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Abstract

We consider estimation and hypothesis testing on the coefficients of the co-integrating re-

lations and the adjustment coefficients in vector autoregressions driven by shocks which

display both conditional and unconditional heteroskedasticity of a quite general and un-

known form. We show that the conventional results in Johansen (1996) for the maximum

likelihood estimators and associated likelihood ratio tests derived under homoskedasticity

do not in general hold under heteroskedasticity. As a result, standard confidence intervals

and hypothesis tests on these coefficients are potentially unreliable. Solutions based on

Wald tests (using a “sandwich” estimator of the variance matrix) and on the use of the wild

bootstrap are discussed. These do not require the practitioner to specify a parametric model

for volatility. We establish the conditions under which these methods are asymptotically

valid. A Monte Carlo simulation study demonstrates that significant improvements in finite

sample size can be obtained by the bootstrap over the corresponding asymptotic tests in

both heteroskedastic and homoskedastic environments. An application to the term struc-

ture of interest rates in the US illustrates the difference between standard and bootstrap

inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.
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1 Introduction

In this paper we focus on the problem of conducting inference (estimation and hypothesis test-

ing) on the coefficients of the co-integrating relations and associated adjustment parameters,

based around the likelihood-based methods of Johansen (1996), in vector autoregressive time

series which display time-varying behaviour in the variance of the driving shocks. We allow for

both unconditional heteroskedasticity (often referred to as non-stationary volatility in the liter-

ature) and conditional heteroskedasticity in our analysis. It is well known that the assumption

of conditional homoskedasticity appears inconsistent with financial and macroeconomic data;

see, for example, Gonçalves and Kilian (2004). A large body of recent applied work has grown

suggesting that the assumption of constant unconditional volatility is also at odds with what

is observed in the data, with a general decline in the unconditional volatility of the shocks

driving macroeconomic series in the twenty years or so leading up to the recent financial crisis,

the so-called “Great Moderation”, commonly observed; see, for example, inter alia, Kim and

Nelson (1999) and McConnell and Perez Quiros (2000) and the references therein.

These empirical findings have helped stimulate research into the impact of time-varying con-

ditional and unconditional volatility on standard time series methods. Of most relevance to this

paper, Cavaliere, Rahbek and Taylor (2010b) analyse the impact this has on the conventional

co-integration rank pseudo likelihood ratio (PLR) tests of Johansen (1996). They demonstrate

that the asymptotic null distributions of the PLR statistics, which are constructed under the

assumption that the innovations are i.i.d. and Gaussian, are non-pivotal in the presence of

unconditional heteroskedasticity. Cavaliere, Rahbek and Taylor (2014) [CRT] show that wild

bootstrap implementations of the PLR tests are, however, asymptotically valid.1 Cavaliere,

Rahbek and Taylor (2010a) provide a separate treatment for the case where the shocks are

conditionally heteroskedastic but unconditionally homoskedastic. They show that the stan-

dard PLR tests (based on asymptotic critical values) are asymptotically valid, but that the

corresponding wild bootstrap tests can deliver considerable finite sample improvements.

In this paper we make two distinct contributions to the literature. Utilising a very general

set-up which combines the assumptions of Cavaliere, Rahbek and Taylor (2010a) and Cavaliere,

Rahbek and Taylor (2010b) into a unified framework, our first contribution is to examine the

impact of time-varying volatility on the large sample properties of the standard likelihood-based

methods of estimation and hypothesis testing on the coefficients of the long run relations and

the associated adjustment coefficients (β and α, respectively, in standard notation) detailed in

Johansen (1996). In particular, we analyse the pseudo maximum likelihood (PML) estimates

1The algorithm proposed in CRT generates bootstrap samples using estimates all of which are obtained under

the rank restriction imposed by the null, as is also done in Cavaliere, Rahbek and Taylor (2012), who use an

i.i.d., rather than wild, re-sampling scheme. Cavaliere, Rahbek and Taylor (2010a,b) also propose an alternative

algorithm, along the lines of that considered in Swensen (2006) using restricted estimates only for the long run

parameters of the model. Cavaliere, Rahbek and Taylor (2012) and CRT demonstrate that the algorithms they

propose are preferable to those proposed in Cavaliere, Rahbek and Taylor (2010a,b).
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of these parameters and the associated PLR test for linear restrictions on these parameters,

both derived under the assumption of an i.i.d. Gaussian pseudo-likelihood. We also analyse the

corresponding Wald statistic, based around a PML (“sandwich”) variance matrix estimator.

We demonstrate that although the PML estimates are consistent, standard confidence intervals

and PLR test statistics based on the PML estimates of α and β will not be reliable in general,

their form depending on nuisance parameters arising from any heteroskedasticity in the shocks.

Where the shocks are unconditionally homoskedastic, however, inference on β alone is shown

to be asymptotically pivotal. For this to hold for the PLR tests involving α, conditional

heteroskedasticity must also be absent from the shocks. We show that asymptotically robust

inference can be achieved on α, regardless of any heteroskedasticity present, by using the Wald

statistic. This also holds when using the Wald statistic to test hypotheses involving β, provided

the shocks are unconditionally homoskedastic, but in general is not true when non-stationary

volatility is present. These results complement those given in Hansen (1992a) for the case of

a single equation error-correction model (as in Engle and Granger, 1987), driven by an error

term whose volatility follows a first-order integrated (I(1)) process.

Our second contribution is to develop wild bootstrap implementations of the standard PLR

and Wald tests. Extant bootstrap methods for testing hypotheses on the co-integration param-

eters deal with tests on β only and are at most devised for the case of independent, identically

distributed shocks; see Omtzigt and Fachin (2006), Cavaliere, Nielsen and Rahbek (2015) and

the references therein. In contrast, we derive the conditions under which wild bootstrap imple-

mentations of the PLR and Wald tests of hypotheses on both α and β can replicate the first order

limiting null distributions of the corresponding standard test statistics. In such cases asymp-

totically valid bootstrap inference can be performed in the presence of time-varying volatility

using the wild bootstrap versions of these tests. For the bootstrap PLR tests involving α this

requires the assumption of a further moment condition and the assumption of the absence of

asymmetric volatility clustering, as formally defined below after Assumption 2. For the PLR

tests involving only β neither of these additional assumptions is required, while for the Wald

tests, the additional assumption on the form of the volatility clustering is also not required.

When testing joint hypotheses on α and β, statistical leverage effects (defined after Assumption

2) need to be ruled out for bootstrap inference based on PLR and Wald tests.

The remainder of the paper is organised as follows. Section 2 defines the heteroskedastic

model, discussing in detail the type of time-varying volatility that we consider. We then char-

acterise the asymptotic behaviour of the common trends in the process. Next, we introduce

a class of hypotheses on the co-integrating vectors and error correction coefficients. Section 3

derives the asymptotic null distributions of the PLR and Wald test statistics for the class of hy-

potheses we consider. The wild bootstrap approach, based on a sieve-type procedure using the

PML coefficient matrix estimates from the co-integrated VAR model, is outlined in Section 4.

Here the conditions under which the wild bootstrap tests deliver asymptotically valid inference

are also detailed. In Section 5 we use Monte Carlo simulation evidence to compare the small
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sample size properties of the standard (asymptotic) tests and their bootstrap analogues for a

variety of heteroskedastic co-integrated VAR models. An empirical application of the proposed

methods to the term structure of interest rates in the US is presented in Section 6. Section 7

concludes. All proofs are contained in the Appendix.

In the following ‘
w→’ denotes weak convergence and ‘

p→’ convergence in probability, in each

case as the sample size, T , diverges; I(·) denotes the indicator function and ‘x := y’ (‘x =: y’)

indicates that x is defined by y (y is defined by x); b·c denotes the integer part of its argument.

The notation CRm×n [0, 1] is used to denote the space of m× n matrices of continuous functions

on [0, 1]; DRm×n [0, 1] denotes the space of m×n matrices of càdlàg functions on [0, 1], equipped

with the Skorohod metric. The space spanned by the columns of any m × n matrix A is

denoted as col(A); if A is of full column rank n < m, then A⊥ denotes an m× (m− n) matrix

of full column rank satisfying A′⊥A = 0. For any square matrix, A, |A| is used to denote the

determinant of A, ‖A‖ the norm ‖A‖2 := tr {A′A}, and ρ (A) its spectral radius (that is, the

maximal modulus of the eigenvalues of A). For any vector, x, ‖x‖ denotes the usual Euclidean

norm, ‖x‖ := (x′x)1/2. Finally, ⊗ denotes the Kronecker product.

2 The Heteroskedastic VAR Model and Hypotheses

We consider the following VAR(k) model in error-correction format:

∆Xt = αβ′Xt−1 +

k−1∑
j=1

Γj∆Xt−j + αρ′1D1t + µ2D2t + εt, t = 1, . . . , T, (1)

where Xt is a p-variate vector process, with initial values (X1−k, . . . , X0), which are known and

taken to be fixed in the statistical analysis, and D1t and D2t are vectors of deterministic terms,

such as a constant or linear trend, of dimensions d1 and d2, respectively. The disturbance εt

is assumed to be a p-variate vector martingale difference sequence relative to some filtration

Ft, with finite and positive definite conditional variance matrix. Further conditions on εt are

discussed below. The parameter matrices α and β, which are our key focus in this paper,

are of dimension p × r, with 0 < r < p, and {Γj}k−1
j=1 are p × p lag coefficient matrices. The

co-integration rank, r, is assumed to be known in what follows; in practice this would first be

determined using the wild bootstrap co-integration rank tests of CRT. The parameter matrices

ρ1 and µ2 are of dimension d1 × r and p × d2, respectively; note that D1t enters the model

through the error correction term α(β′Xt−1 + ρ′1D1t) only, whereas D2t appears unrestrictedly.

The usual cases of interest which we consider in this paper are: (i) D1t = 1, D2t = 0 (restricted

constant), and (ii) D1t = t, D2t = 1 (restricted linear trend); see Johansen (1992).

We assume that the process in (1) satisfies the following condition (referred to as the ‘I(1, r)

condition’ hereafter):

Assumption 1. (a) the characteristic equation associated with (1), i.e. |A (z) | = 0 with

A (z) := (1− z) Ip − αβ′z −
∑k−1

j=1 Γjz (1− z), has p − r roots equal to 1 and all other roots

4



outside the unit circle, and (b) α and β have full column rank r.

An implication of Assumption 1 is that ∆Xt and β′Xt may be written as linear processes

in terms of εt, with exponentially decaying coefficient matrices. That is, these are “stable”

processes in the sense of Cavaliere, Rahbek and Taylor (2010b), which would reduce to sta-

tionary [or I(0)] processes if the unconditional variance of εt were constant. Because we allow

for time-varying behaviour in the variance matrices (both conditional and unconditional), the

definitions of integrated and co-integrated processes do not formally apply in the present case,

although it will be convenient still to refer to the elements of β as co-integration parameters (as

in the title of this paper). The assumption on the number of unit roots excludes integration of

a higher order, and is equivalent to the assumption that |α′⊥Γβ⊥| 6= 0, with Γ := Ip−
∑k−1

j=1 Γj ;

see Johansen (1996).

As regards the sequence εt, we assume the following:

Assumption 2. The process εt can be written as εt = σtzt, where:

(a) σt = σ(t/T ), where σ(·) is a non-stochastic element of DRp×p [0, 1] such that Σ(u) :=

σ(u)σ(u)′ > 0 for all u ∈ [0, 1];

(b) zt is a p-vector martingale difference sequence relative to a filtration Ft, with conditional

variance matrix ht := E(ztz
′
t|Ft−1), satisfying

i. T−1
∑T

t=1 ht
p→ E(ztz

′
t) = Ip,

ii. T−1
∑T

t=1(ht ⊗ zt−i)
p→ E(ztz

′
t ⊗ zt−i) = %i for i ≥ 1, with supi≥1 ‖%i‖ =: % <∞,

iii. T−1
∑T

t=1(ht⊗zt−iz′t−j)
p→ E(ztz

′
t⊗zt−iz′t−j) = τ ij for i, j ≥ 1, with supi,j≥1 ‖τ ij‖ <

∞,

iv. suptE ‖zt‖
4r <∞ for some r > 1.

Assumption 2 implies that εt is a vector martingale difference sequence relative to Ft, with

conditional variance matrix Σt|t−1 := E(εtε
′
t|Ft−1) = σthtσ

′
t, and time-varying unconditional

variance matrix Σt := E (εtε
′
t) = σtσ

′
t > 0.2 As such, it combines the assumptions of Cavaliere,

Rahbek and Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b), who consider VAR

models with stationary conditional heteroskedasticity or non-stationary unconditional volatil-

ity, respectively. These are obtained as special cases with σ(·) = σ (constant unconditional

variance, hence only conditional heteroskedasticity) and ht = Ip (so Σt|t−1 = Σt = Σ(t/T ), only

unconditional non-stationary volatility). As discussed in Cavaliere, Rahbek and Taylor (2010b),

2Notice that, since σt is unrestricted, the assumption that E(ztz
′
t) = Ip made in part (b)i is without loss

of generality and is made only to simplify notation. In particular, any εt = σtzt satisfying Assumption 2 with

E(ztz
′
t) = Ω can also be expressed as εt = σ̃tz̃t with E(z̃tz̃

′
t) = Ip and σ̃t := σtΩ

−1/2, where both z̃t and σ̃t

satisfy Assumption 2.
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Assumption 2 (a) implies that the elements of Σt are only required to be bounded and to dis-

play a countable number of jumps, therefore allowing for an extremely wide class of potential

models for the behaviour of the variance matrix of εt, including single or multiple variance or

covariance shifts, variances which follow a broken trend, and smooth transition variance shifts.

Assumption 2 (b), which is closely related to Assumption A of Gonçalves and Kilian (2004),

allows for (possibly asymmetric) volatility clustering and statistical leverage effects. Volatil-

ity clustering, such as generalised autoregressive-conditional heteroskedasticity (GARCH), is

allowed for by the assumption that zt is a martingale difference sequence where the quantity

τ ii := E(ztz
′
t⊗zt−iz′t−i) is not necessarily equal to E(ztz

′
t)⊗E(zt−iz

′
t−i) = Ip. In particular, Deo

(2000) provides examples of stochastic volatility and GARCH processes that satisfy Assumption

2 (b), including Gaussian GARCH(1,1) processes with a finite unconditional 8th moment. Sta-

tistical leverage occurs where the quantity %i := E (ht ⊗ zt−i) is non-zero for some i = 1, 2, ....

Likewise asymmetric volatility clustering, that is correlation between the conditional variance

ht and cross products of past shocks zt−iz
′
t−j , is allowed for by non-zero τ ij for i 6= j. For the

benefit of the reader when excluding leverage and asymmetric volatility clustering respectively,

we summarise this as % = 0 and τ = 0, where % := sup ‖%i‖ and τ := supi,j≥1,i 6=j ‖τ ij‖; cf.

Assumption 2.

It should be stressed that Assumption 2 (b) rules out non-stationary conditional het-

eroskedasticity such as is generated by, for example, near-integrated GARCH models and the

non-stationary autoregressive volatility processes of Hansen (1995); see Cavaliere and Tay-

lor (2009, p. 1235) for further discussion of models allowing for non-stationary conditional

heteroskedasticity. The non-stationary non-linear heteroskedastic (NNH) framework of Park

(2002) and Chung and Park (2007) is also not permitted under our assumptions. In our set-up

the volatility function σt = σ (t/T ) is defined through a triangular array, thereby allowing for

breaks in correlation and variance which are not permitted in the NNH setup where σt = f (vt)

with vt a random walk and f(·) a time-invariant function.

2.1 Representation

Before we introduce the class of hypotheses we will consider in this paper, we provide some pre-

liminary results on the stable and unstable linear combinations of Xt. Let µDt = µ1D1t+µ2D2t,

where µ1 = αρ′1, and let Xt := (X ′t, . . . , X
′
t−k+1)′, and Xβt :=

(
X ′tβ,∆X

′
t, . . . ,∆X

′
t−k+1

)′
=

B′Xt, where B is defined implicitly; if k = 1, then B = β and Xβt = β′Xt. Lemma 1 of Cav-

aliere, Rahbek and Taylor (2010b) applies directly to our model under Assumptions 1 and 2,

and states that

Xβt = ΦXβ,t−1 + F (µDt + εt), (2)

where the autoregressive matrix is defined by Φ := Ir+p(k−1) + B′A, with

A :=

(
α Ψ

0 Ip(k−1)

)
, Ψ := [Γ1, . . . ,Γp−1],
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and where F := (β, Ip, 0, . . . , 0)′. Because ρ(Φ) < 1, Xβt is a stable process. For Xt, Lemma 1

of Cavaliere, Rahbek and Taylor (2010b) yields the result that

Xt = C
t∑
i=1

(µDi + εi) + St + C0, (3)

where C := β⊥ (α′⊥Γβ⊥)−1 α′⊥, St := (Ir, 0, . . . , 0)A(B′A)−1Xβt, and where C0 is a constant,

depending on the initial values, defined by C0 := C (Ip,−Ψ)X0. These results are purely

algebraic and, hence, do not depend on specific assumptions on εt = σtzt. The result in (3)

implies that the stochastic part of α′⊥ΓXt is given by the sum of the heteroskedastic random

walk
∑t

i=1 α
′
⊥εi, and the stable process α′⊥ΓSt.

