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Abstract

We consider estimation and hypothesis testing on the coeflicients of the co-integrating re-
lations and the adjustment coefficients in vector autoregressions driven by shocks which
display both conditional and unconditional heteroskedasticity of a quite general and un-
known form. We show that the conventional results in Johansen (1996) for the maximum
likelihood estimators and associated likelihood ratio tests derived under homoskedasticity
do not in general hold under heteroskedasticity. As a result, standard confidence intervals
and hypothesis tests on these coefficients are potentially unreliable. Solutions based on
Wald tests (using a “sandwich” estimator of the variance matrix) and on the use of the wild
bootstrap are discussed. These do not require the practitioner to specify a parametric model
for volatility. We establish the conditions under which these methods are asymptotically
valid. A Monte Carlo simulation study demonstrates that significant improvements in finite
sample size can be obtained by the bootstrap over the corresponding asymptotic tests in
both heteroskedastic and homoskedastic environments. An application to the term struc-
ture of interest rates in the US illustrates the difference between standard and bootstrap

inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.
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1 Introduction

In this paper we focus on the problem of conducting inference (estimation and hypothesis test-
ing) on the coefficients of the co-integrating relations and associated adjustment parameters,
based around the likelihood-based methods of Johansen (1996), in vector autoregressive time
series which display time-varying behaviour in the variance of the driving shocks. We allow for
both unconditional heteroskedasticity (often referred to as non-stationary volatility in the liter-
ature) and conditional heteroskedasticity in our analysis. It is well known that the assumption
of conditional homoskedasticity appears inconsistent with financial and macroeconomic data;
see, for example, Gongalves and Kilian (2004). A large body of recent applied work has grown
suggesting that the assumption of constant unconditional volatility is also at odds with what
is observed in the data, with a general decline in the unconditional volatility of the shocks
driving macroeconomic series in the twenty years or so leading up to the recent financial crisis,
the so-called “Great Moderation”, commonly observed; see, for example, inter alia, Kim and
Nelson (1999) and McConnell and Perez Quiros (2000) and the references therein.

These empirical findings have helped stimulate research into the impact of time-varying con-
ditional and unconditional volatility on standard time series methods. Of most relevance to this
paper, Cavaliere, Rahbek and Taylor (2010b) analyse the impact this has on the conventional
co-integration rank pseudo likelihood ratio (PLR) tests of Johansen (1996). They demonstrate
that the asymptotic null distributions of the PLR statistics, which are constructed under the
assumption that the innovations are i.i.d. and Gaussian, are non-pivotal in the presence of
unconditional heteroskedasticity. Cavaliere, Rahbek and Taylor (2014) [CRT] show that wild
bootstrap implementations of the PLR tests are, however, asymptotically valid.! Cavaliere,
Rahbek and Taylor (2010a) provide a separate treatment for the case where the shocks are
conditionally heteroskedastic but unconditionally homoskedastic. They show that the stan-
dard PLR tests (based on asymptotic critical values) are asymptotically valid, but that the
corresponding wild bootstrap tests can deliver considerable finite sample improvements.

In this paper we make two distinct contributions to the literature. Utilising a very general
set-up which combines the assumptions of Cavaliere, Rahbek and Taylor (2010a) and Cavaliere,
Rahbek and Taylor (2010b) into a unified framework, our first contribution is to examine the
impact of time-varying volatility on the large sample properties of the standard likelihood-based
methods of estimation and hypothesis testing on the coefficients of the long run relations and
the associated adjustment coefficients (5 and «, respectively, in standard notation) detailed in

Johansen (1996). In particular, we analyse the pseudo maximum likelihood (PML) estimates

!The algorithm proposed in CRT generates bootstrap samples using estimates all of which are obtained under
the rank restriction imposed by the null, as is also done in Cavaliere, Rahbek and Taylor (2012), who use an
ii.d., rather than wild, re-sampling scheme. Cavaliere, Rahbek and Taylor (2010a,b) also propose an alternative
algorithm, along the lines of that considered in Swensen (2006) using restricted estimates only for the long run
parameters of the model. Cavaliere, Rahbek and Taylor (2012) and CRT demonstrate that the algorithms they
propose are preferable to those proposed in Cavaliere, Rahbek and Taylor (2010a,b).



of these parameters and the associated PLR test for linear restrictions on these parameters,
both derived under the assumption of an i.i.d. Gaussian pseudo-likelihood. We also analyse the
corresponding Wald statistic, based around a PML (“sandwich”) variance matrix estimator.
We demonstrate that although the PML estimates are consistent, standard confidence intervals
and PLR test statistics based on the PML estimates of a and  will not be reliable in general,
their form depending on nuisance parameters arising from any heteroskedasticity in the shocks.
Where the shocks are unconditionally homoskedastic, however, inference on 5 alone is shown
to be asymptotically pivotal. For this to hold for the PLR tests involving «, conditional
heteroskedasticity must also be absent from the shocks. We show that asymptotically robust
inference can be achieved on «, regardless of any heteroskedasticity present, by using the Wald
statistic. This also holds when using the Wald statistic to test hypotheses involving 3, provided
the shocks are unconditionally homoskedastic, but in general is not true when non-stationary
volatility is present. These results complement those given in Hansen (1992a) for the case of
a single equation error-correction model (as in Engle and Granger, 1987), driven by an error
term whose volatility follows a first-order integrated (I(1)) process.

