌊Tr⌋∑
t=1

zt−1

−
⌊Tr⌋
T 3/2

{
T∑

t=1

ϵx
yt + βz

T∑
t=1

zt−1

}
(A.7)

w
→

{∫ 1

0
d22 (s)

}1/2

{Bη2(r) − rBη2(1)}

+

∫ r

0
Q̄ (s)ds =: Z (r)

in D, whereas

T−1
⌊Tr⌋∑
t=1

x̊t−1yxt = T−1
⌊Tr⌋∑
t=1

x̊t−1ϵ
x
yt + T−1βz

⌊Tr⌋∑
t=1

x̊t−1zt−1 (A.8)

w
→

{∫ 1

0
d22 (s)

}1/2 ∫ r

0
M̄ηx,cx (s)dBη2(s)

+

∫ r

0
M̄ηx,cx (s)Q (s)ds

=

∫ r

0
M̄ηx,cx (s)dZ (s)

using (A.2), (A.3) and applications of the CMT. By combining these
results with T−2∑⌊Tr⌋

t=1 x̊2t−1
w
→

∫ r
0 M̄2

ηx,cx (s), we obtain the weak
limits of T−1/2∑⌊Tr⌋

t=1 êt and T−1∑⌊Tr⌋
t=1 x̊t−1êt as

Ŝ⌊Tr⌋ = T−1/2
⌊Tr⌋∑
t=1

DT åt−1êt
w
→

∫ r

0
A (s) dH(s) (A.9)

=

∫ r

0
A (s) dZ (s) − V(r){V(1)}−1

∫ 1

0
A (s) dZ (s)

=

{∫ 1

0
d22 (s)

}1/2 [∫ r

0
A (s) dY (s)

− V(r){V(1)}−1
∫ 1

0
A (s) dY (s)

]
in D2, where H (r) := Z (r) −

{∫ 1
0 M̄2

ηx,cx (s)
}−1 ∫ 1

0 M̄ηx,cx (s)dZ

(s)
∫ r
0 M̄ηx,cx (s) is the integrated residual of a continuous-time least

squares regression of dY (r) on dr and M̄ηx,cx (r)dr .

Regarding the variance estimators used in constructing the
statistics, using an order of magnitude based argument as in the
proof of Theorem 2 in GLHT, we obtain that

σ̂ 2
= T−1

T∑
t=1

(ϵx
yt )

2
+ op(1)

p
→

∫ 1

0
d2(r)2. (A.10)

On the other hand, from the definition (9) of F (r) and (A.4), it
follows that σ̂ 2(r) = σ̂ 2

− T−1Ŝ ′

⌊Tr⌋(V⌊Tr⌋ − V⌊Tr⌋V−1
T V⌊Tr⌋)−1Ŝ⌊Tr⌋ +

op(T−1), uniformly in r ∈ Λ.
By combining the previous results and using applications of the

CMT, we obtain that

LM1x
w
→

1∫ 1
0 d22(r)

∫ 1

0

(∫ r

0
A′ (s) dH(s){V(1)}−1

∫ r

0
A (s) dH(s)

)
dr

and

SupF 1x
w
→

1∫ 1
0 d22(r)

sup
r∈Λ

(∫ r

0
A′ (s) dH(s){V (r)

− V (r)V(1)−1V (r) }−1
∫ r

0
A (s) dH(s)

)
which reduce to the stated expressions in Theorem 1 on normalis-
ing H by {

∫ 1
0 d2(r)2}1/2. ■

Before progressing to the proof of Theorem 2 we define the
conditional convergence modes which will be used in the rest of
Appendix A. Let ξT (respectively, ηT ) be random elements of a
Polish space, defined on the same probability space as the original
data (respectively, the original and the bootstrap data), and ξ, η be
random elements of a Polish space defined on the same probability
space as B1. For weak convergence of random measures induced
by conditioning, i.e., of the form ξT |x

w
→ ξ |B1 and ηT |x, y

w
→

η|B1, we write resp. ξT
wx
→ ξ |B1 and ηT

w∗

→ η|B1, the definitions
being E{f (ξT )|x}

w
→ E{f (ξ )|B1} and E{g(ηT )|x, y}

w
→ E{g(η)|B1}

for all bounded continuous real functions f and g with matching
domain. Importantly, we say that the wx and w∗ convergence
are joint if (E{f (ξT )|x}, E{g(ηT )|x, y})′

w
→ (E{f (ξ )|B1}, E{g(η)|B1})′

for the same class of functions f , g . This is the meaning of joint
convergence in Theorems 2 and A.1. We notice that it is distinct
from two wx convergence results ξ ′