The following result gives the limiting behaviour of the random walk component,
∑t

i=1 εi,

and of a particular sample moment matrix. It is a direct extension of Lemma 2 of Cava-

liere, Rahbek and Taylor (2010b), although in the present context we also allow for stationary

conditional heteroskedasticity in zt of the form specified in Assumption 2 (b):

Lemma 1. Let εt = σtzt satisfy Assumption 2, and let W (·) denote a p-variate standard

Brownian motion. Then,(
MT (·),

∫ 1

0
MT (s)dMT (s)′

)
:=

 1

T 1/2

bT ·c∑
t=1

εt,
1

T

T∑
t=1

(
t−1∑
i=1

εi

)
ε′t

 w→
(
M(·),

∫ 1

0
M(s)dM(s)′

)
,

where M(·) :=
∫ ·

0 σ(s)dW (s) is a p-variate continuous martingale.

2.2 Hypotheses

For unknown parameters α and β (of dimension p×r but not necessarily of full column rank), ρ1,

{Γj}k−1
j=1 and µ2, and for a given sequence {εt} satisfying Assumption 2, (1) is the unrestricted

heteroskedastic co-integrated VAR model, denoted in what follows as Hr. It will be convenient

to write the model in the compact form

Z0t = αβ#′Z1t + Ψ#Z2t + εt, (4)

with Z0t := ∆Xt, Z1t := (X ′t−1, D
′
1t)
′, Z2t := (∆X ′t−1, . . . ,∆X

′
t−k+1, D

′
2t)
′, β# := (β′, ρ′1)′ and

Ψ# := (Ψ, µ2). If Dit is set equal to 0, it is understood that Dit is to be dropped from the

definition of Zit, i = 1, 2. We also define p# := p+ d1, the number of rows of β#.

Within this model we wish to test linear hypotheses on the co-integration parameters β# and

the adjustment coefficients α. Because β# is only identified up to its column space, some restric-

tions are needed to identify the individual components of β#, before further (over-identifying)

restrictions can be considered. Therefore, we normalise β by c′β = Ir for some known p × r
matrix of full column rank, so that β = c̄ + c⊥β2, where β2 = c̄′⊥β is a (p − r) × r matrix of

free parameters; where c̄ = c(c′c)−1 and c̄⊥ = c⊥(c′⊥c⊥)−1. Defining

β#
2 :=

(
β2

ρ1

)
, c# :=

(
c

0

)
, c#⊥ :=

(
c⊥ 0

0 Id1

)
,
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and c̄# = c#(c#′c#)−1, c̄#
⊥ = c#

⊥(c#′
⊥ c

#
⊥)−1, we similarly have β# = c̄# + c#

⊥β
#
2 , with

β#
2 = c̄#′

⊥ β
#. Based on this normalisation, we consider the following class of hypotheses on β#

2

and α:

H0β : Rβ vecβ#
2 = qβ, H0α : Rα vecα′ = qα,

H0αβ = H0β ∩H0α : Rθ = q, (5)

where Rβ and Rα are matrices of dimensions rβ× (p#−r)r and rα×pr, respectively, of full row

rank, and qβ and qα are rβ × 1 and rα× 1 vectors; furthermore, R = diag(Rβ, Rα), q = (q′β, q
′
α),

and θ = ((vecβ#
2 )′, (vecα′)′)′. The theory developed in this paper could be extended to more

general non-linear restrictions, and restrictions linking α and β, but (5) appears to offer a

sufficient level of generality for most practical purposes. In what follows, we will often use the

notation H0 in a generic sense to mean either H0β, H0α or H0αβ.

For obtaining the PML estimators under the restrictions (5), needed to compute the PLR

statistic, we rewrite the joint hypothesis H0αβ (together with the normalisation of β#) as:

H ′0αβ : vecβ# = Hφ+ h, vecα′ = Gψ + g, (φ, ψ) ∈ Rlφ × Rlψ , (6)

where H = Q⊥ and h = Q(Q′Q)−1((vec Ir)
′, q′β)′, with Q = [ (Ir ⊗ c#) (Ir ⊗ c̄#

⊥)R′β ], where

G = (R′α)⊥ and g = R′α(RαR
′
α)−1qa, and where φ and ψ are unrestricted parameters, of

dimensions lφ = (p# − r)r − rβ and lψ = pr − rα. Null hypotheses of the form (6), but

with g = 0, were considered by Boswijk (1995) (see also Boswijk and Doornik (2004)), as a

generalisation of the restrictions β#
i = Hiφi + hi on the separate vectors of β# considered by

Johansen (1995). If only restrictions on β# are considered (i.e., for testing H0β), then G = Ipr

and g = 0; for hypotheses H0α on only α, take H = (Ir ⊗ c#
⊥) and h = vec c̄#.

3 Asymptotic Inference

In this section we analyse asymptotic inference on the class of hypotheses in (5) defined in the

previous section, in the model (1) under Assumptions 1 and 2. As in Johansen (1996), the

analysis will be based on the Gaussian pseudo-likelihood, derived from the assumption that εt

is an i.i.d. N(0,Σ) sequence. Assumption 2 implies that in general, this likelihood is based on

a misspecified model, and the purpose of this section is to assess the asymptotic consequences

of this mis-specification. We analyse the PLR test as well as a Wald test based on the PML

variance matrix estimate of the parameter estimators.

To simplify notation, asymptotic results will be provided only for the model with a restricted

constant, where Z1t = (X ′t−1, 1)′ and Z2t = (∆X ′t−1, . . . ,∆X
′
t−k+1)′, so Ψ# = Ψ. Analogous

results can be obtained for models with a more general specification of the deterministic com-

ponents, but at the cost of more involved notation.

In what follows, for a given vector of parameters, θ say, the unrestricted PML estimator

for θ will be denoted θ̂, while the PML estimator obtained under the restrictions in (5) will be

denoted θ̃.
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3.1 The PLR Test

The concentrated pseudo-log-likelihood in terms of the parameters α, β# and Σ can be expressed

in terms of the sample moment matrices

Sij := Mij −Mi2M
−1
22 M2j , i, j = 0, 1, (7)

with Mij := T−1
∑T

t=1 ZitZ
′
jt, i, j = 0, 1, 2. Up to a constant, the pseudo-log-likelihood is given

by

`(α, β#,Σ) = −T
2

log |Σ| − T

2
tr Σ−1(S00 − 2αβ#′S10 + αβ#′S11β

#α′). (8)

If α is unrestricted, the log-likelihood may be further concentrated with respect to α and Σ to

yield

`(β#) = −T
2

log
∣∣∣S00 − S01β

#(β#′S11β
#)−1β#′S10

∣∣∣− Tp

2
. (9)

The maximiser of `(β#) under the normalisation c#′β# = Ir, see Johansen (1996), is

given by β̂
#

:= β̂
#

u (c#′β̂
#

u )−1, where β̂
#

u := [v̂1, . . . , v̂r], with v̂i, i = 1, . . . , r the eigenvec-

tors corresponding to r largest eigenvalues λ̂1 ≥ . . . ≥ λ̂r of the generalised eigenvalue problem∣∣λS11 − S10S
−1
00 S01

∣∣ = 0. The maximised log-likelihood is given by

`(β̂
#

) = `(β̂
#

u ) = −T
2

(
p+ log |Σ̂|

)
, Σ̂ := S00

∏r
i=1(1− λ̂i).

Under the restrictions vecβ# = Hφ + h, vecα′ = Gψ, the log-likelihood (8), possibly after

concentrating out Σ, can be maximised over (φ, ψ) using a Newton-type algorithm. Alterna-

tively, a switching algorithm can be used that exploits the fact that expressions for the partial

maximisers β̃
#

(α,Σ), α̃(β#,Σ) and Σ̃(α, β#) of `(α, β#,Σ) are available in closed form; see

Boswijk (1995) and Boswijk and Doornik (2004) for further details. Letting Σ̃ denote the PML

estimator of Σ under the restrictions, the PLR statistic is then given by

LRT := T log |Σ̃|/|Σ̂|.

In order to be able to discuss hypothesis testing on α and β separately, as well as jointly, we

introduce the following notation: for H0α, denote the PLR statistic by LRT (α); and for H0β,

the PLR statistic is denoted by LRT (β); for H0αβ, the PLR statistic is denoted by LRT (α, β).

The next lemma characterises the asymptotic behaviour of the three sufficient statistics

S00, S10 = S′01 and S11. These results will subsequently be used to characterise the limiting

behaviour of the likelihood function and, hence, of the PLR statistic.

Lemma 2. Let Xt satisfy the model (1) under Assumptions 1 and 2. Let BT := diag(T−1/2β⊥, 1)

and S1ε := S10 − S11β
#α′, with Sij , i, j = 0, 1 as given in (7). Then,

β#′S11β
# p→ Σ̄ββ , β#′S10

p→ Σ̄β0, S00
p→ Σ̄00, (10)

and

T 1/2β#′S1ε
w→ N(0,Ω), (11)

9



where Σ̄ββ and Ω are positive definite matrices, defined in the Appendix, and where Σ̄β0 :=

Σ̄ββα
′ and Σ̄00 := Σ̄ + αΣ̄ββα

′, with Σ̄ :=
∫ 1

0 Σ(s)ds. Furthermore,(
B′TS11BT , T

1/2B′TS1ε

)
w→
(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
, (12)

where G(u) := (M(u)′C ′β⊥, 1)′, and

B′TS11β
# p→ 0. (13)

The expressions for Σ̄ββ and Ω, derived in the proof of Lemma 2 in the Appendix, imply

that in general Ω 6= Σ̄⊗ Σ̄ββ . This implies that T 1/2(β#′S11β
#)−1/2β#′S1εΣ̂

−1/2, which would

be a natural candidate for a standardised version of β#′S1ε provided that Σ̂
p→ Σ̄, is in general

not an asymptotically standard normal random vector. The property Ω = Σ̄⊗ Σ̄ββ only holds if

both σ(s) = σ (a constant unconditional volatility) and τ ij = I(i = j)Ip2 for all i, j ≥ 1 (which

excludes volatility clustering). This will have implications for testing hypotheses on α in the

next theorem, which gives the asymptotic null distribution of the PLR statistic, together with

some additional results on the consistency and asymptotic distribution of the PML estimators.

For notational convenience, we only consider the case where the restrictions on β# do not

involve the constant term ρ1, and hence relate to β2 only.

Theorem 1. Under the conditions of Lemma 2:

(a) the PML estimators of (β#, α,Ψ) are consistent, i.e., β̂
# p→ β#, α̂

p→ α, Ψ̂
p→ Ψ, and

Σ̂
p→ Σ̄;

(b) the asymptotic distribution of β̂2, ρ̂1 and α̂ is given by(
T (β̂2 − β2)

T 1/2(ρ̂1 − ρ1)

)
w→

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′,

T 1/2(α̂− α)′
w→ N(0, [Ip ⊗ Σ̄−1

ββ ]Ω[Ip ⊗ Σ̄−1
ββ ]),

where Gc(u) := diag(β′⊥c⊥(β′⊥β⊥)−1, 1)G(u) and Mα(u) := (α′Σ̄−1α)−1α′Σ̄−1M(u);

(c) under H0β and H0α respectively,

LRT (β)
w→ LR∞(β), LRT (α)

w→ LR∞(α) (14)

where

LR∞(β) :=

(
Rβ vec

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′

)′

×

(
Rβ

[
(α′Σ̄−1α)−1 ⊗

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1
]
R′β

)−1

×Rβ vec

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′ (15)

LR∞(α) := Z ′
(
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)1/2

×
(
Rα[Σ̄⊗ Σ̄−1

ββ ]R′α

)−1 (
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)1/2
Z (16)
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and where Z ∼ N(0, Irα). Moreover, under H0αβ,

LRT (α, β)
w→ LR∞(β) + LR∞(α) =: LR∞ (α, β) . (17)

Notice that LR∞(β) and LR∞(α) are mutually independent if % = 0, because where this

condition holds Z is independent of (Gc,Mα).

Remark 3.1. It can be seen from part (b) of Theorem 1 that the normalised estimators, β̂2, ρ̂1

and α̂ attain exactly the same rates of consistency under heteroskedasticity of the form given

in Assumption 2 as they do under the assumption of i.i.d. shocks; cf. Johansen (1996, Chapter

13). Moreover, it is also seen from part (a) that the PML estimates of the short-run dynamic

parameter matrices, Γ1, . . . ,Γk−1, also retain consistency under heteroskedasticity.

Remark 3.2. Observe from (17) that the limiting null distribution of the joint PLR test

statistic for H0αβ is given by the sum of the limiting null distributions for the corresponding

LRT (α) and LRT (β) statistics, both of which can be seen to depend on nuisance parameters

arising from the heteroskedasticity present in the shocks. These condition, % = 0, for the

mutual independence of these two components entails that the conditional variance matrix of

zt is independent of lagged levels, thereby ruling out any statistical leverage effects.

Remark 3.3. Consider the limiting random variable, LR∞(β) in (15), relating to the restric-

tions on β. The stochastic integral
∫ 1

0 Gc(s)dMα(s)′ clearly plays a key role in the asymptotic

distribution of β̂
#

2 . Both Gc(·) and Mα(·) can be expressed as linear combinations of the

continuous-time Gaussian martingale M(·) =
∫ ·

0 σ(s)dW (s). This means that these two pro-

cesses are independent only if their cross-variation process

〈Gc,Mα〉 (u) = Aβ′⊥C 〈M〉 (u)Σ̄−1α(α′Σ̄−1α)−1

= Aβ′⊥C

∫ u

0
Σ(s)dsΣ̄−1α(α′Σ̄−1α)−1

is zero for all u ∈ [0, 1], where A := diag(β′⊥c⊥(β′⊥β⊥)−1, 1). Although the property Cα =

β⊥(α′⊥Γβ⊥)−1α′⊥α = 0 implies that 〈Gc,Mα〉 (1) = 0, this property does not extend to all

u, so that in general, the two processes are not independent. This in turn implies that the

distribution of
∫ 1

0 Gc(s)dMα(s)′ is in general not mixed Gaussian, which is a necessary condition

for a quadratic form in this stochastic integral to have a χ2 distribution. Clearly, if σ(u) is

constant, then Gc and Mα are independent vector Brownian motions, and here it is simple to

show that LR∞(β) is χ2(rβ) distributed, as is the case for i.i.d. shocks; see Johansen (1996).

Remark 3.4. A further example where Gc(·) and Mα(·) are independent occurs where Σ(u)

can be written as the product of a constant matrix Σ and a scalar time-varying process v(u),

corresponding to the case of “common volatility shocks”; see Remark 2.3 of Cavaliere, Rahbek

and Taylor (2010b). However, in this example LR∞(β) will not be χ2(rβ) distributed in gen-

eral. To see why, observe that
∫ u

0 Σ(s)dsΣ̄−1 =
∫ u

0 v(s)dsv̄−1Ip, where v̄ =
∫ 1

0 v(s)ds, so that

11



〈Gc,Mα〉u = 0 for all u, and the distribution of
∫ 1

0 Gc(s)dMα(s)′ is again mixed Gaussian, but

in this case with conditional variance matrix[
(α′Σ̄−1ᾱ)−1α′Σ̄−1 ⊗ Ip#−r

] ∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds

[
Σ̄−1α′(α′Σ̄−1ᾱ)−1 ⊗ Ip#−r

]
.

Now ∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds = Σ⊗

∫ 1

0
v(s)Gc(s)Gc(s)

′ds

6= Σv̄ ⊗
∫ 1

0
Gc(s)Gc(s)

′ds = Σ̄⊗
∫ 1

0
Gc(s)Gc(s)

′ds

unless v(u) = 1 and, hence, Σ(u) = Σ for all u ∈ [0, 1]. Consequently, in this case LR∞(β)

will only be χ2(rβ) distributed when σ(u) is constant. However, we will subsequently show in

Section 3.2 below that the independence of Gc(·) and Mα(·) is necessary and sufficient for the

Wald tests based on the use of a sandwich-type PML variance matrix to deliver χ2 inference.

Remark 3.5. Notice that inference on β# is asymptotically unaffected by the possibility of

volatility clustering in zt (where the conditional variance matrix ht may be correlated with

lagged squares and cross-products), because the matrices τ ij = E(ztz
′
t⊗ zt−iz

′
t−j) do not enter

the right member of (15).

Remark 3.6. Turning to the limiting distribution in (16), relating to the restrictions on α,

we observe that LR∞(α) is a quadratic form in a standard normal vector. However, because

the weight matrix in this quadratic form is, in general, not an identity matrix, LR∞(α) will

not have a χ2(rα) distribution in general. As discussed below Lemma 2, standard inference

does, however, obtain if both σ(u) is constant and zt does not display volatility clustering, so

that τ ij = I(i = j)Ip2 for all i, j ≥ 1. More generally, however, standard asymptotic inference

is expected to be delivered by the PML-based Wald test, as will be discussed in the next

subsection.