Our second contribution is to develop wild bootstrap implementations of the standard PLR
and Wald tests. Extant bootstrap methods for testing hypotheses on the co-integration param-
eters deal with tests on 5 only and are at most devised for the case of independent, identically
distributed shocks; see Omtzigt and Fachin (2006), Cavaliere, Nielsen and Rahbek (2015) and
the references therein. In contrast, we derive the conditions under which wild bootstrap imple-
mentations of the PLR and Wald tests of hypotheses on both o and 8 can replicate the first order
limiting null distributions of the corresponding standard test statistics. In such cases asymp-
totically valid bootstrap inference can be performed in the presence of time-varying volatility
using the wild bootstrap versions of these tests. For the bootstrap PLR tests involving « this
requires the assumption of a further moment condition and the assumption of the absence of
asymmetric volatility clustering, as formally defined below after Assumption 2. For the PLR
tests involving only S neither of these additional assumptions is required, while for the Wald
tests, the additional assumption on the form of the volatility clustering is also not required.
When testing joint hypotheses on « and 3, statistical leverage effects (defined after Assumption
2) need to be ruled out for bootstrap inference based on PLR and Wald tests.

The remainder of the paper is organised as follows. Section 2 defines the heteroskedastic
model, discussing in detail the type of time-varying volatility that we consider. We then char-
acterise the asymptotic behaviour of the common trends in the process. Next, we introduce
a class of hypotheses on the co-integrating vectors and error correction coefficients. Section 3
derives the asymptotic null distributions of the PLR and Wald test statistics for the class of hy-
potheses we consider. The wild bootstrap approach, based on a sieve-type procedure using the
PML coefficient matrix estimates from the co-integrated VAR model, is outlined in Section 4.
Here the conditions under which the wild bootstrap tests deliver asymptotically valid inference

are also detailed. In Section 5 we use Monte Carlo simulation evidence to compare the small



sample size properties of the standard (asymptotic) tests and their bootstrap analogues for a
variety of heteroskedastic co-integrated VAR models. An empirical application of the proposed
methods to the term structure of interest rates in the US is presented in Section 6. Section 7
concludes. All proofs are contained in the Appendix.

In the following ‘=’ denotes weak convergence and By convergence in probability, in each
case as the sample size, T, diverges; I(-) denotes the indicator function and ‘z :=y’ (‘x =: y’)
indicates that z is defined by y (y is defined by x); |-| denotes the integer part of its argument.
The notation Cgmxx |0, 1] is used to denote the space of m x n matrices of continuous functions
on [0, 1]; Drmx=[0, 1] denotes the space of m x n matrices of cadlag functions on [0, 1], equipped
with the Skorohod metric. The space spanned by the columns of any m x n matrix A is
denoted as col(A); if A is of full column rank n < m, then A; denotes an m x (m — n) matrix
of full column rank satisfying A’, A = 0. For any square matrix, A, |A| is used to denote the
determinant of A, ||A| the norm ||A||* := tr {A’A}, and p (A) its spectral radius (that is, the
maximal modulus of the eigenvalues of A). For any vector, z, ||z| denotes the usual Euclidean

norm, ||z|| := (2 x)l/ % Finally, ® denotes the Kronecker product.

2 The Heteroskedastic VAR Model and Hypotheses

We consider the following VAR(k) model in error-correction format:

k—1
AXy=aBf' X, 1+ TjAXe j+apDy+poDay+e,  t=1,....T, (1)
j=1
where X; is a p-variate vector process, with initial values (X7 _g, ..., Xo), which are known and

taken to be fixed in the statistical analysis, and D1; and Do, are vectors of deterministic terms,
such as a constant or linear trend, of dimensions di and do, respectively. The disturbance &
is assumed to be a p-variate vector martingale difference sequence relative to some filtration
Fi, with finite and positive definite conditional variance matrix. Further conditions on &; are
discussed below. The parameter matrices « and B, which are our key focus in this paper,
are of dimension p x r, with 0 < r < p, and {Fj};?;ll are p X p lag coefficient matrices. The
co-integration rank, r, is assumed to be known in what follows; in practice this would first be
determined using the wild bootstrap co-integration rank tests of CRT. The parameter matrices
p1 and py are of dimension dy x r and p x da, respectively; note that Dj; enters the model
through the error correction term «(8'X;—1 + pj D1;) only, whereas Do, appears unrestrictedly.
The usual cases of interest which we consider in this paper are: (i) Dy = 1, Dy = 0 (restricted
constant), and (ii) D1y = ¢, D = 1 (restricted linear trend); see Johansen (1992).

We assume that the process in (1) satisfies the following condition (referred to as the ‘I(1,r)

condition’ hereafter):

Assumption 1. (a) the characteristic equation associated with (1), i.e. |A(z)| = 0 with

ARz):=0Q-2)1, —af'z — Zf;ll I'jz (1 —2), has p — r roots equal to 1 and all other roots

4



outside the unit circle, and (b) o and 8 have full column rank r.

An implication of Assumption 1 is that AX; and 8'X; may be written as linear processes
in terms of g4, with exponentially decaying coefficient matrices. That is, these are “stable”
processes in the sense of Cavaliere, Rahbek and Taylor (2010b), which would reduce to sta-
tionary [or I(0)] processes if the unconditional variance of ; were constant. Because we allow
for time-varying behaviour in the variance matrices (both conditional and unconditional), the
definitions of integrated and co-integrated processes do not formally apply in the present case,
although it will be convenient still to refer to the elements of 5 as co-integration parameters (as
in the title of this paper). The assumption on the number of unit roots excludes integration of
a higher order, and is equivalent to the assumption that |o/,T'8 | # 0, with I" := I, — Zf;ll I';;
see Johansen (1996).