T
wx
→ ξ ′

|B1 and ξ ′′

T
wx
→ ξ ′′

|B1

being joint, or equivalently, from ξT
wx
→ ξ |B1 with ξT =

(
ξ ′

T , ξ
′′

T

)
and ξ =

(
ξ ′, ξ ′′

)
, where E{f (ξ ′

T , ξ
′′

T )|x}
w
→ E{f (ξ ′, ξ ′′)|B1} should

hold for bounded continuous f (and similarly, for w∗). Finally, we
recall that for random elements of a Polish space the existence of
regular conditional measures is guaranteed.

We next report in Theorem A.1 some results from GHLT,
adapted to the problem discussed here and which will subse-
quently be used in the proof of Theorem 2.

Theorem A.1. Let ẽTt (t = 1, . . . , T) be scalar measurable functions
of the data x, y and such that T−1/2∑⌊Tr⌋

t=1 ẽ
2
Tt

p
→

∫ r
0 m2(s)ds for

r ∈ [0, 1], where m(·) is a square-integrable real function on [0, 1].
Introduce ϵ∗

tb := wt ẽTt (t = 1, . . . , T), and B∗
m (·) :=

∫
·

0 m(s)dB∗(s),
where B∗ is a standard Brownian motion independent of B (and thus,
of Mη) of (11). Under Assumption 2, the following converge jointly as
T → ∞:(
T−1/2

⌊T ·⌋∑
t=1

ϵt , T−1
⌊T ·⌋∑
t=1

t−1∑
s=1

ϵxs[ϵyt , ϵαt , ϵβt ]

)
wx
→

(
Mη(·),

∫
·

0
Mηx(s)d[Mηy(s),Mηα(s),Mηβ (s)]

)⏐⏐⏐⏐ B1
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in the sense of weak convergence of random measures on D7, and(
T−1/2

⌊T ·⌋∑
t=1

e1t , T−1/2
⌊T ·⌋∑
t=1

ϵ∗

tb, T
−1

⌊T ·⌋∑
t=1

t−1∑
s=1

ϵxsϵ
∗

tb

)
w∗

→

(
B1(·), B∗

m(·),
∫

·

0
Mηx(s)dB∗

m(s)
)⏐⏐⏐⏐ B1

in the sense of weak convergence of random measures on D3.

Similarly to the discussion of Theorem 3 in GHLT, Theorem A.1
implies that T−1/2x⌊T ·⌋

wx
→ Mηx,cx (·)|B1, T−1/2sα⌊T ·⌋

wx
→ Mηα,cα (·)|B1

and T−1/2sβ⌊T ·⌋

wx
→ Mηβ,cβ (·)|B1, jointly with the convergence in

Theorem A.1. Furthermore, regarding stochastic integrals,

T−1
⌊T ·⌋∑
t=1

sx,t−1ϵit
wx
→

∫
·

0
Mηx,cx (s)dMηi(s)

⏐⏐⏐⏐ B1, i ∈ {y, α, β},

jointly with the convergence in Theorem A.1 and its implications.
By the CMT, as T−2∑⌊T ·⌋

t=1sx,t−1zt−1
wx
→

∫
·

0 Mηx,cx (s)Q (s) ds|B1 and
T−3/2∑T−1

t=1 sx,t
wx
→ Mηx,cx (1)|B1, it follows for s̊x,t := sx,t −

T−1∑T−1
i=1 sx,i and ϵx

yt := ϵyt − h21d1te1t = d2te2t that

T−1
⌊T ·⌋∑
t=1

s̊x,t−1yxt = T−1
⌊T ·⌋∑
t=1

s̊x,t−1(ϵx
yt + βzzt−1)

wx
→

{{∫ 1

0
d22 (s)

}1/2 ∫ ·

0
M̄ηx,cx (s) dBη2 (s)

+

∫
·

0
M̄ηx,cx (s)Q (s)

}⏐⏐⏐⏐⏐ B1, (A.11)

if β = −T−1cxh21 in (1) and (A.5).