Remark 3.7. Hansen (1992a) considers asymptotic inference on β2 in a single equation Engle

and Granger (1987) co-integrating regression model where the regressors are homoskedastic

I(1) processes but the errors display non-stationary volatility (specifically, volatility follows

an I(1) process in his set-up). In the notation of the present paper, this corresponds to the

case where α′⊥M(u) is a Brownian motion with constant variance matrix α′⊥Σ̄α⊥, and where

Mα(u) has a time-varying (conditional) variance matrix. Hansen (1992a) shows that mixed

normal inference arises if the Brownian motion driving Mα is independent of α′⊥M(u) and the

stochastic volatility process, which implies that α′Σ̄−1Σ(u)α⊥ = 0 for all u ∈ [0, 1]. Notice that

by a suitable choice of the matrix square root σ(·) of Σ(·), we may write[
α′Σ̄−1

α′⊥

]
σ(u) =

[
ω11(u) ω12(u)

0 ω22

]
,

where ω22ω
′
22 = α′⊥Σ̄α⊥ and ω11(u)ω11(u)′ + ω12(u)ω12(u)′ = α′Σ̄−1Σ(u)Σ̄−1α. We also know

that
∫ 1

0 α
′Σ̄−1Σ(u)α⊥du =

∫ 1
0 ω12(u)ω′22du = ω̄12ω

′
22 = 0. However, this by itself does not guar-

antee or require that ω12(u) = 0 for all u. It is the specific structure of the model considered in

12



Hansen (1992a) which implies that α′Σ̄−1M(u) =
∫ u

0 ω11(s)dW1(s) and α′⊥M(u) = ω22W2(u),

and hence yields the independence of the two processes. �

3.2 Wald Test

A Wald test statistic for null hypotheses as in (5) takes the form

WT := (Rθ̂ − q)′(RV̂ar[θ̂]R′)−1(Rθ̂ − q), (18)

where V̂ar[θ̂] is an estimate of the asymptotic (conditional) variance matrix of θ̂. As in the

previous section, we denote by WT (α), WT (β) and WT (α, β) test statistics for hypotheses on

α only, on β only, and jointly on α and β, respectively. We consider a PML-based variance

matrix, which may be expressed as follows. Let γ := (θ′, (vec Ψ′)′)′, and define the following

estimates of the information matrix for γ based on minus the Hessian matrix and the outer

product of gradients, respectively:

H := −∂
2`(γ)

∂γ∂γ′
= T

[
J ′(Σ−1 ⊗M11)J J ′(Σ−1 ⊗M12)

(Σ−1 ⊗M21)J (Σ−1 ⊗M22)

]
,

I :=
T∑
t=1

∂`t(γ)

∂γ

∂`t(γ)

∂γ′
=

T∑
t=1

[
J ′(Σ−1εtε

′
tΣ
−1 ⊗ Z1tZ

′
1t)J J ′(Σ−1εtε

′
tΣ
−1 ⊗ Z2tZ

′
1t)

(Σ−1εtε
′
tΣ
−1 ⊗ Z2tZ

′
1t)J (Σ−1εtε

′
tΣ
−1 ⊗ Z2tZ

′
2t)

]
,

where J := ∂ vec(β#α′)/∂θ′ = [ (α⊗ c#
⊥) (Ip ⊗ β#) ]. ThenV̂ar[θ̂] =

(
Ilθ 0

)
Ĥ−1ÎĤ−1

(
Ilθ

0

)
,

where lθ := (p# − r)r + pr = dim θ, and Ĥ and Î are as defined above, evaluated at γ = γ̂. In

these expressions, the dependence of ` on Σ is suppressed, and derivatives with respect to the

variance parameters are not taken into account, due to the asymptotic block-diagonality of the

Hessian matrix with respect to the regression and variance parameters.

In Theorem 2 we detail the asymptotic null distribution of the Wald statistic, WT of (18).

This follows an important preparatory result relating to the scaled partial sum of the PML

residuals from the estimation of (1), ε̂, given in Lemma 3.

Lemma 3. Under the conditions of Lemma 2, V̂T (u) := T−1
∑bTuc

t=1 ε̂tε̂
′
t
p→
∫ u

0 Σ(s)ds =: V (u),

uniformly in u ∈ [0, 1].

Theorem 2. Under the conditions of Lemma 2, and under H0α and H0β respectively,

WT (β)
w→W∞(β), WT (α)

w→ Z ′Z (19)

where Z ∼ N(0, Irα),

W∞(β) :=

(
Rβ
(
Ir ⊗K−1

)
vec

∫ 1

0
Gc(s)dMα(s)′

)′
×
(
Rβ
(
Ir ⊗K−1

)〈
vec

∫ ·
0
Gc(s)dMα(s)′

〉
(1)
(
Ir ⊗K−1

)
R′β

)−1

×Rβ
(
Ir ⊗K−1

)
vec

∫ 1

0
Gc(s)dMα(s)′
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and where K :=
∫ 1

0 Gc(s)Gc(s)
′ds,〈∫ ·

0
vecGc(s)dMα(s)′

〉
(u) =

∫ u

0

[
〈Mα〉 (s)⊗Gc(s)Gc(s)′

]
ds,

with 〈Mα〉 (s) = (α′Σ̄−1α)−1α′Σ̄−1Σ(s)Σ̄−1α(α′Σ̄−1α)−1. Moreover, under H0αβ,

WT (α, β)
w→W∞(β) + Z ′Z =:W∞ (a, β) , (20)

where W∞(β) and Z ′Z are independent if % = 0.

Remark 3.8. It is seen from (19) that, unlike the PLR test, the PML-based Wald test leads

to standard asymptotic χ2 inference on the adjustment parameters α without the need for any

further assumptions. However, Wald-based inference on β is in general not mixed Gaussian

in the limit, because the processes Gc and Mα which appear in W∞(β) are in general not

independent, as discussed in Remark 3.4. However, and in contrast to the component LR∞(β)

appearing in the asymptotic null distribution of the LRT statistic, the quadratic form inW∞(β)

now involves a weight matrix that is the inverse quadratic variation of the stochastic integral.

This implies that W∞(β) will be χ2(rβ) distributed when Gc and Mα are independent, as

happens in the “common volatility shocks” example outlined in Remark 3.4. �

For completeness, we summarise the asymptotic null distribution of the WT statistic in the

case where Gc and Mα are independent in following corollary.

Corollary 1. Under the conditions of Lemma 2, and if α′⊥Σ(u)Σ̄−1α = 0 for all u ∈ [0, 1], then

under H0β, WT (β)
w→ χ2(rβ). Moreover, if in addition % = 0 then under H0αβ, WT (α, β)

w→
χ2(rβ + rα).

We conclude this section by providing a theorem detailing the consistency of the restricted

PML estimators, which will subsequently be needed to prove the consistency of our proposed

method of bootstrap inference outlined in the next section.

Theorem 3. Let the conditions of Lemma 2 hold. Then, under the restrictions in (5): β̃2−β2 =

Op(T
−1), ρ̃1 − ρ1 = Op(T

−1/2), α̃ − α = Op(T
−1/2), and Ψ̃ − Ψ = Op(T

−1/2). Further-

more, denoting the associated PML residuals from restricted estimation of (1) by ε̃t, ṼT (u) :=

T−1
∑bTuc

t=1 ε̃tε̃
′
t
p→ V (u), uniformly in u ∈ [0, 1].

4 Bootstrap Inference

In this section we outline our proposed wild bootstrap-based implementations of the PLR and

Wald tests from Section 3. We provide sufficient conditions for the wild bootstrap implemen-

tations of the PLR and Wald tests to be asymptotically valid under heteroskedasticity of the

form given in Assumption 2, although as we will show in some cases these conditions will need

to be strengthened somewhat.
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The following notation will be used throughout this section: P ∗ and E∗ respectively denote

the probability and expectation conditional on the realization of the original sample. Moreover,

for a given sequence X∗T computed on the bootstrap data, with the notations X∗T = X + o∗p (1),

in probability, and X∗T
p∗→p X we mean that P ∗ (|X∗T −X| > ε) → 0 in probability, for any

ε > 0 as T →∞. Finally, ‘
w∗→p’ denotes weak convergence in probability (Giné and Zinn (1990);

Hansen (1996)); that is, X∗T
w∗→p X if supx∈R |P ∗ (X∗T ≤ x)− P (X ≤ x) | →p 0, as T →∞.

4.1 Wild Bootstrap Algorithms

We first outline our proposed algorithm which draws on the wild bootstrap principle; see, inter

alia, Wu (1986) and Mammen (1993). The bootstrap algorithm we propose is based on the

restricted Gaussian PML parameter estimates obtained by estimating the model in (1) under

the null hypothesis H0 of (5), as outlined in 3. More specifically, let θ̃ := {α̃, β̃, ρ̃1, Ψ̃
#, µ̃2}

denote the restricted PML estimators of θ := {α, β, ρ1,Ψ
#, µ2}, define β̃

#
:= (β̃

′
, ρ̃′1)′. Recall

that ε̃t := Z0t − α̃β̃
#′
Z1t − Ψ̃#Z2t, with Zit, i = 0, 1, 2, as defined in Section 2.2, denote the

corresponding PML residuals from the estimation of (1) under H0.

When applying bootstrap methods in the context of autoregressive time series models, it

is common practice to check that the bootstrap data generated in Algorithm 1 will satisfy the

I(1, r) conditions (cf. Assumption 1); see, in particular, Swensen (2006) and Cavaliere, Rahbek

and Taylor (2010a,b, 2012, 2014). In the context of the setting considered in this paper this

entails checking that the equation |Ã (z) | = 0, with Ã (z) := (1− z) Ip−α̃β̃
′
z−
∑k−1

i=1 Γ̃iz (1− z),
has roots either equal to 1 or outside the unit circle. Where this condition is not satisfied the

bootstrap samples generated in step (ii) of Algorithm 1 will contain explosive roots which could

be attributable to either finite sample bias in the parameter estimates, or might indicate that

the underlying model is dynamically misspecified. As such, the safe strategy would be not to

use Algorithm 1 (or indeed the corresponding asymptotic tests) in such cases, although in the

case where the model is correctly specified the evidence from a large simulation study reported

in Cavaliere, Taylor and Trenkler (2015) suggests that, at least for the case of the bootstrap

PLR tests of co-integration rank considered in Cavaliere, Rahbek and Taylor (2012, 2014), the

root check can be safely ignored in practice. Reassuringly, in the Monte Carlo experiments

reported in this paper we also found such violations to be extremely rare; see Section 5.

Algorithm 1 (wild bootstrap):

(i) Compute the re-centered residuals ε̃c,t := ε̃t − T−1
∑T

i=1 ε̃t and construct the bootstrap

errors ε∗t := ε̃c,twt, where wt, t= 1, . . . , T , is an i.i.d. sequence with E(wt) = 0, E(w2
t ) = 1

and E(w4
t ) <∞.

(ii) Construct the bootstrap sample {X∗t } from the recursion

∆X∗t = α̃β̃
#′
X∗t−1 +

k−1∑
j=1

Γ̃j∆X
∗
t−j + α̃ρ̃′1D1t + µ̃2D2t + ε∗t , t = 1, . . . , T, (21)
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with the T bootstrap errors ε∗t generated in step (i) and with initial values X∗t = Xt for

t = −k + 1, . . . , 0.

(iii) Using the bootstrap sample, {X∗t }, compute the bootstrap test statistic S∗T , where S∗T

generically denotes either the PLR or the Wald statistic, as detailed in Section 3.1. Define

the corresponding p-value as P ∗T := 1−G∗T (ST ) with G∗T (·) denoting the conditional (on

the original data) cumulative density function (cdf) of S∗T .

(iv) The wild bootstrap test of H0 at level ξ rejects if P ∗T ≤ ξ.

Remark 4.1. In the context of stationary data, it is often found (for a review, see Davidson

and Flachaire (2008)) that improved accuracy can be achieved by generating the pseudo-data

according to an asymmetric distribution such as the Mammen (1993) distribution: P (wt =

−0.5(
√

5−1)) = 0.5(
√

5+1)/
√

5 =: π, P (wt = 0.5(
√

5+1)) = 1−π. Two other commonly used

distributions are the two-point distribution P (wt = −1) = P (wt = 1) = 0.5 and an i.i.d. N(0, 1)

sequence. The large sample properties of the resulting bootstrap tests are not affected by this

choice. In simulations we found that these three gave very similar small sample performance,

and so the results presented in Section 5 relate to the use of the N(0, 1) distribution for wt.

Remark 4.2. The parameter estimates and associated residuals from (1) which are used in

constructing the bootstrap sample data in steps (i) and (ii), are obtained under the restriction

of the null hypothesis, H0 of (5). As suggested in Omtzigt and Fachin (2006), it would also

be possible to estimate these parameters without imposing the null (i.e., using the unrestricted

PML estimators detailed in Section 3.1 and in Theorem 1), and to subsequently calculate a

bootstrap test statistic for the hypothesis Rθ = Rθ̂. Unreported simulations indicate that the

bootstrap based on restricted estimates is largely preferred. Hence, throughout this section for

economy of discussion we will only explicitly discuss the bootstrap based on restricted estimates.

Remark 4.3. The unknown cdf G∗T (·) required in step (iii) of Algorithm 1 can be approx-

imated by generating B (conditionally) independent bootstrap statistics, S∗T :b, b = 1, . . . , B,

computed as in Algorithm 1. The simulated bootstrap p-value for ST is then computed as

P̃ ∗T := B−1
∑B

b=1 I(S∗T :b > ST ), and is such that P̃ ∗T
a.s.→ P ∗T as B → ∞. The choice of B is

discussed by, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000).

�

4.2 Bootstrap Asymptotic Theory

In this section we provide results on the asymptotic properties of the bootstrap PLR and Wald

statistics from Algorithm 1. In doing so we establish the conditions under which the bootstrap

tests the first-order asymptotically valid.

For the bootstrap asymptotic theory related to tests of hypotheses involving α, we will need

to strengthen Assumption 2 by restricting zt (and hence εt) to have finite 8+ moments.
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Assumption 2’. Assumption 2 holds with suptE ‖zt‖
4r <∞ for some r > 2.

Before detailing the large sample behaviour of the bootstrap PLR and Wald statistics, we

first need to establish two preparatory Lemmas. The first of these is the counterpart of Lemma

1 for the wild bootstrap shocks.

Lemma 4. Let the conditions of Lemma 2 hold, and let ε∗t be defined as in step (i) of Algorithm

1. Then, (
M∗T (·),

∫ 1

0
M∗T (s)dM∗T (s)′

)
:=

 1

T 1/2

bT ·c∑
t=1

ε∗t ,
1

T

T∑
t=1

(
t−1∑
i=1

ε∗i

)
ε∗′t


w∗→p

(
M(·),

∫ 1

0
M(s)dM(s)′

)
,

where M(·) :=
∫ ·

0 σ(s)dW (s) is a p-variate continuous martingale defined in terms of the p-

variate Brownian motion W (·).

Remark 4.4. Lemma 4 establishes that the two scaled cumulated functions considered of the

wild bootstrap errors can replicate the limiting process of the corresponding quantities formed

from the original shocks, εt; cf. Lemma 1. Notice, however, that for this this result to hold

Assumption 1 must be satisfied, since this is needed to ensure that the restricted PML estimate,

θ̃, from (1) is consistent, as demonstrated in Theorem 3. �

The next lemma, which is the bootstrap counterpart of Lemma 2, characterises the asymp-

totic behaviour of the three bootstrap sufficient statistics, S∗00, S∗10 = S∗′01 and S∗11. These results

will subsequently be used in determining the limiting behaviour of the bootstrap PLR statistic.