As regards the sequence &;, we assume the following:

Assumption 2. The process €; can be written as ey = oz¢, where:

(a) o = o(t/T), where o(-) is a non-stochastic element of Dgpx»|0,1] such that X(u) :=
o(u)o(u) >0 for all u € [0,1];

(b) z; is a p-vector martingale difference sequence relative to a filtration Fy, with conditional

variance matriz hy := E(ziz;| Fi—1), satisfying

LTS e B B2 =1,
i, 71 Z?zl(ht ® 24—i) L E(zi2; @ z1—;) = o; fori > 1, with SUp;>; llo;|| =: 0 < o0,
iii. 771 Zzﬂ:l(ht@)zt,iz;ﬁ) it B2z, ®@21-i2_;) = Tij fori, j > 1, with sup; j>q |73 <
m)

iv. sup, E ||z||*" < oo for some r > 1.

Assumption 2 implies that €; is a vector martingale difference sequence relative to F3, with
conditional variance matrix ¥,;_; := E(gig;]|Fi—1) = o4hyoy, and time-varying unconditional
variance matrix X, := FE (g¢}) = 040 > 0.2 As such, it combines the assumptions of Cavaliere,
Rahbek and Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b), who consider VAR
models with stationary conditional heteroskedasticity or non-stationary unconditional volatil-
ity, respectively. These are obtained as special cases with o(-) = o (constant unconditional
variance, hence only conditional heteroskedasticity) and hy = I, (so ¥y, = Xy = X(t/T), only
unconditional non-stationary volatility). As discussed in Cavaliere, Rahbek and Taylor (2010b),

2Notice that, since o is unrestricted, the assumption that E(z:;2,) = I, made in part (b)i is without loss
of generality and is made only to simplify notation. In particular, any £; = o.2: satisfying Assumption 2 with
E(z:tz;) = Q can also be expressed as g, = G:2; with E(z:2;) = I, and 6 := JtQ71/2, where both 2; and &

satisfy Assumption 2.



Assumption 2 (a) implies that the elements of ¥; are only required to be bounded and to dis-
play a countable number of jumps, therefore allowing for an extremely wide class of potential
models for the behaviour of the variance matrix of ¢;, including single or multiple variance or
covariance shifts, variances which follow a broken trend, and smooth transition variance shifts.
Assumption 2 (b), which is closely related to Assumption A of Gongalves and Kilian (2004),
allows for (possibly asymmetric) volatility clustering and statistical leverage effects. Volatil-
ity clustering, such as generalised autoregressive-conditional heteroskedasticity (GARCH), is
allowed for by the assumption that z; is a martingale difference sequence where the quantity
Tii = E(22{®2z_;z,_;) is not necessarily equal to E(z:2;) ® E(z—iz,_;) = Ip. In particular, Deo
(2000) provides examples of stochastic volatility and GARCH processes that satisfy Assumption
2 (b), including Gaussian GARCH(1,1) processes with a finite unconditional 8th moment. Sta-
tistical leverage occurs where the quantity o; := E (hy ® 2z;—;) is non-zero for some i = 1,2, ....
Likewise asymmetric volatility clustering, that is correlation between the conditional variance
h: and cross products of past shocks zt_izg_j, is allowed for by non-zero 7;; for i # j. For the
benefit of the reader when excluding leverage and asymmetric volatility clustering respectively,
we summarise this as ¢ = 0 and 7 = 0, where ¢ := sup [ ¢;|| and 7 := sup; j>1 ;. [|74;]]; cf.
Assumption 2.

It should be stressed that Assumption 2 (b) rules out non-stationary conditional het-
eroskedasticity such as is generated by, for example, near-integrated GARCH models and the
non-stationary autoregressive volatility processes of Hansen (1995); see Cavaliere and Tay-
lor (2009, p. 1235) for further discussion of models allowing for non-stationary conditional
heteroskedasticity. The non-stationary non-linear heteroskedastic (NNH) framework of Park
(2002) and Chung and Park (2007) is also not permitted under our assumptions. In our set-up
the volatility function o, = o (¢t/T) is defined through a triangular array, thereby allowing for
breaks in correlation and variance which are not permitted in the NNH setup where o, = f (v)

with vy a random walk and f(-) a time-invariant function.

2.1 Representation

Before we introduce the class of hypotheses we will consider in this paper, we provide some pre-
liminary results on the stable and unstable linear combinations of X;. Let uD; = py D1+ pg Doy,
where y; = ap, and let Xy = (X{,...,X; ;. ), and Xg; := (X{B,AX{,...,AX;_,CH)/ =
B'X;, where B is defined implicitly; if ¥ = 1, then B = 8 and X3, = 8'X;. Lemma 1 of Cav-
aliere, Rahbek and Taylor (2010b) applies directly to our model under Assumptions 1 and 2,
and states that

Xpr = ©Xp 1 + F(puDy + &4), (2)

where the autoregressive matrix is defined by ® := I, 1) + B'A, with

« L
A:: 5 \IJ:: [Fl,...7rp_l],
)
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and where I := (3,1,,0,...,0)". Because p(®) < 1, Xg is a stable process. For X;, Lemma 1
of Cavaliere, Rahbek and Taylor (2010b) yields the result that
t
X =CY (uDi+e)+ S+ Co, (3)
i=1
where C := (| (o/J_FBJ_)_l o, S = (I,0,...,0)A(B'A) !X, and where Cj is a constant,
depending on the initial values, defined by Cy := C (I, —¥)X,. These results are purely
algebraic and, hence, do not depend on specific assumptions on ¢; = o,2;. The result in (3)
implies that the stochastic part of o/, T'X; is given by the sum of the heteroskedastic random
walk 3! o/, &, and the stable process o/, T'S;.
The following result gives the limiting behaviour of the random walk component, 25:1 i)
and of a particular sample moment matrix. It is a direct extension of Lemma 2 of Cava-
liere, Rahbek and Taylor (2010b), although in the present context we also allow for stationary

conditional heteroskedasticity in z; of the form specified in Assumption 2 (b):