Proof of Theorem 2. We may again set α = µ = 0 and β =

−T−1cxh21 without loss of generality. For the original statistics
LM1x and SupF 1x, we argue that the proof given for Theorem 1
also remains valid conditionally. To that end, notice first that for a
general sequence ξT of randomelements defined on the probability
space of the data, if ξT

p
→ K , where K is a constant, then it

follows that Exf (ξT )
p

→ f (K ) for bounded continuous real f , so
equivalently,

ξT
wx
→ K . (A.12)

Using (A.12), the remainder term in (A.6) is then seen to sat-
isfy supr∈[0,1]|ρT (r)|

wx
→ 0. Moreover, corresponding to (A.7) and

(A.8), we have that
∑

⌊Tr⌋
t=1 ẙ

x
t

wx
→ Z (r)| B1 and T−1∑⌊Tr⌋

t=1 x̊t−1yxt
wx
→∫ r

0 M̄ηx,cx (s)dZ (s)
⏐⏐ B1, by Theorem A.1 and its discussion (see

(A.11)), and the CMT. Since DT å⌊Tr⌋
wx
→ A (r)| B1 and V⌊Tr⌋

wx
→

V(r)| B1, jointly in D6 as a direct consequence of the analogous
unconditional convergence and the CMT (because the right-hand
sides are measurable with respect to x and the left-hand sides
with respect to B1), by combining the previous results we find that
Ŝ⌊Tr⌋

wx
→

∫ r
0 A (s) dH(s)

⏐⏐ B1 in D2 as the conditional counterpart of
(A.9). Again using (A.12) it follows that the expansion in (A.4) holds
also conditionally on x. Next, (A.10) and (A.12) with ξT = σ̂ 2 imply
that σ̂ 2 wx

→
∫ 1
0 d2(r)2. Using the conditional convergence of V⌊Tr⌋

and Ŝ⌊Tr⌋, we obtain the results given in Theorem 2 concerning the
original LM1x and SupF 1x statistics.

Turning next to the bootstrap LM∗

1x and SupF∗

1x statistics, we
observe first that a bootstrap invariance principle holds jointly
with the previously stated convergence results. The bootstrap
partial-sumprocess T−1/2∑⌊T ·⌋

t=1y
∗
t is of the form of T−1/2∑⌊T ·⌋

t=1ϵ
∗

tb of
Theorem A.1, with ẽTt = êt satisfying T−1∑⌊Tr⌋

t=1 ê
2
t =

T−1∑⌊Tr⌋
t=1 (ϵ

x
yt )

2
+ op(1), r ∈ [0, 1]. Under Assumption 1, using

Lemma 3 of Boswijk et al. (2016), we conclude that T−1∑⌊Tr⌋
t=1 ê

2
t

p
→∫ r

0 d22(s)ds =
∫ r
0 m2(s)ds with m = d2. For this choice of m, from

Theorem A.1 and its discussion it follows that(
T−1/2

⌊T ·⌋∑
t=1

e1t , T−1/2
⌊T ·⌋∑
t=1

y∗

t , T
−1

⌊T ·⌋∑
t=1

t−1∑
s=1

ϵxsy∗

t

)
w∗

→

(
B1, B∗

m,

∫
·

0
Mηx(s)dB∗

m(s)
)⏐⏐⏐⏐ B1 (A.13)

jointly with T−1/2x⌊T ·⌋

w∗

→ Mηx,cx |B1 and the conditional conver-
gence of LM1x and SupF 1x.

Next, with ϵ̂∗
yt denoting the residuals from the bootstrap ana-

logue of the regression in (7), it holds that

S∗

⌊Tr⌋ := T−1/2
⌊Tr⌋∑
t=1

DT åt−1ϵ̂
∗

yt =

⌊Tr⌋∑
t=1

[
T−1/2

T−1x̊t−1

]
(y∗

t − ȳ∗)

−
T−1∑T

t=1 x̊t−1y∗
t

T−2
∑T

t=1 x̊
2
t−1

⌊Tr⌋∑
t=1

[
T−3/2

T−2x̊t−1

]
x̊t−1,

where, by (A.13) and the CMT, the following can be seen to con-
verge jointly, and jointly with LM1x and SupF 1x: T−1/2∑⌊T ·⌋

t=1(y
∗
t −

ȳ∗)
w∗

→ {B∗
m(·) − (·)B∗

m(1)}|B1, T−1/2∑⌊T ·⌋

t=1 x̊t−1(y∗
t − ȳ∗)

w∗

→∫
·

0 M̄ηx,cx (s)dB
∗
m(s)|B1, T−1∑⌊T ·⌋

t=1(T
−1/2x̊t−1)i

w∗

→
∫

·

0 M̄
i
ηx,cx (s)ds|B1

(i = 1, 2) and T−1∑T
t=1x̊t−1y∗

t
w∗

→
∫ 1
0 M̄ηx,cx (s)dB

∗
m(s)|B1 analo-

gously to (A.11). Since the limit processes in D are continuous, it
further holds that