Lemma 5. Let X∗t be generated as in Algorithm 1 and let BT := diag(T−1/2β̃⊥, 1) and S∗1ε :=

S∗10 − S∗11β̃
#
α̃′, with S∗ij , i, j = 0, 1 defined analogously to (7) but for the bootstrap data. Then,

under the conditions of Lemma 2,

β̃
#′
S∗11β̃

∗# p∗→p Σ̄ββ , β̃
#′
S∗10

p∗→p Σ̄β0, S∗00
p∗→p Σ̄00 , (22)

where Σ̄β0, Σ̄00 and Σ̄ββ are as previously defined. Furthermore,(
B′TS

∗
11BT , T

1/2B′TS
∗
1ε

)
w∗→p

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
, (23)

where G(u) := (M(u)′C ′β⊥, 1)′, and

B′TS
∗
11β̃

# p∗→p 0 . (24)

Finally, if Assumption 2 is strengthened to Assumption 2′, then

T 1/2β̃
#′
S∗1ε

w∗→p N(0,Ω†), (25)

where Ω† is a positive definite matrix, defined in the Appendix.
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Remark 4.5. It is useful to compare the asymptotic distributions involving S∗ij in Lemma 5 with

the corresponding distributions in Lemma 2. In the non-stationary directions of the system,

both
(
B′TS11BT , T

1/2B′TS1ε

)
and its bootstrap counterpart

(
B̃′TS

∗
11BT , T

1/2B̃′TS
∗
1ε

)
have the

same limiting distributions; compare (12) and (23). These distributions depend on the time

series behaviour of the unconditional volatility of the shocks (through the function σ (·) of

Assumption 2(a)) but not on the dynamics of the conditional volatility of zt. Conversely, in the

stationary directions of the system the wild bootstrap cannot, in general, replicate the correct

limiting distributions. For example, the limiting variance of T 1/2β∗#′S∗1ε, which is given by Ω†

(see equation (25)), is not equivalent to the limiting variance Ω of T 1/2β#′S1ε (see equation

(11)). This disparity occurs because Ω depends on the cross moments, E(ztz
′
t⊗ zt−iz′t−j) = τ ij ,

which the wild bootstrap cannot replicate since, conditionally on the sample data,

E∗(ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−j) = E∗(ε̃tε̃

′
tw

2
t ⊗ ε̃t−iε̃′t−jwt−iwt−j)

=
(
ε̃tε̃
′
tE
(
w2
t

))
⊗ (ε̃t−iε̃

′
t−jE (wt−iwt−j)) = 0

for all i 6= j. Therefore, it is anticipated that bootstrap PLR test statistics for hypotheses that

include restrictions on α, and which therefore involve β̃
#′
S∗1ε, will not be asymptotically pivotal

under the null unless τ := supi 6=j ‖τ ij‖ = 0. �

We are now in a position to detail the asymptotic null properties of the wild bootstrap PLR

statistic from Algorithm 1. Here, the bootstrap PLR statistics for tests on α, tests on β, and

tests on α and β are respectively denoted by LR∗T (α), LR∗T (β) and LR∗T (α, β).

Theorem 4. Let the conditions of Lemma 5 hold. Then:

(a) the asymptotic distribution of β̂
∗
2, ρ̂∗1 and α̂∗ is given by(

T (β̂
∗
2 − β̃2)

T 1/2(ρ̂∗1 − ρ̃1)

)
w∗→p

(∫ 1

0
Gc(s)Gc(s)

′ds

)−1 ∫ 1

0
Gc(s)dMα(s)′,

where Gc(u) = diag(β′⊥c⊥(β′⊥β⊥)−1, 1)G(u) and Mα(u) = (α′Σ̄−1α)−1α′Σ̄−1M(u).

If, in addition Assumption 2 is strengthened by Assumption 2′, then

T 1/2(α̂∗ − α̃)′
w∗→p N(0, [Ip ⊗ Σ̄−1

ββ ]Ω†[Ip ⊗ Σ̄−1
ββ ]),

(c) Under H0β, LR∗T (β)
w∗→p LR∞(β), and, if Assumption 2 is strengthened to Assumption

2′, then under H0α, LR∗T (α)
w∗→p LR†∞(α),and finally under H0αβ,

LR∗T (α, β)
w∗→p LR∞(β) + LR†∞(α) (26)

where LR∞(β) is as defined in (15) and LR†∞(α), which is independent of LR∞(β), is

defined as

LR†∞(α) := Z ′
(
Rα[I ⊗ Σ̄−1

ββ ]Ω†[I ⊗ Σ̄−1
ββ ]R′α

)1/2

×
(
Rα[Σ̄⊗ Σ̄−1

ββ ]R′α

)−1 (
Rα[I ⊗ Σ̄−1

ββ ]Ω†[I ⊗ Σ̄−1
ββ ]R′α

)1/2
Z,
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where Z ∼ N(0, Irα), independent of (Gc,Mα).

For general linear hypotheses on α and β#, the limiting null distribution of the bootstrap

PLR statistic LR∗T from Algorithm 1 can be seen to depend on the limiting variance matrix

Ω†, rather than on the limiting variance matrix Ω as is the case for the original LRT statistic;

cf. part (c) of Theorem 1. Consequently, the bootstrap PLR test will not have the same first-

order limiting null distribution as the original PLR statistic unless Ω† = Ω. This equality holds

under the condition τ = 0. Where this holds, LR†∞(α) and LR∞(α) coincide, which means

that LR∗T (α)
w∗→p LR∞ (α). For joint hypotheses on α and β, in addition to τ = 0 it is also

necessary that the condition that % = 0 holds.

For completeness we formalise this result in the following corollary, which gives the condi-

tions under which the bootstrap PLR test is guaranteed to be first-order asymptotically valid.

Here P ∗T denotes the (wild bootstrap) p-value associated with the PLR test statistic.

Corollary 2. Let the conditions of Lemma 5 hold. Then, under H0β,

P ∗T
w→ U [0, 1] (27)

where U [0, 1] denotes a uniform distribution on [0, 1]. Under H0α, (27) holds provided that

Assumption 2′ holds with τ = 0. Finally, under H0αβ, (27) holds provided that Assumption 2′

holds with τ = 0 and % = 0.

Remark 4.6. Notice from the results in Corollary 2 that neither Assumption 2′ nor the

restriction that either τ = 0 or % = 0 need hold when testing on β# alone.

Remark 4.7. Under the alternative hypothesis, it is proved in Cavaliere, Nielsen and Rahbek

(2015) for the i.i.d. bootstrap and under the assumption that the shocks εt are i.i.d., that the

bootstrap PLR statistic is of Op∗ (1), in probability. An immediate consequence of this result is

that the bootstrap PLR test is consistent, due to the divergence of the standard LRT statistic

under the alternative hypothesis. While their framework covers hypotheses on β only (more

specifically, hypotheses that fully specify the co-integration space), we conjecture that their

result can be extended to our framework by using the asymptotic results given here and that

this result will also hold for the corresponding Wald-based tests. �

We conclude this section by detailing the asymptotic null distribution of the bootstrap Wald

statistic, W∗
T , from Algorithm 1. Here we let P ∗T denote the (wild bootstrap) p-value associated

with the Wald test statistic.

Theorem 5. Let the conditions of Lemma 5 hold. Then under H0β, W∗
T (β)

w∗→p W∞ (β), where

W∞ (β) is as given in (20). Under H0α, if Assumption 2’ holds then W∗
T (α)

w∗→p Z
′Z, where

Z ∼ N (0, Irα). Under H0αβ, if Assumption 2’ holds and % = 0, then W∗
T (α, β)

w∗→p W∞ (α, β),

where W∞ (α, β) is as given in (20). Consequently, in each of these three cases, P ∗T
w→ U [0, 1].
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Remark 4.8. A comparison of the results in Theorem 5 and Corollary 2 highlights the result

that the wild bootstrap implementation of Wald tests for hypotheses which involve α do not

require the restriction τ = 0 to hold in order to be (first-order) asymptotically valid, in contrast

to the corresponding wild bootstrap PLR tests. This because the use of PML standard errors is

sufficient to deliver asymptotically χ2 Wald test statistics for hypotheses on α, as follows from

Theorem 2, and the wild bootstrap replicates this asymptotic χ2 null distribution. �

5 Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to compare the finite sample perfor-

mance of the asymptotic PLR and Wald tests from Section 3 with the corresponding wild

bootstrap tests from Section 4. For comparison, we also report results for standard i.i.d. boot-

strap versions of the PLR and Wald tests. We note that the i.i.d. bootstrap statistics are first

order asymptotic equivalent to the standard PLR and Wald tests and hence the i.i.d. bootstrap

tests are asymptotically valid if and only if the corresponding asymptotic tests are valid.

Our simulation DGP is the VAR(1) process of dimension p = 2, 3 and 4, with co-integrating

rank r = 1 and

∆Xt = αβ′Xt−1 + εt, α′ = (−0.2, 0′p−1), β′ = (1, 0′p−1).

where 0m denotes an m-vector of zeros. The process is initialised at X0 = 0 and we consider

sample sizes of T = 100, 200 and 400. A restricted constant term is included in the estima-

tion. All experiments are run over 10, 000 Monte Carlo replications using B = 499 bootstrap

repetitions. In the context of Algorithm 1, any samples violating the root check conditions in

step (ii) are discarded. For each bootstrap procedure the observed (rounded) frequency of such

violations was below 0.1% in all cases.

As in Section 2, the errors are defined as εt = σtzt, zt being a martingale difference sequence

with unit unconditional variance matrix. Three versions of the unconditional variance matrix

Σt = σtσ
′
t are considered. Specifically, with ιm denoting an m-vector of ones, we consider

Σ
(1)
t = (1− ρ)Ip + ριpι

′
p =: Σ̄

Σ
(2)
t = vtΣ̄

Σ
(3)
t = (vt − ρ)Ip + ριpι

′
p = (vt − 1)Ip + Σ̄

which we label Cases 1, 2 and 3, respectively. In each case, we set ρ = 0.4 (implying a moderate

degree of correlation between the components of εt) and vt = 2 I[0, 1
3

)

(
t
T

)
+ 0.5 I[ 1

3
,1]

(
t
T

)
, such

that the time-varying volatility factor vt displays a negative shift a third of the way through

the sample.3 Notice that the volatility factor is normalised such that v̄ :=
∫ 1

0 v (s) ds = 1,

3This particular structure for vt is chosen to mimic the pattern of unconditional volatility seen in the interest

rate data used in the empirical example in Section 6.
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which implies that Σ̄(i) = Σ̄, i = 1, 2, 3, where Σ̄(i) is defined analogously to the definition of Σ̄

in Lemma 2. For Σt = Σ
(1)
t , the errors εt are unconditionally homoskedastic. For Σt = Σ

(2)
t ,

a common time-varying factor affects the whole unconditional variance matrix. In this case,

α′⊥Σ(u)Σ̄−1α = 0, and the estimator β̂2 of the co-integrating vector is asymptotically mixed

Gaussian; cf. Remark 3.5. Finally, for Σt = Σ
(3)
t there are no common unconditional volatility

factors, and so β̂2 is not mixed Gaussian. Regarding zt, this is generated as the linear map

zt = Λet (28)

where Λ is an invertible p × p matrix which is constant over time, with the p components of

et := (e1t, ..., ept)
′ independent across i = 1, ..., p. Without loss of generality, we set Λ = Ip.

Each of the p components eit is specified to follow a stationary GARCH(1, 1) process driven

by standard normal innovations; ie, eit = h
1/2
it ξit, i = 1, . . . , p, where ξit is i.i.d. N(0, 1),

independent across i, and hit = (1 − d0 − d1) + d0e
2
i,t−1 + d1hi,t−1, t = 0, . . . , T . Results are

reported for (d0, d1) ∈ {(0.0, 0.0), (0.05, 0.94)}; notice that: (a) for the former the errors are

i.i.d. Gaussian; (b) for the latter d0 and d1 are chosen such that d0 + d1 is close to unity as

tends to be observed with financial data, yet still satisfies an eight order moment assumption,

see He and Teräsvirta (1999). In both cases, τ ij = 0 for all i 6= j; cf. Assumption 2 (b).4

We report results for tests of the following hypotheses

H0β : β2 = 0, H0α : α2 = 0,

where β2 = (0p−1 : Ip−1)β and α2 = (0p−1 : Ip−1)α, together with tests of the joint hypothesis

H0αβ = H0β ∩H0α. The general algorithms to obtain restricted estimates discussed in Section

3.1 are not needed here, as the the PLR test statistics for these specific hypotheses admit a

closed-form expression, see Johansen (1996).

In each case we report empirical rejection frequencies [ERFs] under the null hypothesis for

the tests which reject for large values of the PLR and Wald statistics when compared to: (i)

asymptotic (χ2) critical values; (ii) wild bootstrap critical values; (iii) i.i.d. bootstrap critical

values, where the bootstrap errors in step (i) of Algorithm 1 are instead obtained by i.i.d.

sampling from the re-centered {εt}Tt=1. All tests are run at the nominal 5% significance level.

Insert Tables 1–3 about here

Results are reported in Tables 1, 2 and 3 for p = 2, p = 3 and p = 4, respectively. Entries

in italics correspond to tests which are not asymptotically valid; cf. Sections 3 and 4. The

following observations can be drawn from these results:

4We also ran additional Monte Carlo simulations for analogous conditionally heteroskedastic DGPs but which

do not satisfy the restriction that τ ij = 0 for all i 6= j. We found almost no differences from the results reported

here. This is perhaps not too surprising in the light of the observations made in point 5 of the summary of the

simulations results below.
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1. The results highlight the tendency for significant oversize in the standard asymptotic PLR

and Wald tests, even in cases where these are asymptotically valid. For example, in Case

1 (i.i.d.) for p = 3 and T = 100, the ERF of the asymptotic tests range from 13.4% to

49.0%. Even for T = 400, the asymptotic Wald test on β shows ERFs in excess of 10%.

For cases where the asymptotic tests are valid, both the i.i.d. and wild bootstrap versions

of these perform well, with ERFs significantly closer to the 5% nominal level than is seen

for the asymptotic tests.

2. In general, where the tests are known to be asymptotically valid, the observed size dis-

tortions are seen to decrease with the sample size T , as would be expected.

3. Other things being equal, the observed size distortions (of both the asymptotically valid

and invalid tests) display a clear dependence on the dimension of the system, p. In

particular, these tend to increase significantly with p. For example, the asymptotic PLR

test for H0β in Case 3 with no GARCH, for T = 100 displays an ERF of 20.3% for

p = 2, rising to 41.5% for p = 3 and 61.6% for p = 4. In this case, the ERFs of the

corresponding wild bootstrap PLR test are 5.4% for p = 2, 6.7% for p = 3 and 7.4%

for p = 4. The advantage of the wild bootstrap over the i.i.d. bootstrap in terms of

finite sample size control also becomes increasingly evident the higher the dimension of

the system, consistent with the observation that the distortions seen in the corresponding

asymptotic tests become more pronounced as p increases, other things equal.

4. Of the bootstrap tests considered, the wild bootstrap PLR test appears, on average, to

perform best, particularly so for the joint test of H0αβ. For example, for p = 4 in Case

2 with no GARCH and T = 100 (T = 400), the wild bootstrap PLR test has an ERF

of 4.8% (5.1%) while the wild bootstrap Wald test has an ERF of 12.9% (6.9%). In this

example, the invalidity of the i.i.d. bootstrap PLR test is clearly demonstrated, while the

i.i.d. bootstrap Wald test has an ERF of 14.9% for T = 100 reducing only to 8.0% for

T = 400. It is also noteworthy that even for tests of H0α (where the Wald statistic has

an asymptotically pivotal limiting distribution under all of the DGPs considered, while

the limiting null distribution of the PLR statistic is pivotal only under Case 1 when no

GARCH is present) the wild bootstrap PLR test displays superior finite sample control to

either the i.i.d. or wild bootstrap Wald tests in the vast majority of the results reported in

Tables 1–3. Although an asymptotic refinement might be conjectured for the i.i.d. Wald

test here, this does not appear to translate into better finite sample size control than the

wild bootstrap PLR test.

5. A comparison of the results for the i.i.d. and the GARCH(1,1) cases suggests little ap-

parent differences between the two. This is to be expected for tests of H0β, since these

tests are asymptotically valid in both cases. Only very small differences are seen in those

tests involving H0α that are asymptotically invalid under GARCH dynamics, suggesting
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that, at least for the GARCH(1,1) model considered here, the impact on finite sample

behaviour is rather limited.

The foregoing results all pertain to the behaviour of the tests under the null hypothesis.

Unreported simulations under the alternative hypothesis show that the size-corrected power of

wild bootstrap tests is only slightly smaller than that of the corresponding asymptotic tests; a

similar result was found by Cavaliere, Nielsen and Rahbek (2015).

6 Empirical Application

In this section we apply the methods developed in the previous sections to an empirical model

of the term structure of interest rates in the US. We use monthly observations over the period

1970:1–2009:12 on government zero yields yt(τ) for maturities τ = 3, 12, 36, 60, 120 (measured in

months), and hence we consider a VAR model for Xt = (yt(3), yt(12), yt(36), yt(60), yt(120))′.

The zero yields have been constructed from the CRSP un-smoothed Fama and Bliss (1987)

forward rates, see Diebold and Li (2006). The maturities have been chosen such that the

dimension of the VAR model stays manageable (p = 5), and yet a reasonable coverage of the

short, middle and long end of the term structure is obtained.

The econometric analysis of term structure data in recent years has been dominated by

factor models, in particular the dynamic Nelson-Siegel model of Diebold and Li (2006). In this

model, the time-series behaviour of yt(τ) is described by the sum of level, slope and curvature

factors (f1t through f3t), each multiplied by their factor exposures:

yt(τ) = f1t +
1− e−λτ

λτ
f2t +

(
1− e−λτ

λτ
− e−λτ

)
f3t, (29)

where the shape parameter λ could be time-varying but in practice is often taken as constant

(Diebold and Li (2006) set λ = 0.0609). An idiosyncratic error term is implicitly needed to fit

the model to the data.