Lemma 1. Let ¢, = o2 satisfy Assumption 2, and let W(-) denote a p-variate standard

Brownian motion. Then,

(MT(_)7/01 MT(S)dMT(s)'> = Tiﬂggt’;i (Ssz) g | 2 <M(-),/O1 M(s)dM(s)')

i=1

where M(-) := [, o(s)dW (s) is a p-variate continuous martingale.

2.2 Hypotheses

For unknown parameters a and /3 (of dimension pxr but not necessarily of full column rank), p;,
{T'; f;ll and 9, and for a given sequence {e;} satisfying Assumption 2, (1) is the unrestricted
heteroskedastic co-integrated VAR model, denoted in what follows as H,.. It will be convenient

to write the model in the compact form
Zor = B Zug + U Zoy + e, (4)

with Zo = AXy, Z1p = (X[_y, DY), Zor == (AX]_y,...,AX,_, 1, Db), B% .= (8, p}) and
U# = (U, uy). If Dy is set equal to 0, it is understood that Dy is to be dropped from the
definition of Zj;, i = 1,2. We also define p# := p + d;, the number of rows of 7.

Within this model we wish to test linear hypotheses on the co-integration parameters A7 and
the adjustment coefficients . Because 37 is only identified up to its column space, some restric-
tions are needed to identify the individual components of 37, before further (over-identifying)
restrictions can be considered. Therefore, we normalise § by ¢/8 = I, for some known p x r
matrix of full column rank, so that 3 = ¢ + ¢ 85, where 5, = &, is a (p — r) X r matrix of

free parameters; where ¢ = ¢(c’c)™! and ¢, = ¢ (¢, ¢y )!. Defining

4 _ [ B2 #._|[ ¢ # (e 0
CE) ) ()



and ¢ = ()7L, Ejﬁ = cf(c#f/c#)_l, we similarly have % = &# + cfﬁ#, with
ﬁf = Ef’ﬁ#. Based on this normalisation, we consider the following class of hypotheses on 5#

and a:
Hyg : Rgvec B# = g3, Hoy : Ry vecd = qa,
Hoop = Hop N Hoa @ RO =g, (5)

where Rg and R, are matrices of dimensions 73 x (p* —r)r and 74 X pr, respectively, of full row
rank, and ¢z and g, are rg x 1 and ro x 1 vectors; furthermore, R = diag(Rg, Ra), ¢ = (qg, q.,),
and 6 = ((vec ,6’#)’ , (vec’)")’. The theory developed in this paper could be extended to more
general non-linear restrictions, and restrictions linking o and 3, but (5) appears to offer a
sufficient level of generality for most practical purposes. In what follows, we will often use the
notation Hy in a generic sense to mean either Hog, Hoo or Hoag.

For obtaining the PML estimators under the restrictions (5), needed to compute the PLR

statistic, we rewrite the joint hypothesis Hyp (together with the normalisation of B#) as:
H(l)aﬁ : Vecﬁ# =Hop+h, vecd =Gy+yg, (p,0) € Rl x le7 (6)

where H = Q, and h = Q(Q'Q) ™ ((vec Ir)’,q’ﬂ)’, with Q@ =[ (I, @ ¢#) (I, ® ET)R% |, where
G = (R.), and g = R/ (RoR.) qa, and where ¢ and ¢ are unrestricted parameters, of
dimensions l, = (p* — r)r — rg and ly, = pr — rq. Null hypotheses of the form (6), but
with ¢ = 0, were considered by Boswijk (1995) (see also Boswijk and Doornik (2004)), as a
generalisation of the restrictions ,Bfﬁ = H;p; + h; on the separate vectors of 7 considered by
Johansen (1995). If only restrictions on 3% are considered (i.e., for testing Hyg), then G = I,
and g = 0; for hypotheses Hy, on only «, take H = (I, ® CT) and h = vecé”.

3 Asymptotic Inference

In this section we analyse asymptotic inference on the class of hypotheses in (5) defined in the
previous section, in the model (1) under Assumptions 1 and 2. As in Johansen (1996), the
analysis will be based on the Gaussian pseudo-likelihood, derived from the assumption that &,
is an i.i.d. N(0,X) sequence. Assumption 2 implies that in general, this likelihood is based on
a misspecified model, and the purpose of this section is to assess the asymptotic consequences
of this mis-specification. We analyse the PLR test as well as a Wald test based on the PML
variance matrix estimate of the parameter estimators.

To simplify notation, asymptotic results will be provided only for the model with a restricted
constant, where Zy; = (X{ ;,1)" and Zy = (AX{ 4,...,AX] ;) s0 U# = ¥. Analogous
results can be obtained for models with a more general specification of the deterministic com-
ponents, but at the cost of more involved notation.

In what follows, for a given vector of parameters, 6 say, the unrestricted PML estimator
for 0 will be denoted 6, while the PML estimator obtained under the restrictions in (5) will be
denoted 6.