S∗

⌊Tr⌋
w∗

→ {

∫ 1

0
d22(s)}

1/2J∗0(r)
⏐⏐⏐⏐ B1:=

∫ r

0
A (s) dH∗(s)

⏐⏐⏐⏐ B1

=

∫ r

0
A (s) d{B∗

m(s) − sB∗

m(1)}

− V(r){V(1)}−1
∫ 1

0
A (s) d{B∗

m(s) − sB∗

m(1)}
⏐⏐⏐⏐ B1

=

∫ r

0
A (s) dB∗

m(s) − V(r){V(1)}−1
∫ 1

0
A (s) dB∗

m(s)
⏐⏐⏐⏐ B1

in D2, jointly with LM1x and SupF 1x, and where

H∗ (r) = B∗

m(r) − rB∗

m(1)

−

{∫ 1

0
B̄2
1η,cx (s)

}−1 ∫ 1

0
B̄1η,cx (s)dB

∗

m (s)
∫ r

0
B̄1η,cx (s).

It can then be directly checked that (J∗0, B1)
d
= (J0, B1), so

E(f (J∗0, B1)|B1) = E(f (J0, B1)|B1) a.s. for every continuous real
function f with conformable domain. This allows us to state the
limits in Theorem 2 with J0 in place of J∗0.

Finally, using the foregoing convergence results, the residual
variance from the fitted bootstrap regression analogue of (7) can
be seen to satisfy

σ̂ ∗2
= T−1

T∑
t=1

(y∗

t − ȳ∗)2 − T−1 {T−1∑T
t=1 x̊t−1y∗

t }
2

T−2
∑T

t=1 x̊
2
t−1

+ o∗

p(1)

= T−1
T∑

t=1

y∗2
t + o∗

p(1) = T−1
T∑

t=1

w2
t ê

2
t + o∗

p(1)

= T−1
T∑

t=1

ê2t + o∗

p(1) = σ̂ 2
+ o∗

p(1)

because E{T−1∑T
t=1(w

2
t − 1)ê2t |x, y}

2
= 2T−2∑T

t=1ê
4
t = op(1)

under the assumption of finite fourthmoments; here o∗
p(1) denotes



118 I. Georgiev et al. / Journal of Econometrics 204 (2018) 101–118

terms such that o∗
p(1)

w∗

→ 0.We conclude that σ̂ ∗2 w∗

→
∫ 1
0 d22 (s) and,

by the CMT, from

LM∗

1x =
1

T σ̂ ∗2

T∑
i=1

S∗′

i V−1
T S∗

i and

F∗(r) =
S∗′

⌊Tr⌋(V⌊Tr⌋ − V⌊Tr⌋V−1
T V⌊Tr⌋)−1S∗

⌊Tr⌋

σ̂ ∗2(r)

with σ̂ ∗2(r) = σ̂ ∗2
− T−1S∗′

⌊Tr⌋(V⌊Tr⌋ − V⌊Tr⌋V−1
T V⌊Tr⌋)−1S∗

⌊Tr⌋ (r ∈ Λ),
it follows that LM∗

1x and SupF∗

1x converge as asserted, jointly with
LM1x and SupF 1x. □

Proof of Corollary 1. The random cdf’s conditional on B1 of the
conditional limit distributions given in Theorem 2 are continuous
a.s. For the LM1x statistic this follows from the representation of the
limit distribution conditional on B1 as the distribution of an infinite
weighted sum of independent χ2(2) variables, similarly to Nyblom
(1989) and Rao and Swift (2006, pp. 472–473), using the continuity
ofV a.s. For SupF1x continuity of the limiting conditional cdf follows
from Proposition 3.2 of Linde (1989) applied conditionally on B1.
The proof then proceeds as that of Corollary 1 in GHLT. □

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jeconom.2018.01.005.
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