Depending on the unit root properties of f1t, f2t and f3t, the model has clear co-integration

implications. If all three factors have a unit root (and are not co-integrated), then a VAR model

of dimension p = 5 should contain 3 common trends and hence r = p − 3 = 2 co-integrating

relations. If the level and slope factors have a unit root, but the curvature factor is stable, then

r = 3; this is found by Diebold and Li (2006). Finally, if only the level factor has a unit root,

then r = 4 and β′⊥ = (1, . . . , 1), so that β′Xt consists of spreads yt(τ) − yt(3) for τ > 3. This

hypothesis also arises as the so-called (weak-form) expectations hypothesis of interest rates; see

Campbell and Shiller (1987).

We estimate a VAR(2) model with a constant term for Xt, using observations on the first

two months of 1970 as starting values; hence, the estimation sample is 1970:3–2009:12, with

T = 478. The lag order k = 2 is selected by the Hannan-Quinn information criterion; the

Schwarz (Bayesian) criterion selects k = 1, but a first-order VAR model displays some rather
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large first-order residual autocorrelation coefficients. The VAR(2) has much smaller, though

apparently significant residual autocorrelation. However, this significance may be partly driven

by the time-varying volatility; see Godfrey and Tremayne (2005). The Lagrange-multiplier

F -tests for first- and second-order residual (vector) autocorrelation in the VAR(2) model have

asymptotic p-values of 0.004 and 0.005; however, the corresponding wild bootstrap p-values

are 0.32 and 0.42, respectively. This already illustrates the large impact that non-stationary

volatility may have on the validity of standard asymptotic inference methods, for these data.

To visualise the possible presence of non-stationary volatility, we plot time series of VAR(2)

residuals, as well as the corresponding variance profiles, in Figure 1. The variance profiles, see

Caveliere and Taylor (2007), are plots of V̂T,ii(u)/V̂T,ii(1) against u ∈ [0, 1], where V̂T,ii(u) :=

T−1
∑bTuc

t=1 ε̂2
it. Deviations of this function from the diagonal (45 degree) line indicate the

presence of persistent changes in volatility. We focus on the first, third and fifth residual,

corresponding to the 3-month, 3-year and 10-year yields. In all series we may clearly distinguish

a period of relatively high volatility around the late 1970s and early 1980s, and a period of low

volatility since the mid-1980s (associated with the Great Moderation). This pattern is most

pronounced in the short rate residuals, and dampened in the longer-maturity residuals. In

addition to unconditional heteroskedasticity, we tested and found evidence for the presence of

conditional heteroskedasticity, after correcting for shifts in the unconditional variance.

Insert Figure 1 and Table 4 about here

Table 4 displays the trace test statistics for co-integration rank (with restricted constant),

together with asymptotic, standard bootstrap and wild bootstrap p-values. The asymptotic

p-values are obtained using the procedure given in MacKinnon, Haug and Michelis (1999); the

standard (sieve-type) bootstrap follows Cavaliere, Rahbek and Taylor (2012), whereas the wild

bootstrap procedure is implemented as in Cavaliere, Rahbek and Taylor (2014); in all cases we

take B = 999 bootstrap replications. The standard bootstrap p-values are included to assess

to what extent the difference between the asymptotic and wild bootstrap results are due to the

correction for non-stationary volatility, or due to finite sample problems only.

We observe that there is strong evidence against r = 0 or r = 1, regardless of the p-value

method used. The asymptotic and standard bootstrap p-values also lead us to reject r = 2

(at the 5% level), but the wild bootstrap leads to weaker evidence for r ≥ 3. Rejection of

r = 3 against r ≥ 4 is not supported by any of the methods at conventional significance levels,

although the asymptotic p-value would lead us to consider this possibility more seriously than

the wild bootstrap p-value. We conclude that a co-integration rank of r = 3 is supported by

the data (although only at the 10% significance level for the wild bootstrap procedure). In the

remainder of this section, we analyse some hypotheses on the co-integration parameters β and

adjustment coefficients α. Because this exercise is intended as an illustration of the procedures

proposed in this paper, we do so both in the context of the model with r = 4, where the

weak-form expectations hypothesis of interest rates of Campbell and Shiller (1987) holds, and
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for the model with r = 3, suggested by the rank tests in Table 1.

The unrestricted (but normalised) estimates of β# and α in the model with r = 4, together

with the PML standard errors, are as follows:

β̂
#

=



−1.02
(0.03)

−0.99
(0.07)

−0.95
(0.10)

−0.87
(0.12)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−0.27
(0.16)

−0.89
(0.43)

−0.42
(0.56)

−2.11
(0.67)


, α̂ =



0.11
(0.24)

−0.15
(0.49)

0.22
(0.48)

−0.07
(0.14)

−0.48
(0.16)

0.40
(0.34)

−0.13
(0.37)

−0.02
(0.12)

−0.30
(0.12)

−0.02
(0.26)

0.11
(0.28)

−0.02
(0.09)

−0.34
(0.12)

0.19
(0.24)

−0.10
(0.24)

0.02
(0.08)

−0.26
(0.11)

−0.06
(0.22)

0.20
(0.21)

−0.09
(0.07)


.

Note that Theorem 2 implies that the PML standard errors of α̂ij (and hence Wald tests based

on these standard errors) are asymptotically valid. However, the simulation results in Section 5

show that the wild bootstrap version of the PLR test has much better finite sample properties,

which is why we will use this test for hypotheses on α.

We observe that β̂
#

is fairly close to the theoretical value implied by the expectations

hypothesis, or equivalently by the hypothesis of a dynamic Nelson-Siegel model with stable slope

and curvature factors. In the notation of Section 2.2, this hypothesis and the normalisation

used above correspond to

c̄# = c# =



0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


, c̄#

⊥ = c#
⊥ =



1 0

0 0

0 0

0 0

0 0

0 1


, Rβ = I4⊗( 1 0 ), qβ =


−1

−1

−1

−1

 .

The PLR statistic for the expectations hypothesis (with restricted estimates computed using

the switching algorithm discussed in Section 3.1) is equal to 8.01, with an asymptotic p-value

of 0.09, but a wild bootstrap p-value of 0.34. Therefore, this hypothesis cannot be rejected

(conditional on a co-integration rank of r = 4), although the asymptotic p-value would cast

some doubt on it.

A possible hypothesis of interest on α is that its first row is zero. This corresponds to the

hypothesis of weak exogeneity of the short rate X1t = yt(3) for the co-integration parameters.

Equivalently, it corresponds to the hypothesis that the single common trend (the non-stationary

level factor) is fully driven by the disturbance from the first equation of the VAR model (α′⊥εt =

ε1t). In the notation of Section 2.2, this corresponds to Rα = [ I4 0 ] and qα = 0. The PLR

test for this hypothesis has an asymptotic p-value of 0.25 and a bootstrap p-value of 0.68, so

this hypothesis cannot be rejected.

The PLR test for the joint hypothesis (stationary spreads and weak exogeneity of yt(3)) has

an asymptotic p-value of 0.08 and a wild bootstrap p-value of 0.54. This gives another example
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of a hypothesis where asymptotic and bootstrap inference might yield different conclusions, at

least if a significance level of 10% were adopted.

We now consider hypotheses in the model with r = 3 co-integrating vectors. Here the

spreads st(τ) := yt(τ) − yt(3) are not (all) stable, but a hypothesis of interest is that the co-

integrating relations can be expressed in terms of these, which requires β′(1, . . . , 1) = 0. The

PLR statistic for this hypothesis has an asymptotic p-value of 0.24, and a wild bootstrap p-value

of 0.46, so this hypothesis is not rejected. The PML estimates under this restriction are

β̃ =



−1.007 −0.71 −0.44

1 0 0

0 1 0

0 0 1

0.007
(0.07)

−0.29
(0.12)

−0.56
(0.11)


, α̃ =



0.13
(0.24)

−0.21
(0.50)

0.28
(0.49)

−0.48
(0.16)

0.42
(0.34)

−0.11
(0.38)

−0.30
(0.12)

0.06
(0.26)

0.09
(0.29)

−0.34
(0.12)

0.22
(0.23)

−0.10
(0.24)

−0.25
(0.11)

−0.09
(0.21)

0.21
(0.21)


.

For example, the second co-integrating vector implies that the three-year spread st(36) minus

0.29 times the 10-year spread st(120) is stable. The particular normalisation of β chosen in this

representation is inspired by the fact that the one-year spread st(12) is close to being stable (as

the estimate of 0.007 indicates). This would mean that the coefficient a in a stable relation of

the form of st(τ)− a · st(12) is not well defined, as it is normalised on the wrong variable.

Finally, it may be of interest to test whether the co-integrating relation found here is in

agreement with a dynamic Nelson-Siegel model of the form (29) with λ = 0.0609. This requires

that the matrix β is orthogonal to both the vector of level factor exposures (a vector of ones),

and the vector of slope factor exposures. It is easily seen that this corresponds to the hypothesis

H0 : β′Xt =


st(12)− 0.26 · st(120)

st(36)− 0.65 · st(120)

st(60)− 0.83 · st(120)

 .

The PLR test for this hypothesis (in the unrestricted model with r = 3) has a wild bootstrap

p-value of 0.01, which leads us to reject this hypothesis. A simpler model, in which the slope

factor exposure increases linearly with the horizon τ , corresponds to a hypothesis that cannot

be rejected, with a wild bootstrap p-value of 0.24.

7 Conclusions

We have investigated the impact of time-varying volatility in co-integrated VAR models on the

standard methods of estimation (PML estimators) and hypothesis testing (PLR tests) on the

coefficients of the co-integrating relations (β) and the adjustment coefficients (α) outlined in

Johansen (1996). In particular, for a very general model which allows both conditional and un-

conditional heteroskedasticity of a quite general form, we have shown that the PML estimates
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remain consistent but that their limiting distributions depend in general on nuisance param-

eters arising from the underlying volatility process. The latter is also shown to be the case

for the limiting null distributions of the PLR statistics, with the implication that the result-

ing PLR tests can have true size significantly in excess of the nominal significance level when

based on conventional χ2 critical values. Solutions to this problem based on Wald tests and on

the use of the wild bootstrap were subsequently discussed. The conditions under which these

methods yield asymptotically valid inference were provided, with the wild bootstrap implemen-

tation of the Wald test shown to require only a relatively mild strengthening of the necessary

moment conditions for this to be obtained under the class of time-varying volatility processes

considered. Monte Carlo evidence was reported for a variety of conditionally and uncondition-

ally heteroskedastic models which suggested that the proposed bootstrap co-integration tests

perform well in finite samples largely avoiding the oversize problems that can occur with the

standard tests, the latter being worse, other things equal, the higher the dimension of the

system. Finally, an application to the term structure of interest rates in the US was used to

highlight the differences that can occur in practice between standard and bootstrap inferences

regarding hypotheses on the co-integrating vectors and adjustment coefficients.

We end with a suggestion for further research. Our aim has been to deliver tests on α and

β based on standard PML estimates (i.e. those which obtain for Gaussian i.i.d. errors) but

which are (asymptotically) robust to a wide class of heteroskedasticity in the errors. Where

heteroskedasticity is present, the PML estimates are not efficient and consequently tests derived

using the true ML estimates would be anticipated to be more efficient. As with the approach

we have taken here, one would, however, probably not want to use an estimation method which

assumed a particular parametric model for the volatility process, since this would be expected

to perform poorly (quite possibly worse than PML-based tests) if an inappropriate volatility

model was specified. However, under rather stronger conditions on the volatility process than

are considered here, it may be possible to develop tests which are asymptotically efficient using

an adaptive approach, based on non-parametric estimation of the sequence of unconditional

variance matrices. This has been developed for the univariate case by Boswijk (2005). Because

the asymptotic distributions of the resulting statistics are not expected to be free of nuisance

parameters, this should be combined with the wild bootstrap as in the present paper.

A Appendix

A.1 Preliminary Results

The following Lemma will be used throughout.

Lemma A.1. Let εt be defined as in Assumption 2. Then, as T →∞,

(i) T−1
∑T

t=1E (εtε
′
t|Ft−1) = T−1

∑T
t=1 σthtσ

′
t
p→ Σ̄ :=

∫ 1
0 Σ (s) ds;
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(ii) T−1
∑T

t=1 (E (εtε
′
t|Ft−1)⊗ εt−i) = T−1

∑T
t=1(σthtσ

′
t ⊗ σt−izt−i)

p→ 0 for i ≥ 1;

(iii) T−1
∑T

t=1(E (εtε
′
t|Ft−1)⊗ εt−iε′t−j) = T−1

∑T
t=1(σthtσ

′
t ⊗ σt−izt−iz′t−jσ′t−j)

p→
∫ 1

0 [σ (s)⊗ σ (s)] τ ij [σ (s)⊗ σ (s)]′ ds, for i, j ≥ 1.

Proof. For part (i), notice that 1
T

∑T
t=1 σthtσ

′
t = 1

T

∑T
t=1 σt (ht − Ip)σ′t + 1

T

∑T
t=1 σtσ

′
t, where

T−1
∑T

t=1 σtσ
′
t → Σ̄. For the term T−1

∑T
t=1 σt (ht − Ip)σ′t we can proceed as in Theorem

A.1 of Cavaliere and Taylor (2009), using supt ‖ht‖ < ∞ (which is implied by the moment

assumption on εt) and that ‖σ (u)σ (u)′ ‖ is a càdlàg process in D[0, 1]. Notice that Cavaliere

and Taylor (2009) require the stochastic term (ht − Ip) to be a mixingale, but their proof of

Theorem A.1 goes through by replacing this assumption with Assumption 2(b) i. of Section 2.

Parts (ii) and (iii) follow similarly. �

A.2 Results for The Asymptotic Test Statistics

Proof of Lemma 1. Assumption 2(b) implies that zt satisfies a functional central limit

theorem (Brown, 1971, Theorem 3), since the higher moment assumption implies a conditional

Lindeberg condition. Therefore

WT (·) :=
1

T 1/2

bT ·c∑
t=1

zt
w→W (·), (A.1)

where W is a p-dimensional standard Brownian motion. Next, define σT (u) := σbTuc+1, 0 ≤ u <
1, and σT (1) := σT , such that MT (·) :=

∫ ·
0 σT (s)dWT (s) = 1

T 1/2

∑bT ·c
t=1 σtzt = 1

T 1/2

∑bT ·c
t=1 σ( tT )zt.

We also define the following approximant

M̃T (·) :=

∫ ·
0
σ(s)dWT (s) =

1

T 1/2

bT ·c∑
t=1

σ−( tT )zt,

where σ− (0) = σ (0) and, for any u ∈ (0, 1], σ− (u) := lims↑u σ (u) (notice that σ− (u) exists

as σ (u) is càdlàg). Because supT T
−1
∑T

t=1E(‖zt‖2) = p <∞, it follows from Theorem 2.1 of

Hansen (1992b) that

(WT , M̃T )
w→ (W,M). (A.2)

Therefore, in order to derive the weak limit of MT it suffices to prove that M̃T and MT are

sufficiently close in the sup norm, in the sense that

sup
u∈[0,1]

∥∥∥M̃T (u)−MT (u)
∥∥∥ = op (1) , (A.3)

see Billingsley (1968, Theorem 4.1). To see (A.3), notice that

sup
u∈[0,1]

∥∥∥M̃T (u)−MT (u)
∥∥∥ = sup

u

∥∥∥T−1/2∑[Tu]
t=1 (σ−( tT )− σ( tT ))zt

∥∥∥
≤ T−1/2∑T

t=1

∥∥σ( tT )− σ−( tT )
∥∥ ‖zt‖

≤ max
t=1,...,T

T−1/2 ‖zt‖ ×
∑T

t=1

∥∥σ( tT )− σ−( tT )
∥∥ =: J

(1)
T × J

(2)
T
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where J
(1)
T and J

(2)
T are implicitly defined. In order to analyse J

(2)
T , let fij,t :=

∣∣∣σij ( tT )− σ−ij ( tT )∣∣∣
with fij,t ≤ f̄ij := 2 supu |σij (u) |, where f̄ij <∞ since σ (·) – and therefore σij (·) – is càdlàg.

Then, we can write

T∑
t=1

fij,t =

T∑
t=1

fij,tI(fij,t > 1
T ) +

T∑
t=1

fij,tI(fij,t ≤ 1
T ) ≤ f̄ij

T∑
t=1

I(fij,t > 1
T ) + 1.

Since σij (·) is càdlàg, the number Kij,T of jumps such that
∣∣∣σij (u)− σ−ij (u)

∣∣∣ > 1/T is finite for

every T (see e.g. Davidson (1994), p. 458), and therefore
∑T

t=1 fij,t ≤ f̄ijKij,T + 1 = O (1), for

any T . Since σt has finite dimension p× p, it also holds that J
(2)
T ≤ pmaxi,j=1,...,p fij,t = O (1).