3.1 The PLR Test

The concentrated pseudo-log-likelihood in terms of the parameters «, 7 and ¥ can be expressed

in terms of the sample moment matrices
Sij = My; — MMy My;, i, =0,1, (7)

with M;; = 71! ZtT:1 ZitZg-t, 1,7 =0,1,2. Up to a constant, the pseudo-log-likelihood is given
by

T T
Ua, f7,%8) = 5 log |X| — 3 tr £ (Soo — 2087/ S19 + a7 S11 57 ). (8)
If « is unrestricted, the log-likelihood may be further concentrated with respect to a and ¥ to
yield
T _ T
() = =5 log | Soo — Sou 8% (8% 8%) 1 5% 10| - . (9)

The maximiser of E(,B#) under the normalisation ¢#' 8% = I, see Johansen (1996), is
given by B# = Bf(c#’ﬁf)_l, where Bf = [01,...,0,], with 0;,4 = 1,...,r the eigenvec-
tors corresponding to r largest eigenvalues A >...> )\ of the generalised eigenvalue problem

|/\511 - 5105&31501‘ = 0. The maximised log-likelihood is given by

() =B =5 (p+ioalSl), = Swll,0-A).
Under the restrictions vec 8% = H¢ + h,veca/ = Gu), the log-likelihood (8), possibly after
concentrating out X, can be maximised over (¢, ) using a Newton-type algorithm. Alterna-
tively, a switching algorithm can be used that exploits the fact that expressions for the partial
maximisers B#(a,E), d(ﬂ#,E) and i(a,ﬁ#) of K(a,ﬂ#,E) are available in closed form; see
Boswijk (1995) and Boswijk and Doornik (2004) for further details. Letting 3 denote the PML

estimator of ¥ under the restrictions, the PLR statistic is then given by
LRy := Tlog |%|/[3).

In order to be able to discuss hypothesis testing on « and (8 separately, as well as jointly, we
introduce the following notation: for Hy,, denote the PLR statistic by LRy (); and for Hypg,
the PLR statistic is denoted by LRy (3); for Hyag, the PLR statistic is denoted by LR («, ).

The next lemma characterises the asymptotic behaviour of the three sufficient statistics
S00, S10 = Sy, and Si;. These results will subsequently be used to characterise the limiting
behaviour of the likelihood function and, hence, of the PLR statistic.

Lemma 2. Let X, satisfy the model (1) under Assumptions 1 and 2. Let By := diag(T~/%3,,1)
and Sie := S10 — S11 87, with Sij, i, = 0,1 as given in (7). Then,

B# 811 6% B S, B# 810 & S0, Soo 2 oo, (10)

and
TH2# 5. % N(0,9), (11)



where E_J,g@ and € are positive definite matrices, defined in the Appendix, and where 2_350 =
Yppa’ and Sop == X + aXggd, with ¥ = fol Y(s)ds. Furthermore,

1 1
(B1SuBr. 1" B)s).) ( / G()G(s)ds, / G(s)dM(s)’) , (12)
0 0
where G(u) := (M (u)'C'8,,1), and
BLS11 87 5 0. (13)

The expressions for 255 and (2, derived in the proof of Lemma 2 in the Appendix, imply
that in general Q # ¥ ® Yg5. This implies that T'/2(5%#'Sy, %) ~1/25#'8,.5~1/2, which would
be a natural candidate for a standardised version of 3#'5;. provided that & % £, is in general
not an asymptotically standard normal random vector. The property 2 = i@iﬁg only holds if
both o(s) = o (a constant unconditional volatility) and 7;; = I(i = j)I,2 for all 4,7 > 1 (which
excludes volatility clustering). This will have implications for testing hypotheses on « in the
next theorem, which gives the asymptotic null distribution of the PLR statistic, together with
some additional results on the consistency and asymptotic distribution of the PML estimators.
For notational convenience, we only consider the case where the restrictions on 7% do not

involve the constant term p;, and hence relate to 5 only.

Theorem 1. Under the conditions of Lemma 2:

(a) the PML estimators of (8%, a, W) are consistent, i.e., 3

S5
(b) the asymptotic distribution of BQ, pp and & is given by

(T(Bg—ﬂﬁ)g(/c, >/G VMo (s).
T2 (py = py)
T'%(6—a) 5 N(0,[I,® S350, ® S55]),

where Ge(u) := diag(8 e (B 8,)71, 1)G(u) and My(u) := (/S a) 1a/S7 1M (u);

(c) under Hog and Ho, respectively,
LR7 (8) 2 LRoo(f), LR7(a) = LRoo(w) (14)

LRA(B) = (Rﬂve(:(/G ) /G YAM( )) )
><<R5 (/S La) (/ G >_1 R’B>

XR5V60< 1GC(3)GC(3)’ds>_ /0 1Gc(s)dMa(s)’ (15)

where




and where Z ~ N(0, I,.,). Moreover, under Hyqg,
LR7 (a, ) 5 LRoo(B) + LRoo(a) =: LRoo (, B) . (17)

Notice that LR (5) and LRoo(a) are mutually independent if o = 0, because where this
condition holds Z is independent of (G., M,).

REMARK 3.1. It can be seen from part (b) of Theorem 1 that the normalised estimators, (34, p;
and & attain exactly the same rates of consistency under heteroskedasticity of the form given
in Assumption 2 as they do under the assumption of i.i.d. shocks; cf. Johansen (1996, Chapter
13). Moreover, it is also seen from part (a) that the PML estimates of the short-run dynamic

parameter matrices, I'y,...,'x_1, also retain consistency under heteroskedasticity.

REMARK 3.2. Observe from (17) that the limiting null distribution of the joint PLR test
statistic for Hong is given by the sum of the limiting null distributions for the corresponding
LRr () and LRy (B) statistics, both of which can be seen to depend on nuisance parameters
arising from the heteroskedasticity present in the shocks. These condition, ¢ = 0, for the
mutual independence of these two components entails that the conditional variance matrix of

z¢ is independent of lagged levels, thereby ruling out any statistical leverage effects.

REMARK 3.3. Consider the limiting random variable, LR~ (3) in (15), relating to the restric-
tions on 5. The stochastlc integral fo c(8)dM,(s) clearly plays a key role in the asymptotic
distribution of 52 . Both G.(-) and M, () can be expressed as linear combinations of the
continuous-time Gaussian martingale M (- fo (s). This means that these two pro-

cesses are independent only if their cross-variation process

(Ge, Ma) (u) = ABLC (M) (W)E a(a’S ™ a) ™
= ABLC'/ s)dsE ta(a/'S 7 a) 7t

is zero for all u € [0,1], where A := diag(8’ c (8, 8,)~!,1). Although the property Ca =
B (e, TB,) /| = 0 implies that (G, M,) (1) = 0, this property does not extend to all
u, so that in general the two processes are not independent. This in turn implies that the
distribution of fo s)dMy/(s)" is in general not mixed Gaussian, which is a necessary condition
for a quadratic form in this stochastic integral to have a x? distribution. Clearly, if o(u) is
constant, then G, and M, are independent vector Brownian motions, and here it is simple to
show that LR (8) is x*(rg) distributed, as is the case for i.i.d. shocks; see Johansen (1996).

REMARK 3.4. A further example where G.(-) and M,(-) are independent occurs where ¥(u)
can be written as the product of a constant matrix ¥ and a scalar time-varying process v(u),
corresponding to the case of “common volatility shocks”; see Remark 2.3 of Cavaliere, Rahbek
and Taylor (2010b). However, in this example LR (B) will not be x?(rs) distributed in gen-
eral. To see why, observe that [’ S(s)dsS~t = [ v(s)dsv'1,, where v = fo s)ds, so that
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(G, My),, = 0 for all u, and the distribution of fol Ge(s)dM,(s)" is again mixed Gaussian, but

in this case with conditional variance matrix
1
('S 'a) /S @ Ly, /0 [S(s) ® Ge(8)Ge(s))ds [E7'/ ('S 'a) @ Ly, ]
Now

1 1
/O[E(s)@)GC(S)GC(s)']ds = Z®/ v(8)Ge(5)Ge(s) ds

0
1 B 1 /
# Ev@/o Gc(s)Ge(s) ds:2®/0 Gc(s)Ge(s)'ds

unless v(u) = 1 and, hence, ¥(u) = ¥ for all u € [0,1]. Consequently, in this case LR (/)
will only be x?(rg) distributed when o (u) is constant. However, we will subsequently show in
Section 3.2 below that the independence of G(-) and M,/(-) is necessary and sufficient for the

Wald tests based on the use of a sandwich-type PML variance matrix to deliver x? inference.

REMARK 3.5. Notice that inference on 87 is asymptotically unaffected by the possibility of
volatility clustering in z; (where the conditional variance matrix h; may be correlated with
lagged squares and cross-products), because the matrices 7;; = E(2:2,® 2¢—i2;_;) do not enter
the right member of (15).

REMARK 3.6. Turning to the limiting distribution in (16), relating to the restrictions on «,
we observe that LR () is a quadratic form in a standard normal vector. However, because
the weight matrix in this quadratic form is, in general, not an identity matrix, LR () will
not have a x?(ry) distribution in general. As discussed below Lemma 2, standard inference
does, however, obtain if both o(u) is constant and z; does not display volatility clustering, so
that 7;; = I(i = j)I,2 for all 4,5 > 1. More generally, however, standard asymptotic inference
is expected to be delivered by the PMIL-based Wald test, as will be discussed in the next

subsection.

REMARK 3.7. Hansen (1992a) considers asymptotic inference on 3, in a single equation Engle
and Granger (1987) co-integrating regression model where the regressors are homoskedastic
I(1) processes but the errors display non-stationary volatility (specifically, volatility follows
an I(1) process in his set-up). In the notation of the present paper, this corresponds to the
case where o/| M (u) is a Brownian motion with constant variance matrix o/, Sav; , and where
M, (u) has a time-varying (conditional) variance matrix. Hansen (1992a) shows that mixed
normal inference arises if the Brownian motion driving M, is independent of o/, M(u) and the
stochastic volatility process, which implies that o/~ "% (u)a; = 0 for all u € [0, 1]. Notice that

by a suitable choice of the matrix square root o(-) of X(-), we may write

wir(u) wiz(u) ]

0 w2

o/t

o(u) = [

oy
where waswhy = o/, Ta; and wiy (u)wi1(u) + wiz(w)wiz(u) = /718 (u)Ea. We also know
thatfo1 LIS () du = fol wi2(uw)whydu = wigwhy = 0. However, this by itself does not guar-

antee or require that wis(u) = 0 for all u. It is the specific structure of the model considered in
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Hansen (1992a) which implies that o/S7'M (u) = [ wi1(s)dWi(s) and o/, M (u) = waaWa(u),

and hence yields the independence of the two processes. O

3.2 Wald Test
A Wald test statistic for null hypotheses as in (5) takes the form
Wr = (RO — q)(RVar[0] ') (RO — g), (18)

where \//a\r[@] is an estimate of the asymptotic (conditional) variance matrix of 0. As in the
previous section, we denote by Wr (a), Wz (8) and Wr (o, 8) test statistics for hypotheses on
a only, on 8 only, and jointly on « and 3, respectively. We consider a PML-based variance
matrix, which may be expressed as follows. Let v := (¢, (vec ¥’)’)’; and define the following
estimates of the information matrix for « based on minus the Hessian matrix and the outer

product of gradients, respectively:

()
=— = T
H Ov0y

T c’%t T
2% = N

t=1

J (X te Mp)J J(37t® Mis)
('@ My)J (271 ® M) ]
"(Sleeis @ 21,20)d J(E e X " @ 2y 21))
el @ 2oy 2 (X leEl X © 29y ZY)

where J := dvec(f#a/) /00 = | (a@cﬁ) (I, ® g#) ]. ThenVar[f] = ( I, O )7:[_11'7:[_1 (

where lp := (p* — r)r + pr = dim @, and # and 7 are as defined above, evaluated at y=4. In
these expressions, the dependence of £ on X is suppressed, and derivatives with respect to the
variance parameters are not taken into account, due to the asymptotic block-diagonality of the
Hessian matrix with respect to the regression and variance parameters.

In Theorem 2 we detail the asymptotic null distribution of the Wald statistic, W of (18).
This follows an important preparatory result relating to the scaled partial sum of the PML

residuals from the estimation of (1), &, given in Lemma 3.

Lemma 3. Under the conditions of Lemma 2, Vp(u) := T~ ZLTUJ 218} fou Y(s)ds =: V(u),
uniformly in u € [0,1].

Theorem 2. Under the conditions of Lemma 2, and under Hy, and Hyg respectively,
Wz (8) 2 We(8),  Wr(a)=2'Z (19)

where Z ~ N(0,1,.,),
Wao(B) = (R (I, @ K~ vec/ Ge( dM())I
y <Rﬂ (I ® K1 <Vec/ G >(1) (Ir®K1)R/ﬁ)1
R

5 (L@ K1) Vec/0 Go(8)dMy(s)'
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and where K := fol Ge(s)Ge(s) ds,

< / vec GC(S)dMa(s)’> (u) = /0 ’ (M) (s) ® Ge(5)Ge(s)'] ds,

0

with (Ma) (s) = (/7 ) L/E718(s) S (/S a) 7L Moreover, under Hop,
Wr (@, 8) = Weo(B) + Z'Z =: W (a, B) , (20)
where Woo(B) and Z'Z are independent if o = 0.

REMARK 3.8. It is seen from (19) that, unlike the PLR test, the PML-based Wald test leads
to standard asymptotic x? inference on the adjustment parameters o without the need for any
further assumptions. However, Wald-based inference on f is in general not mixed Gaussian
in the limit, because the processes G. and M, which appear in W, (f) are in general not
independent, as discussed in Remark 3.4. However, and in contrast to the component LR (3)
appearing in the asymptotic null distribution of the LRy statistic, the quadratic form in Wuo (3)
now involves a weight matrix that is the inverse quadratic variation of the stochastic integral.
This implies that Ws(8) will be x?(rg) distributed when G. and M, are independent, as

happens in the “common volatility shocks” example outlined in Remark 3.4. g

For completeness, we summarise the asymptotic null distribution of the W statistic in the

case where G, and M, are independent in following corollary.

Corollary 1. Under the conditions of Lemma 2, and if o/, %(u)S " a = 0 for allu € [0,1], then
under Hog, Wr (B) it x?(r3). Moreover, if in addition ¢ = 0 then under Hong, Wr (a, B) =
X2 (rg +Ta).

We conclude this section by providing a theorem detailing the consistency of the restricted
PML estimators, which will subsequently be needed to prove the consistency of our proposed

method of bootstrap inference outlined in the next section.

Theorem 3. Let the conditions of Lemma 2 hold. Then, under the restrictions in (5): 32—62 =

Op(T™M), p1—p1 = Op(TV?), & —a = O,(T?), and ¥ — ¥ = O,(T?). Further-

more, denoting the associated PML residuals from restricted estimation of (1) by &, Vi(u) ==
-1 ZtTifJ 22, B V(u), uniformly in u € [0,1].

4 Bootstrap Inference

In this section we outline our proposed wild bootstrap-based implementations of the PLR and
Wald tests from Section 3. We provide sufficient conditions for the wild bootstrap implemen-
tations of the PLR and Wald tests to be asymptotically valid under heteroskedasticity of the
form given in Assumption 2, although as we will show in some cases these conditions will need

to be strengthened somewhat.
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The following notation will be used throughout this section: P* and E* respectively denote
the probability and expectation conditional on the realization of the original sample. Moreover,
for a given sequence X7 computed on the bootstrap data, with the notations X7. = X + o}, (1),
in probability, and X7, p—*>p X we mean that P* (| X} — X|>¢€) — 0 in probability, for any
€ >0asT — co. Finally, ‘w—;p’ denotes weak convergence in probability (Giné and Zinn (1990);
Hansen (1996)); that is, X7 w—;p X if sup,cp |P* (X} <) —P(X <z)| =, 0,as T — oc.

4.1 Wild Bootstrap Algorithms

We first outline our proposed algorithm which draws on the wild bootstrap principle; see, inter
alia, Wu (1986) and Mammen (1993). The bootstrap algorithm we propose is based on the
restricted Gaussian PML parameter estimates obtained by estimating the model in (1) under
the null hypothesis Hy of (5), as outlined in 3. More specifically, let 0 := {&, 3, py, V%, jip}
denote the restricted PML estimators of 6 := {a, 3, p;, U7, 15}, define B# = (B,, 71)". Recall
that &; := Zg — dB#/th — @#Z% with Z;, ¢ = 0,1,2, as defined in Section 2.2, denote the
corresponding PML residuals from the estimation of (1) under Hj.