As far as J
(1)
T is concerned, we have that J

(1)
T →p 0 since for any ε > 0, by Bonferroni’s and

Markov’s inequalities

P
(
J

(2)
T > ε

)
= P

(
max

t=1,...,T
T−1/2 ‖zt‖ > ε

)
= P

(
max

t=1,...,T
‖zt‖ > εT 1/2

)
≤

T∑
t=1

P
(
‖zt‖ > εT 1/2

)
≤

T∑
t=1

E(‖zt‖4)

ε4T 2
≤ suptE(‖zt‖4)

ε4T
→ 0

since suptE(‖zt‖4) < ∞ by Assumption 2(b)iv. Since J
(1)
T = op (1) and J

(2)
T = O (1), the

convergence in (A.3) holds and therefore

(WT (·),MT (·)) w→ (W (·),M(·)), (A.4)

as required.

Next, recalling that
∫ 1

0 MT (s)dMT (s)′ = 1
T

∑T
t=1

(∑t−1
i=1 εi

)
ε′t, and using the result that

supT
1

T

T∑
t=1

E(‖εt‖2) = supT
1

T

T∑
t=1

∥∥σ( tT )
∥∥2
<∞,

because σ is càdlàg and hence bounded, applying Theorem 2.1 of Hansen (1992b) once more,

we find

vec

∫ 1

0
MT (s)dMT (s)′

w→ vec

∫ 1

0
M(s)dM(s)′,

jointly with (A.4). �

Proof of Lemma 2. Define X#
βt = (Z ′βt+1, Z

′
2t+1)′, with Zβt = β#′Z1t; therefore, X#

βt

equals Xβt except that the mean ρ′1 has been subtracted from β′Xt−1. This means that X#
βt =

ΦX#
β,t−1 + Fεt, see Section 2.1, a stable vector process (because ρ(Φ) < 1) with zero mean,

except for the effect of fixed starting values. Because
∥∥Φi

∥∥ ≤ cλi for some positive constant

c and |λ| < 1, we therefore may write X#
βt = ΦtX#

β0 +
∑t−1

i=0 ΦiFεt−i =
∑t−1

i=0 ΦiFεt−i + op(1),

where the op(1) term will be neglected in the following.

First, as in Lemma A.1 of Cavaliere, Rahbek and Taylor (2010b) we have that(
β#′M11β

# β#′M12

M21β
# M22

)
=

1

T

T∑
t=1

X#
β,t−1X

#′
β,t−1

p→
∞∑
i=0

ΦiF Σ̄F ′Φi′ =:

(
M̄ββ M̄β2

M̄2β M̄22

)
,

(A.5)
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from which we find β#′S11β
# = β#′M11β

# − β#′M12M
−1
22 M21β

# p→ M̄ββ − M̄β2M̄
−1
22 M̄2β =:

Σ̄ββ . The convergence in (A.5) is obtained as follows.

Consider

1

T

T∑
t=1

X#
β,t−1X

#′
β,t−1 =

1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1

Φi−1Fεt−iε
′
t−jF

′Φj−1′

=
1

T

T∑
t=1

t−1∑
i=1

Φi−1Fσt−iht−iσ
′
t−iF

′Φi−1′

+
1

T

T∑
t=1

t−1∑
i=1

Φi−1F (εt−iε
′
t−i − σt−iht−iσ′t−i)F ′Φi−1′

+
1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1,j 6=i

Φi−1Fεt−iε
′
t−jF

′Φj−1′ =: AT +BT + CT ,

where AT , BT and CT are implicitly defined. Using Lemma A.1 (a), we find that

AT =

T−1∑
i=1

Φi−1F

(
1

T

T−i∑
t=1

σthtσ
′
t

)
F ′Φi−1′ p→

∞∑
i=1

ΦiF Σ̄F ′Φi′.

Next, BT =
∑T−1

i=1 Φi−1F
(

1
T

∑T−i
t=1 σt(ztz

′
t − ht)σ′t

)
F ′Φi−1′ = op(1), by the martingale law of

large numbers, using the fact that zt has finite fourth moment, σt is a bounded sequence, and∥∥Φi
∥∥ ≤ cλi. Using the fact that E(εt−iε

′
t−j |Ft−k) = 0 with k = max(i, j) + 1 and that εt−iε

′
t−j

has bounded variance because σt and τ ij are bounded, it follows that CT = op(1), which proves

(A.5).

By the same approach, we have(
β#′M1ε

M2ε

)
:=

1

T

T∑
t=1

X#
β,t−1ε

′
t
p→ 0, (A.6)

so that β#′S10 = β#′S1ε+β#′S11β
#α′ = β#′M1ε−β#′M12M

−1
22 M2ε+β#′S11β

#α′
p→ Σ̄ββα

′ =:

Σ̄β0, and, defining Sεε := Mεε −Mε2M
−1
22 M2ε with Mεε := T−1

∑T
t=1 εtε

′
t,

S00 = αβ#′S10 + Sε0

= αβ#′S10 + Sεε + Sε1β
#α′

= αβ#′S10 +Mεε −Mε2M
−1
22 M2ε +Mε1β

#α′ −Mε2M
−1
22 M21β

#α′

p→ αΣ̄β0 + Σ̄ = αΣ̄ββα
′ + Σ̄ =: Σ̄00.

This proves (10).

To prove (11), we start with vecX#

β,t−1ε
′
t = vec Φt−1X#

β0ε
′
t +
∑t−1

i=1 vec Φi−1Fεt−iε
′
t. For any

fixed n ∈ N, consider the decomposition

1

T 1/2

T∑
t=1

vecX
#

β,t−1ε
′
t = S

(n)
T +R

(n)
T +R0T , (A.7)
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where (taking zt = 0 and hence εt = 0 for t ≤ 0)

S
(n)
T :=

1

T 1/2

T∑
t=1

n∑
i=1

vec Φi−1Fεt−iε
′
t =

n∑
i=1

(Ip ⊗ Φi−1F )
1

T 1/2

T∑
t=1

(σt ⊗ σt−i)(zt ⊗ zt−i),

R
(n)
T :=

1

T 1/2

T∑
t=1

t−1∑
i=n+1

vec Φi−1Fεt−iε
′
t, R0T :=

1

T 1/2

T∑
t=1

vec Φt−1X#
β0ε

′
t.

We will focus first on the limit of S
(n)
T as T →∞ for fixed n, and then let n→∞ to obtain the

limiting distribution of the right-hand side of (A.7), where we need to show that ‖R0T ‖ = op(1)

and limn→∞ lim supT→∞ P (‖R(n)
T ‖ > ε) = 0 for all ε > 0, see Proposition 6.3.9 of Brockwell

and Davis (1991).

Consider the process

U
(n)
t =


(zt ⊗ zt−1)

...

(zt ⊗ zt−n)

 .

Assumption 2 (b) implies that U
(n)
t is a vector martingale difference sequence, with conditional

variance matrix satisfying 1
T

∑T
t=1E(U

(n)
t U

(n)′
t |Ft−1)

p→ τ (n) = E(U
(n)
t U

(n)′
t ), where τ (n) is a

matrix with blocks τ ij , i, j = 1, . . . , n. Furthermore, the finite (4r)th moment of zt implies that

U
(n)
t has a finite (2r)th moment, r > 1, which in turn implies a Lindeberg condition, such that

U
(n)
t satisfies the invariance principle of Brown (1971), i.e.,

W
(n)
T (·) =


W1T (·)

...

WnT (·)

 :=
1

T 1/2

bT ·c∑
t=1

U
(n)
t

w→W (n)(·) =


W1(·)

...

Wn(·)

 ,

where W (n) is a vector Brownian motion with variance matrix τ (n), independent of W because

E(U
(n)
t z′t) = 0 by Assumption 2 (b) ii.

Next, we may write S
(n)
T =

∑n
i=1(Ip ⊗ Φi−1F )

∫ 1
0 [σT (s) ⊗ σT (s − i/T )]dWiT (s), which by

Theorem 2.1 of Hansen (1992b) converges weakly to

S(n) :=
n∑
i=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σ(s)⊗ σ(s)]dWi(s) ∼ N(0, V (n)),

with V (n) :=
∑n

i=1

∑n
j=1(Ip ⊗Φi−1F )

∫ 1
0 [σ(s)⊗ σ(s)]τ ij [σ(s)⊗ σ(s)]′ds(Ip ⊗Φj−1F )′. Because

σ(u) and τ ij are bounded and ρ(Φ) < 1, limn→∞ V
(n) = V := V (∞), and as n → ∞, S(n) w→

N(0, V ).

It is easily seen that the assumptions imply that R0T has mean zero and variance of order

T−1, so that R0T = op(1). Similarly, for each fixed T and n, R
(n)
T has mean zero and variance

matrix
∑T−1

i=n+1

∑T−1
j=n+1(Ip ⊗ Φi−1)

[
1
T

∑T
t=i+1(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′

]
(Ip ⊗ Φj−1)′, the
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matrix norm of which is less than

T−1∑
i=n+1

T−1∑
j=n+1

∥∥Ip ⊗ Φi−1
∥∥ 1

T

T∑
t=i+1

∥∥(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′
∥∥∥∥Ip ⊗ Φj−1

∥∥
≤

∞∑
i=n+1

∞∑
j=n+1

p ‖Φ‖i+j−2 max
n<i,j<t<T,

∥∥(σt ⊗ Fσt−i)τ ij(σt ⊗ Fσt−j)′
∥∥ ,

and since the final factor is bounded because σ(u) and τ ij are bounded, this converges to 0 as

n → ∞. Therefore, using Chebyshev’s inequality, limn→∞ lim supT→∞ P (‖R(n)
T ‖ > ε) = 0, for

all ε > 0, and hence T−1/2
∑T

t=1 vecX#

β,t−1ε
′
t
w→ N(0, V ). From the definition of β#′S1ε, this in

turn implies T 1/2β#′S1ε
w→ N(0,Ω), with Ω =

[
I : −M̄β2M̄

−1
22

]
V
[
I : −M̄β2M̄

−1
22

]′
. This proves

(11).

To prove (12) and (13), we note that from (3) with µDt = αρ′1 and hence CµDt = 0, we

have

B′TZ1t =

(
T−1/2(β′⊥C

∑t−1
i=1 εi + β′⊥St−1 + β⊥C0)

1

)
.

Letting GT (·) = B′TZ1,bT ·c+1, we have GT (·) w→ G(·), using the fact that β′⊥St is linear in

Xβt, and T−1/2XβbT ·c = op(1). Therefore, using the continuous mapping theorem [CMT] and

Theorem 2.1 of Hansen (1992b), we have that

(
B′TM11BT , BTM1ε

)
=

(∫ 1

0
GT (s)GT (s)′ds,

∫ 1

0
GT (s)dMT (s)′

)
w→

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
. (A.8)

The fact that Z2t is a linear process in εt with exponentially decaying weights implies that

B′TM12 = Op(T
−1/2), B′TM11β

# = Op(T
−1/2), (A.9)

which together with (A.5) and (A.6), implies that (A.8)–(A.9) also holds with M11 and M1ε

replaced by S11 and S1ε, respectively. �

Proof of Theorem 1. Consistency of β̂
#

follows from the limiting behaviour of the con-

centrated pseudo-log-likelihood (9), together with the results of Lemma 2. This is analysed in

detail in Lemmas 13.1 and Theorem 13.3 of Johansen (1996), which can be applied directly to

the present case. It also follows that β̂2 − β2 = Op(T
−1) and ρ̂1 − ρ = Op(T

−1/2), and this in

turn implies that α̂ = S01β̂
#

(β̂
#′
S11β̂

#
)−1 = S01β

#(β#′S11β
#)−1 + op(1)

p→ Σ̄0βΣ̄−1
ββ = α, and

similarly Σ̂ = S00−S01β̂
#

(β̂
#′
S11β̂

#
)−1β̂

#′
S10 = Sεε−Sε1β#(β#′S11β

#)−1β#′S1ε+op(1)
p→ Σ̄.

The PML estimator of Ψ is readily obtained from the un-concentrated pseudo-log-likelihood,

and this leads to Ψ̂ = M−1
22 (M20 −M21β̂

#
α̂′) = Ψ + M−1

22

[
M21(β#α′ − β̂#

α̂′) +M2ε

]
p→ Ψ.

This proves part (a).

For the asymptotic distributions of the estimators, we use the fact that consistency at the

appropriate rate, and a sufficient degree of differentiability, allows the following result based on
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a second-degree Taylor approximation of `:

D−1
T (θ̂ − θ) =

(
−D′T

∂2`(θ)

∂θ∂θ′
DT

)−1

D′T
∂`(θ)

∂θ
+ op(1), (A.10)

where θ is the parameter vector and DT is a matrix chosen such that the matrix in parentheses

converges to a finite non-singular limit; see the proof of Theorem 3 for details of the expansion

in (A.10) applied to the more general case of restricted estimators. Choosing

θ =

(
vecβ#

2

vecα′

)
, DT =

(
Ir ⊗DβT 0

0 T−1/2Ipr

)
, DβT =

(
T−1I(p−r) 0

0 T−1/2

)
,

we have

D′T
∂`(θ)

∂θ
=

(
T vec(D′βT c

#′
⊥ S1εΣ̄

−1α)

T 1/2 vec(β#′S1εΣ̄
−1)

)
w→

(
vec
∫ 1

0 AG(s)dM(s)′Σ̄−1α

N(0, [Σ̄−1 ⊗ Ir]Ω[Σ̄−1 ⊗ Ip]

)
,(A.11)

−D′T
∂`2(θ)

∂θ∂θ
DT =

(
(α′Σ̄−1α)⊗ (TD′βT c

#′
⊥ S11c

#
⊥DβT ) (α′Σ̄−1)⊗ (T 1/2D′βT c

#′
⊥ S11β

#)

(Σ̄−1α)⊗ (T 1/2β#′S11c
#
⊥DβT ) Σ̄−1 ⊗ (β#′S11β

#)

)
+ op(1)

w→

 (α′Σ̄−1α)⊗
(∫ 1

0 AG(s)G(s)′dsA′
)

0

0 Σ̄−1 ⊗ Σ̄ββ

 , (A.12)

where A = diag(c′⊥β⊥(β′⊥β⊥)−1, 1); this matrix arises from

T 1/2D′βT c
#
⊥Z1t =

(
T−1/2c′⊥Xt−1

1

)
= AB′TZ1t + op(1),

because c′⊥Xt−1 = c′⊥β(β′β)−1β′Xt−1 +c′⊥β⊥(β′⊥β⊥)−1β′⊥Xt−1. Note that Σ̄ is the pseudo-true

value of Σ; formally, one should include vech Σ in the parameter vector θ, or use the pseudo-

log-likelihood concentrated with respect to Σ, but this will lead to the same result, since the

asymptotic information is block-diagonal with respect to vech Σ and the other parameters.

Combining (A.10), (A.11) and (A.12) leads to part (b).

For part (c), let θ̃ denote the PMLEs under the restrictions in (5). Consistency of θ̃, which

is proved formally in Theorem 3, together with a second-order Taylor series expansion leads to

the following expression of the PLR test statistic under H0:

LRT := −2
(
`(θ̃)− `(θ̂)

)
= (θ̃ − θ̂)′Ĥ(θ̃ − θ̂) + op(1),

where Ĥ = −∂2`(θ̂)/∂θ∂θ′. Standard derivations involving restricted ML estimation lead to

D−1
T (θ̃− θ̂) = −D−1

T Ĥ−1R′(RĤ−1R′)−1R(θ̂− θ) + op(1). Let D̃T := diag(T−1Irβ , T
−1/2Irα), so

that

D̃−1
T RDT → R. (A.13)

Here we use the fact that the restrictions do not involve ρ1, so that Rββ̂
#

2 only involves linear

combinations of the Op(T
−1)-consistent estimator β̂2. Then

LRT = (θ̂ − θ)′(DTR
′D̃−1

T )
[
(D̃−1

T RDT )(DT ĤDT )−1(DTR
′D̃−1

T )
]−1

×(D̃−1
T RDT )D−1

T (θ̂ − θ) + op(1),
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and combining this with (A.10), (A.11), (A.12) and (A.13), this leads to the results in part (c),

where Z ∼ N(0, Irα) is obtained as the limit in distribution of(
Rα[I ⊗ Σ̄−1

ββ ]Ω[I ⊗ Σ̄−1
ββ ]R′α

)−1/2
T 1/2Rα vec(α̂− α)′.

Because the asymptotic distribution of T 1/2 vec(α̂− α)′ is defined from the Brownian motions

Wi, see the proof of Lemma 2, and these are independent of W and hence (Gc,Mα), it follows

that if % = 0, then Z is also independent of these.

The proof of (14) follows as a specialization when H0 = H0α or H0 = H0β. �

Proof of Lemma 3. The proof follows the same approach as the proof of Lemma A.5

of Cavaliere, Rahbek and Taylor (2010b). As indicated there, it suffices to prove V̂T (u)
p→

V (u) for fixed u ∈ [0, 1], which is then strengthened to uniform convergence because V̂T (u)

is monotonically increasing and V (u) is continuous in u. Letting VT (u) = T−1
∑bTuc

t=1 εtε
′
t, we

have V̂T (u)− VT (u) = op(1) because of consistency (at the appropriate rate) of γ̂. Moreover,

VT (u) = T−1

bTuc∑
t=1

εtε
′
t = T−1

bTuc∑
t=1

σtztz
′
tσ
′
t

= T−1

bTuc∑
t=1

σt
(
ztz
′
t − ht

)
σ′t + T−1

bTuc∑
t=1

σt (ht − Ip)σ′t + T−1

bTuc∑
t=1

σtσ
′
t

=: A1T (u) +A2T (u) +A3T (u) ,

with A1T (·), A2T (·) and A3T (·) defined implicitly. Now consider each of these terms. First,

since (ztz
′
t − ht) is a martingale difference sequence with bounded fourth order moments and

σt is non-stochastic and bounded, σt (ztz
′
t − ht)σ′t is uncorrelated over time and A1T (u)

p→
0 by a standard application of Chebyshev’s inequality. Second, since by Assumption 2 (i)

T−1
∑bTuc

t=1 (ht − Ip)
p→ 0 and σt = σ (t/T ) with σ (·) càdlàg, by Lemma A.1 we have that

A2T (u)
p→ 0. Finally, Assumption 2 (a) implies that A3T (u) = 1

T

∑bTuc
t=1 Σ(t/T ) →

∫ u
0 Σ(s)ds.

Taken together, these results imply that VT (u)
p→
∫ u

0 Σ(s)ds, as required. �

Proof of Theorem 2. The results will follow from the asymptotic properties Î, which is

defined from sums of the type
∑T

t=1(ε̂tε̂
′
t ⊗ ZitZ ′jt), i, j = 1, 2. Consider first

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗B′TZ1tZ

′
1tBT ) =

∫ 1

0
[dV̂T (s)⊗GT (s)GT (s)′],

where the right-hand side should be read as a matrix with blocks
∫ 1

0 GT (s)GT (s)′dV̂T,ij(s).

Because Lemma 3 and the results in the proof of Lemma 1 imply (GT (·), V̂T (·)) w→ (G(·), V (·)),
we find 1

T

∑T
t=1(ε̂tε̂

′
t⊗B′TZ1tZ

′
1tBT )

w→
∫ 1

0 [dV (s)⊗G(s)G(s)′] =
∫ 1

0 [Σ(s)⊗G(s)G(s)′]ds. Note

that V (·) is a deterministic matrix function of bounded variation, so that the limiting integral

is a Lebesgue-Stieltjes integral, and the result follows from the CMT. This in turn implies

T∑
t=1

(ε̂tε̂
′
t ⊗D′βT c

#′
⊥ Z1tZ

′
1tc

#
⊥DβT )

w→
∫ 1

0
[Σ(s)⊗Gc(s)Gc(s)′]ds, (A.14)
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where DβT and Gc(·) are as defined in (the proof of) Theorem 1. Next, consider

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗ X#

β,t−1X
#′
β,t−1) =

1

T

T∑
t=1

(εtε
′
t ⊗ X#

β,t−1X
#′
β,t−1) + op(1),

where X#
βt is as defined in the proof of Lemma 2, and the asymptotic negligibility of the estima-

tion error in ε̂t follows from consistency at the appropriate rate of γ̂, and the fact that X#
β,t−1 is a

stable process with bounded fourth moments. Using again X#
β,t−1 = Φt−1X#

β0+
∑t−1

i=1 Φi−1Fεt−i,

we find

1

T

T∑
t=1

(εtε
′
t ⊗ X#

β,t−1X
#′
β,t−1) =

1

T

T∑
t=1

t−1∑
i=1

t−1∑
j=1

(εtε
′
t ⊗ Φi−1Fεt−iε

′
t−jF

′Φ′j−1)

+
1

T

T∑
t=1

(εtε
′
t ⊗ Φt−1X#

β0X
#′
β0Φ′t−1)

+
1

T

T∑
t=1

t−1∑
i=1

(εtε
′
t ⊗ [Φt−1X#

β0ε
′
t−iF

′Φ′i−1 + Φi−1Fεt−iX#′
β0Φ′t−1]).

The second right-hand side term is op(1) by L1 convergence, because εtε
′
t has bounded

mean, and ρ(Φ) < 1. Similarly, the third term is op(1), as εtε
′
t ⊗ εt−i has bounded mean by

Assumption 2 (b) ii. (As before, take zt = 0 and hence εt = 0 for t ≤ 0.) By Assumption 2 (b)

iii and the law of large numbers, we have T−1
∑T

t=1(ztz
′
t ⊗ zt−izt−j)

p→ τ ij . Consequently,

1

T

T∑
t=1

(ε̂tε̂
′
t ⊗ X#

β,t−1X
#′
β,t−1)

p→
∞∑
i=1

∞∑
j=1

(Ip ⊗ Φi−1F )

∫ 1

0
[σ(s)⊗ σ(s)]τ ij [σ(s)⊗ σ(s)]′ds(Ip ⊗ Φj−1F )′, (A.15)

which equals V = V (∞) defined in the proof of Lemma 2. Following the same approach, it can

be shown that

1

T 1/2

T∑
t=1

(ε̂tε̂
′
t ⊗DβT c

#
⊥Z1tX#′

β,t−1)
p→ 0. (A.16)

The result of Theorem 2 now follows from (A.14)–(A.16), combined with (A.10)–(A.12) and

the results of Theorem 1. �

Proof of Theorem 3. The proof mimics the proof of consistency given in Theorem 4.7 of

Kristensen and Rahbek (2013) [KR13], and is based on an application of KR13 (Lemma D.1),

where a third-order Taylor expansion of the log-likelihood function is employed. In fact, the

proof we give below implies also weak convergence of the QMLE ϑ̂, see KR13 (Lemma D.2

with vT := T ). With ϑ :=
(
φ′, ψ′

)′ ∈ Rlφ×lψ , the criterion function in Lemma D.1 in KR13

reduces here to, cf. (6), QT (ϑ) := − 1
T ` (ϑ) for which we need to evaluate first-, second- and

third-order differentials. Moreover, in terms of Lemma D.1, set UT = VT :=
√
TDϑT , where

DϑT is a normalization matrix defined below.
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Note initially that under H ′0, vec (α′) = Gψ + g and vec
(
β#
)

= Hφ + h, and therefore,

using in particular β# = c̄# + c#
⊥β

#
2 ,

d vec
(
β#

2

)
=
(
Ir ⊗ c̄#′

⊥

)
Hdφ and d vec

(
α′
)

= Gdψ, (A.17)

Hence it follows immediately that the first- and second-order derivatives of ` (·), and hence of

QT (·), from the proof of Theorem 1 can be applied using classic rules for Jacobians as is done

next.

Consider the first-order differentials of ` (ϑ) in the direction dϑ, d` (ϑ; dϑ). We find that

− 1
T d` (ϑ; dϑ) = tr

{
Σ−1αdβ#′

[
S10 − S11β

#α′
]}

+ tr
{

Σ−1dαβ#′
[
S10 − S11β

#α′
]}

,

which evaluated at ϑ = ϑ0, gives

− 1
T d` (ϑ0; dϑ) = tr

{
c#′
⊥ S1εΣ

−1αdβ#′
2

}
+ tr

{
β#′S1εΣ

−1dα
}

= d vec
(
β#

2

)′
vec
(
c#′
⊥ S1εΣ

−1α
)

+ d vec
(
α′
)

vec
(
β#′S1εΣ

−1
)
.

Observe, using standard matrix calculus, that d vec (α′) vec
(
β#′S1εΣ

−1
)

= dψ′G′ vec
(
β#′S1εΣ

−1
)
,

and, similarly, d vec
(
β#

2

)′
vec
(
c#′
⊥ S1εΣ

−1α
)

= dφ′H ′ vec
(
c̄#
⊥c

#′
⊥ S1εΣ

−1α
)

. Inserting the nor-

malization matrix DβT from (A.9), we find,

dφ′H ′ vec
(
c̄#
⊥D
′
βT c

#′
⊥ S1εΣ

−1α
)

= dφ′H ′
(
Ir ⊗ c̄#

⊥D
′
βT

)
vec
(
c#′
⊥ S1εΣ

−1α
)
.

That is, the normalisation DφT :=
(
Ir ⊗DβT c̄

#′
⊥

)
H replaces (Ir ⊗DβT ) in (A.9). Likewise,

√
TG′ vec

(
β#′S1εΣ̄

−1
)

converges, such that with DϑT := diag
(
DφT , T

−1/2Ilψ
)

replacing DT in

(A.9), we have that

D′ϑT

[
− 1
T
∂`(ϑ)
∂ϑ

]∣∣∣
ϑ=ϑ0

w→

 H ′ vec
(
c̄#
⊥A

∫ 1
0 G(s)dM(s)′Σ̄−1α

)
N
(
0, G′

[
Σ̄−1 ⊗ Ir

]
Ω
[
Σ̄−1 ⊗ Ir

]
G
)
 .

Consider next the second-order differentials of ` (ϑ) in the directions dϑ and dϑ̄, d2`
(
ϑ; dϑ, dϑ̄

)
.

Observe that by definition,

− 1
T d

2`
(
ϑ; dϑ, dϑ̄

)
= tr

{
Σ−1dᾱdβ#′

[
S10 − S11β

#α′
]}
− tr

{
Σ−1αdβ#′S11β

#dᾱ′
}

− tr
{
α′Σ−1αdβ#′S11dβ̄

#
}

+ tr
{

Σ−1dαdβ̄
#′
[
S10 − S11β

#α′
]}

+ tr
{

Σ−1dαβ#′S11β
#dᾱ′

}
− tr

{
α′Σ−1dαβ#′S11dβ̄

#
}

and, hence, at ϑ = ϑ0,

− 1
T d

2` (ϑ0; dφ, dφ) = − tr
{
α′Σ−1αdβ#′S11dβ

#
}

= − vec
(
dβ#

2

)′ (
α′Σ−1α⊗ c#′

⊥ S11c
#
⊥

)
vec
(
dβ#

2

)
= −dφ′H ′

(
α′Σ−1α⊗ c̄#

⊥c
#′
⊥ S11c

#
⊥ c̄

#′
⊥

)
Hdφ.
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As before, inserting DφT we find,

dφ′D′φT

(
α′Σ−1α⊗ c̄#

⊥c
#′
⊥ S11c

#
⊥ c̄

#′
⊥

)
DφTHdφ

= dφ′H ′
(
α′Σ−1α⊗ c̄#

⊥

[
D′βT c

#′
⊥ S11c

#
⊥DβT

]
c̄#′
⊥

)
Hdφ

which converges weakly, see (A.10). Likewise,

− 1
T d

2` (ϑ0; dψ, dψ) = − tr
{

Σ−1dαβ#′S11β
#dα′

}
= −dψ′G′

(
Σ−1 ⊗ β#′S11β

#
)
Gdψ,

which converges in probability, see (A.10). Finally, − 1
T d

2` (ϑ0; dφ, dψ) = tr
{

Σ−1dαdβ#′S1ε

}
−

tr
{

Σ−1αdβ#′S11β
#dα′

}
, where, for example, the last term can be rewritten as,

tr
{

Σ−1αdβ#′S11β
#dα′

}
= vec

(
dβ#

2

)′ (
α′Σ−1 ⊗ c#′

⊥ S11β
#
)

vec
(
dα′
)

= dφ′H ′
(
Ir ⊗ c̄#

⊥

)(
α′Σ−1 ⊗ c#′

⊥ S11β
#
)
Gdψ,

and DβT can be inserted as above. Collecting terms, we find, using (A.10), that

D′ϑT

(
−∂2`(ϑ)
∂ϑ∂ϑ′

)∣∣∣
ϑ=ϑ0,Σ=Σ̄

DϑT
w→ H ′

(
α′Σ−1α⊗ c̄#

⊥

[∫ 1
0 AG(s)G(s)′A′ds

]
c̄#′
⊥

)
H 0

0 G′
(
Σ̄−1 ⊗ Σββ

)
G

 .

Finally, consider third-order differentials of ` (ϑ) , d3` (·) say, in the directions dϑ, dϑ̄ and

dϑ∗. Using Lemma D.1 in KR13, the supremum of the norm of 1
T d

3` (·) needs to be bounded

in probability uniformly over ϑ ∈ NT (ϑ0) , where the sequence of neighbourhoods is given by,

NT (ϑ0) =
{
ϑ | Υ

1/2
T ‖ϑ− ϑ0‖ ≤ ε

}
. Here Υ

1/2
T := T−1/2D−1

ϑT and (some small) ε > 0. In terms

of dϑ in the differential, dϑ should be normalised as Υ
−1/2
T dϑ; and likewise for ϑ̄, ϑ∗. Now, the

only non-zero third-order differentials of 1
T `(ϑ) have the form, tr{dα∗′Σ−1dᾱdβ#′

2 c#′
⊥ S11β} and

tr{α′Σ−1dᾱdβ#′
2 c#′
⊥ S11c

#
⊥dβ

#∗
2 }. Consequently, using the identities in (A.17), and in particular

that in NT (ϑ0), φ− φ0 = T−1/2h, with ‖h‖ ≤ ε , it follows that,

T−1 sup
ϑ∈NT (ϑ0)

∥∥∥d3`
(
ϑ; Υ

−1/2
T dϑ,Υ

−1/2
T dϑΥ

−1/2
T dϑ̄,Υ

−1/2
T dϑ∗

)∥∥∥ ,
is bounded by CT ‖dϑ‖

∥∥dϑ̄∥∥ ‖dϑ∗‖∥∥ 1
T S11

∥∥ = Op (1), since
∥∥ 1
T S11

∥∥ converges weakly, and CT

contains (standard) terms converging in probability. The consistency ṼT follows by similar

arguments as in the proof of Lemma 3. �

A.3 Results for the bootstrap tests

Proof of Lemma 4. The proof follows as in the proof of Lemma A.5 in Cavaliere, Rahbek

and Taylor (2010b) by showing that the conditional variance of M∗T (·) satisfies

E∗
(
M∗T (u)M∗T (u)′

)
=

1

T

bTuc∑
t=1

ε̃c,tε̃
′
c,t =

1

T

bTuc∑
t=1

ε̃tε̃
′
t + op (1)

p→
∫ u

0
Σ (s) ds.
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The latter convergence is established in Theorem 3 and this completes the proof. �

Proof of Lemma 5. As done for the proof of Lemma 2, define X#∗
βt = (Z∗′βt+1, Z

∗′
2t+1)′,

with Z∗βt = β̃
#′
Z∗1t; therefore, X#∗

βt equals X∗βt except that ρ̃′1D1t has been added to β̃
′
X∗t−1.

This means that X#∗
βt = Φ̃X#∗

β,t−1 + F̃ ε∗t , where Φ̃ and F̃ are defined as Φ and F but with

the restricted estimators replacing the population parameter values. Moreover, since ‖Φi‖ ≤
cλi for some positive constant c and |λ| < 1 (see the proof of Lemma 2), the consistency of

the restricted estimators implies that for T large enough, ‖Φ̃i‖ ≤ cλi. The initial value is

X#∗
β,0 = X#

β,0, as the bootstrap sample is initialised at the original data. We may therefore write

X#∗
βt = Φ̃tX#∗

β0 +
∑t−1

i=0 Φ̃jF̃ ε∗t−i = Φ̃tX#
β0 +

∑t−1
i=0 Φ̃iF̃ ε∗t−i =

∑t−1
i=0 Φ̃iF̃ ε∗t−i + op (1), where the

op (1) term will be neglected in the following.

First, as in Lemma A.7 of Cavaliere, Rahbek and Taylor (2010b) we have that(
β̃

#′
M∗11β̃

#
β̃

#′
M12

M21β̃
#

M22

)
=

1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

p∗→p

∞∑
i=0

ΦiF Σ̄F ′Φi′ =:

(
M̄ββ M̄β2

M̄2β M̄22

)
,

(A.18)

from which we find β̂
#′
S∗11β̂

#
= β̂

#′
M∗11β̂

# − β̂#′
M∗12M

∗−1
22 M∗21β̂

# p∗→p M̄ββ − M̄β2M̄
−1
22 M̄2β =

Σ̄ββ . The convergence in (A.18) follows by the triangle inequality using the following two

results. First, as ε∗t ε
∗′
t = ε̃c,tε̃

′
c,tw

2
t and hence E∗ (ε∗t ε

∗′
t ) = ε̃c,tε̃

′
c,t, we have that

E∗

(
1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

)
=

1

T

T∑
t=1

E∗
(
X#∗
β,t−1X

#∗′
β,t−1

)
=

1

T

T∑
t=1

t−1∑
i=1

Φ̃i−1F̃E∗
(
ε∗t−iε

∗′
t−i
)
F̃ ′Φ̃i−1′

=
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1′

=
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1′ +

T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=T−i+1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i

p→
∞∑
i=0

ΦiF Σ̄F ′Φi′,

since, by consistency of the restricted estimators and Lemma A.1(i),
∑T−1

i=1 Φ̃i−1F̃
(
T−1

∑T
t=1 ε̃c,tε̃

′
c,t

)
F̃ ′Φ̃i−1

p→
∑∞

i=0 ΦiF Σ̄F ′Φi′, and furthermore∥∥∥∥∥
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T∑
t=T−i+1

ε̃c,tε̃
′
c,t

)
F̃ ′Φ̃i−1

∥∥∥∥∥ ≤
∥∥∥F̃∥∥∥2

(
T−2∑
i=0

∥∥∥Φ̃i
∥∥∥2
i

)
1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥
≤ cT

1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥ = op (1) ,

as cT = Op (1) and
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P

(
1

T
max

t=1,...,T

∥∥ε̃c,tε̃′c,t∥∥ ≥ ε) ≤
T∑
t=1

P
(∥∥ε̃c,tε̃′c,t∥∥ ≥ εT )

≤
suptE

(∥∥ε̃c,tε̃′c,t∥∥2
)

ε2T
=
E
((
ε̃′c,tε̃c,t

)2)
ε2T

→ 0

as εt has finite 4+ order moments.

Second, using the fact that ε∗t ε
∗′
t − E∗ (ε∗t ε

∗′
t ) = ε̃c,tε̃

′
c,t

(
w2
t − 1

)
, we have that

1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1 − E

∗

(
1

T

T∑
t=1

X#∗
β,t−1X

#∗′
β,t−1

)

=
1

T

T∑
t=1

t−1∑
i=1

Φ̃i−1F̃
(
ε∗t−iε

∗′
t−i − E∗

(
ε∗t−iε

∗′
t−i
))
F̃ ′Φ̃i−1′ +R∗T

=
T−1∑
i=0

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

(
w2
t − 1

))
F̃ ′Φ̃i−1′ +R∗T , (A.19)

where R∗T := T−1
∑T

t=1

∑t−1
i=1

∑t−1
j=1,j 6=i Φ̃i−1F̃ (ε∗t−iε

∗′
t−j)F̃

′Φ̃j−1′. To show that (A.19) is of o∗p (1)

in probability, notice first that

vec

(
T−1∑
i=1

Φ̃i−1F̃

(
1

T

T−i∑
t=1

ε̃c,tε̃
′
c,t

(
w2
t − 1

))
F̃ ′Φ̃i−1′

)

=

(
T−1∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
))( 1

T

T−i∑
t=1

vec
(
ε̃c,tε̃

′
c,t

) (
w2
t − 1

)))

=

((
1

T

T∑
t=1

(
T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))

vec
(
ε̃c,tε̃

′
c,t

) (
w2
t − 1

)))
,

which (conditionally on the data) is the average of an independent sequence with variance

1

T 2

T∑
t=1

(
T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))

vec
(
ε̃c,tε̃

′
c,t

)
vec
(
ε̃c,tε̃

′
c,t

)′(T−t∑
i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
)))′

which is of op (1) as
∑T−t

i=1

((
Φ̃i−1F̃

)
⊗
(

Φ̃i−1F̃
))

= Op (1) and εt has finite fourth order

moments. Similarly it can be shown that R∗T is of o∗p (1), in probability.

In the same way of (A.18) it can be proved that(
β̃

#′
M∗1ε

M∗2ε

)
:=

1

T

T∑
t=1

X#∗
β,t−1ε

∗′
t

p∗→p 0, (A.20)

which also implies, as in the proof of Lemma 2, that β̃
#′
S∗10

p∗→p Σ̄ββα
′ =: Σ̄β0, and S∗00

p∗→p Σ̄00.

This proves (22).

To prove (23) and (24), as in the proof of Lemma 2 notice that we have

B̃′TZ
∗
1t =

(
T−1/2(β̃

′
⊥C̃

∑t−1
i=1 ε

∗
i + β̃

′
⊥S
∗
t−1 + β̃

′
⊥C̃0)

1

)
+ o∗p (1)
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in probability (see also Lemma A.4 in Cavaliere, Rahbek and Taylor (2010b) for details on

the o∗p (1) term). Letting G∗T (·) = B̃′TZ
∗
1,bT ·c+1, we have G∗T (·) w∗→p G(·). Using the CMT and

Theorem 2.1 of Hansen (1992b), together with Lemma 4, we have that(
B̃′TM

∗
11B̃T , B̃TM

∗
1ε

)
=

(∫ 1

0
G∗T (s)G∗T (s)′ds,

∫ 1

0
G∗T (s)dM∗T (s)′

)
w→p

(∫ 1

0
G(s)G(s)′ds,

∫ 1

0
G(s)dM(s)′

)
.

Because Z∗2t is a linear process in ε∗t with exponentially decaying weights, B̃′TM
∗
12 = O∗p(T

−1/2)

and B̃′TM
∗
11β̃

#
= O∗p(T

−1/2), in probability, which together with (A.18) and (A.20), implies

that (A.8)–(A.9) also holds with M∗11 and M∗1ε replaced by S∗11 and S∗1ε, respectively.

Finally, to prove (25), we start with

Y ∗t := vecX#∗
β,t−1ε

∗′
t = vec

(
Φ̃t−1X#∗

β0 +
t−1∑
i=1

Φ̃i−1F̃ ε∗t−i

)
ε∗′t

= vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
+ vec

(
t−1∑
i=1

Φ̃i−1F̃ ε∗t−iε
∗′
t

)

= vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
+

t−1∑
i=1

(
ε∗t ⊗ Φ̃i−1F̃ ε∗t−i

)
= vec

(
Φ̃t−1X#∗

β0 ε
∗′
t

)
+

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε∗t ⊗ ε∗t−i

)
=: Y ∗0,t + Y ∗1,t

with Y ∗0,t and Y ∗1,t defined implicitly. We now prove that show that T−1/2
∑T

t=1 Y
∗
t satisfies (in

probability) a CLT by showing (i) that T−1/2
∑T

t=1 Y
∗

1,t satisfies (in probability) a CLT and (ii)

that T−1/2
∑T

t=1 Y
∗

0,t = o∗p (1) (in probability).

Part (i). With F∗t := σ (w1, w2, . . . , wt), notice that, conditionally on the data, E∗
(
Y ∗1,t|F∗t−1

)
=

0 and hence {Y ∗1,t,F∗t } is a vector martingale difference sequence. We prove that a central

limit theorem holds on T−1/2
∑T

t=1 Y
∗

1,t by proving that its conditional variance converges in

probability and that (conditionally on the data) the Lindeberg condition holds.

First, since for i ≥ 1, E∗
((
ε∗t ⊗ ε∗t−i

) (
ε∗t ⊗ ε∗t−i

)′ |F∗t−1

)
= E∗

(
ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−i|F∗t−1

)
=(

ε̃c,tε̃
′
c,t ⊗ ε∗t−iε∗′t−i

)
, we have that

E∗
(
Y ∗1,tY

∗′
1,t|F∗t−1

)
=

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

))
E∗
((
ε∗t ε
∗′
t ⊗ ε∗t−iε∗′t−i

)
|F∗t−1

) (
Ip ⊗

(
Φ̃i−1F̃

))′
=

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃t−iε̃′t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

+

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃t−iε̃′t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
,

where ηt := w2
t − 1. Averaging across t yields
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1

T

T∑
t=1

E∗
(
Y ∗t Y

∗′
t |F∗t−1

)
=

1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

+
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
=: V0,T + V ∗1,T ,

where V0,T and V ∗1,T are implicitly defined. Notice that V ∗1,T = o∗p (1), in probability, since by

Chebychev’s inequality

V ∗1,T =
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−iηt−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=
1

T

T−1∑
t=1

T−t∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,t+iε̃

′
c,t+i ⊗ ε̃c,tε̃′c,tηt

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
= o∗p (1) in probability,

as ηt is (conditionally) independent and εt has finite 8+ moments.

Regarding V0,T , we have that

V0,T =
1

T

T∑
t=1

t−1∑
i=1

(
Ip ⊗

(
Φ̃i−1F̃

)) (
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=
T−1∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
= V

(n)
0,T +R

(n)
0,T ,

where, for any n ≤ T − 1, we set

V
(n)

0,T :=
n∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
,

and

R
(n)
0,T :=

T−1∑
i=n+1

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T∑
t=i+1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)

=

T−1∑
i=n+1

(
Ip ⊗

(
Φi−1F

)) 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

) (
Ip ⊗

(
Φi−1F

)′)
+ op (1) ,

where the op (1) term does not depend on n. We now derive the limit of V
(n)

0,T as T → ∞ for

fixed n, and then let n→∞ to obtain the limiting distribution of V0,T , where we also need to

show that limn→∞ lim supT→∞ P (‖R(n)
0,T ‖ > ε) = 0 for all ε > 0, as in the proof of Lemma 2.
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For fixed n,

V
(n)

0,T =
n∑
i=0

(
Ip ⊗

(
Φ̃i−1F̃

)) 1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)(
Ip ⊗

(
Φ̃i−1F̃

)′)
p→

n∑
i=0

(
Ip ⊗

(
Φi−1F

)) ∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

(
Ip ⊗

(
Φi−1F

)′)
=: V (n)†

since for any fixed i, we have that

1

T

T−i∑
t=1

(
ε̃c,tε̃

′
c,t ⊗ ε̃c,t−iε̃′c,t−i

)
=

1

T

T−i∑
t=1

(
εtε
′
t ⊗ εt−iε′t−i

)
+ op (1)

=
1

T

T−i∑
t=1

((
εtε
′
t − σthtσ′t

)
⊗ εt−iε′t−i

)
+

1

T

T−i∑
t=1

(
σthtσ

′
t ⊗ σt−izt−iz′t−iσ′t−i

)
+ op (1)

→p

∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

by Lemma A.1(iii) and as
(
(εtε

′
t − σthtσ′t)⊗ εt−iε′t−i

)
is a martingale difference array with

bounded 1+ moments, so that a WLLN applies (see e.g. Hall and Heyde (1980, Theorem 2.13

(i))). Next, we have that

lim
n→∞

V (n)† =
∞∑
i=0

(
Ip ⊗

(
Φi−1F

)) ∫ 1

0
[σ(s)⊗ σ(s)]τ ii[σ(s)⊗ σ(s)]′ds

(
Ip ⊗

(
Φi−1F

)′)
=: V †.

Finally we have that, for T large enough,

P (‖R(n)
0,T ‖ > ε) = P

(∥∥∥∥∥
T−1∑
i=n+1

(
Ip ⊗

(
Φi−1F

)) 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

) (
Ip ⊗

(
Φi−1F

)′)∥∥∥∥∥ > ε

)

≤ P

(
T−1∑
i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

∥∥∥∥∥ 1

T

T∑
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥∥∥ > ε

)

≤
E
(∑T−1

i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

∥∥∥ 1
T

∑T
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥)
ε

=

∑T−1
i=n+1

∥∥(Ip ⊗ (Φi−1F
))∥∥2

E
∥∥∥ 1
T

∑T
t=i+1

(
εtε
′
t ⊗ εt−iε′t−i

)∥∥∥
ε

≤ Kλ2n

ε
→ 0

as n→∞. This completes the proof that T−1
∑T

t=1E
∗ (Y ∗1,tY ∗′1,t|F∗t−1

) p∗→p V
†.

We prove the (conditional) Lindberg conditions by showing that T−2
∑T

t=1E
∗ (‖Y ∗1,t‖4)

→p 0. First, we have that, since ε∗t is independent under P ∗,

E∗
∥∥Y ∗1,t∥∥4

= E∗

∥∥∥∥∥ε∗t ⊗
(
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

)∥∥∥∥∥
4

= E∗ ‖ε∗t ‖
4E∗

∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

≤ K ‖ε̃c,t‖4E∗
∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

with K = E|w4
t |. Moreover,
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E∗

∥∥∥∥∥
t−1∑
i=1

(
Φ̃i−1F̃

)
ε∗t−i

∥∥∥∥∥
4

= E∗

((
t−1∑
i=1

ε∗′t−iF̃
′Φ̃i−1′

)(
t−1∑
i=1

Φ̃i−1F̃ ε∗t−i

))2

= E∗

 t−1∑
i=1

t−1∑
j=1

ε∗′t−iF̃
′Φ̃i−1′Φ̃j−1F̃ ε∗t−j

2

≤ E∗
 t−1∑
i=1

t−1∑
j=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

) (
ε∗′t−iε

∗
t−j
)2

=
t−1∑
i=1

t−1∑
j=1

t−1∑
k=1

t−1∑
l=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)
tr
(
F̃ ′Φ̃k−1′Φ̃l−1F̃

)
E∗
(
ε∗′t−iε

∗
t−jε

∗′
t−lε

∗
t−k
)
.

Since

E∗
(
ε∗′t−iε

∗
t−jε

∗′
t−lε

∗
t−k
)

= E∗ (wt−iwt−jwt−kwt−l)
(
ε̃′c,t−iε̃c,t−j ε̃

′
c,t−lε̃c,t−k

)
≤ KI (k = i, l = j)

(
ε̃′c,t−iε̃c,t−j

)2
we have that

1

T 2

T∑
t=1

E∗
(
‖Y ∗1,t‖4

)
≤ K 1

T 2

T∑
t=1

‖ε̃c,t‖4
t−1∑
i=1

t−1∑
j=1

tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)2 (
ε̃′c,t−iε̃c,t−j

)2
= Op

(
T−1

)
,

since εt has finite 8+ moments and tr
(
F̃ ′Φ̃i−1′Φ̃j−1F̃

)2
is exponentially decaying, see above.

Part (ii). To show this part if suffices to notice that, since X#∗
β0 = X#

β0 due to the initialization

of the bootstrap sample, we have that (conditionally on the original sample)

T−1/2
T∑
t=1

Y ∗0,t = T−1/2
T∑
t=1

vec
(

Φ̃t−1X#∗
β0 ε
∗′
t

)
= T−1/2

T∑
t=1

vec
(

Φ̃t−1X#
β0ε
∗′
t

)
= T−1/2

T∑
t=1

(
ε∗t ⊗ Φ̃t−1X#

β0

)
has variance 1

T 2

∑T
t=1

(
E∗(ε∗t ε

∗′
t )⊗

(
Φ̃t−1X#

β0X
#′
β0Φ̃t−1′

))
= 1

T 2

∑T
t=1

(
ε̃c,tε̃

′
c,t ⊗ Φ̃t−1X#

β0X
#′
β0Φ̃t−1′

)
p∗→p 0, under the stated assumptions. This result completes the proof of (25), since, from the defi-

nition of β̃
#′
S∗1ε, it implies T 1/2β̃

#′
S∗1ε

w→p N(0,Ω†), with Ω† :=
[
I : −M̄β2M̄

−1
22

]
V †
[
I : −M̄β2M̄

−1
22

]′
.

�

Proof of Theorem 4. It follows using the same steps as in the proof of Theorem 1, using

the wild bootstrap results of Lemma 5. �

Proof of Corollary 2. Theorems 4 and 5 imply that, uniformly in probability, the (condi-

tional) cdf of the bootstrap statistic LR∗T satisfies G∗T (·)→ F (·), with F the cdf of the limiting
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distribution of LRT . This implies that, under the null hypothesis, P ∗T converges weakly to

U [0, 1], see Hansen (2000, proof of Theorem 5). �

Proof of Theorem 5. It follows using the same steps as in the proof of Theorem 2,

using the wild bootstrap results of Lemma 5 and the fact that, under the assumptions of

the Theorem, we have that, as T → ∞, V̂ ∗T (u) := T−1
∑bTuc

t=1 ε̂∗t ε̂
∗′
t = T−1

∑bTuc
t=1 ε∗t ε

∗′
t +

o∗p (1)
p∗→p

∫ u
0 Σ(s)ds =: V (u), uniformly in u ∈ [0, 1]. This result can be proved by notic-

ing that 1
T

∑bTuc
t=1 ε∗t ε

∗′
t = 1

T

∑bTuc
t=1 ε̃c,tε̃

′
c,t

(
w2
t − 1

)
+ 1
T

∑bTuc
t=1 ε̃c,tε̃

′
c,t →p V (u), as, by Lemma 3,

T−1
∑bTuc

t=1 ε̃c,tε̃
′
c,t →p V (u) and, conditionally on the data, ε̃c,tε̃

′
c,t

(
w2
t − 1

)
is an independent

sequence and T−1
∑bTuc

t=1 ε̃c,tε̃
′
c,t

(
w2
t − 1

)
converges to 0 by standard arguments. �
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Table 4: Trace test statistics (Qr) for co-integration rank (r), with asymptotic (pAsy), standard
bootstrap (pIBS) and wild bootstrap (pWBS) p-values.

r Qr pAsy pIBS pWBS

0 191.6 0.000 0.000 0.000
1 105.3 0.000 0.000 0.000
2 41.66 0.009 0.007 0.087
3 17.44 0.117 0.127 0.286
4 2.664 0.645 0.658 0.795

Figure 1: Time series (ei) and variance profiles (vi) of VAR(2) residuals, i = 1, 3, 5.
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