When applying bootstrap methods in the context of autoregressive time series models, it
is common practice to check that the bootstrap data generated in Algorithm 1 will satisfy the
I(1,r) conditions (cf. Assumption 1); see, in particular, Swensen (2006) and Cavaliere, Rahbek
and Taylor (2010a,b, 2012, 2014). In the context of the setting considered in this paper this
entails checking that the equation |4 (z) | = 0, with A () := (1 — z) Ip—dB/z—Zfz_ll Tiz(1—2),
has roots either equal to 1 or outside the unit circle. Where this condition is not satisfied the
bootstrap samples generated in step (ii) of Algorithm 1 will contain explosive roots which could
be attributable to either finite sample bias in the parameter estimates, or might indicate that
the underlying model is dynamically misspecified. As such, the safe strategy would be not to
use Algorithm 1 (or indeed the corresponding asymptotic tests) in such cases, although in the
case where the model is correctly specified the evidence from a large simulation study reported
in Cavaliere, Taylor and Trenkler (2015) suggests that, at least for the case of the bootstrap
PLR tests of co-integration rank considered in Cavaliere, Rahbek and Taylor (2012, 2014), the
root check can be safely ignored in practice. Reassuringly, in the Monte Carlo experiments

reported in this paper we also found such violations to be extremely rare; see Section 5.
ALGORITHM 1 (WILD BOOTSTRAP):

(i) Compute the re-centered residuals &.; := & — T~1 Zg‘rzl & and construct the bootstrap
errors €} 1= Z.4w¢, where wy, t=1,...,T, is an i.i.d. sequence with E(w;) = 0, E(w}) = 1

and E(w}) < co.

(ii) Construct the bootstrap sample {X;} from the recursion

k-1
AX] = dB#,Xik—l + Zf‘jAXt*—j + apy D1t + figDo + 5, t=1,...,T, (21)
=
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with the T" bootstrap errors ¢ generated in step (i) and with initial values X; = X; for

t=—k+1,...,0.

(iii) Using the bootstrap sample, {X;}, compute the bootstrap test statistic S}, where S7.
generically denotes either the PLR or the Wald statistic, as detailed in Section 3.1. Define
the corresponding p-value as Pj := 1 — G% (St) with G%.(-) denoting the conditional (on

the original data) cumulative density function (cdf) of S7.

(iv) The wild bootstrap test of Hy at level £ rejects if Pj < €.

REMARK 4.1. In the context of stationary data, it is often found (for a review, see Davidson
and Flachaire (2008)) that improved accuracy can be achieved by generating the pseudo-data
according to an asymmetric distribution such as the Mammen (1993) distribution: P(w; =
—0.5(v/5—1)) = 0.5(v/5+1)/v/5 =: 7, P(w; = 0.5(v/5+1)) = 1 —7. Two other commonly used
distributions are the two-point distribution P(w; = —1) = P(w; = 1) = 0.5 and an i.i.d. N(0,1)
sequence. The large sample properties of the resulting bootstrap tests are not affected by this
choice. In simulations we found that these three gave very similar small sample performance,

and so the results presented in Section 5 relate to the use of the N(0,1) distribution for w;.

REMARK 4.2. The parameter estimates and associated residuals from (1) which are used in
constructing the bootstrap sample data in steps (i) and (ii), are obtained under the restriction
of the null hypothesis, Hy of (5). As suggested in Omtzigt and Fachin (2006), it would also
be possible to estimate these parameters without imposing the null (i.e., using the unrestricted
PML estimators detailed in Section 3.1 and in Theorem 1), and to subsequently calculate a
bootstrap test statistic for the hypothesis Rf = R6. Unreported simulations indicate that the
bootstrap based on restricted estimates is largely preferred. Hence, throughout this section for

economy of discussion we will only explicitly discuss the bootstrap based on restricted estimates.

REMARK 4.3. The unknown cdf G7.(-) required in step (iii) of Algorithm 1 can be approx-
imated by generating B (conditionally) independent bootstrap statistics, S;.,, b = 1,..., B,
computed as in Algorithm 1. The simulated bootstrap p-value for Sp is then computed as
P = B! 25:1 1(S%, > St), and is such that P; “% P% as B — oo. The choice of B is
discussed by, inter alia, Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000).
O

4.2 Bootstrap Asymptotic Theory

In this section we provide results on the asymptotic properties of the bootstrap PLR and Wald
statistics from Algorithm 1. In doing so we establish the conditions under which the bootstrap
tests the first-order asymptotically valid.

For the bootstrap asymptotic theory related to tests of hypotheses involving «, we will need

to strengthen Assumption 2 by restricting z; (and hence &;) to have finite 8 moments.
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Assumption 2°. Assumption 2 holds with sup; E || z[*" < oo for some r > 2.

Before detailing the large sample behaviour of the bootstrap PLR and Wald statistics, we
first need to establish two preparatory Lemmas. The first of these is the counterpart of Lemma

1 for the wild bootstrap shocks.

Lemma 4. Let the conditions of Lemma 2 hold, and let €} be defined as in step (i) of Algorithm
1. Then,

(00 [ dtarizior) = | i et 3 (L) et
t=1 1 \i=1

t—
i 1
%, (w0, [ aoasy).
0
where M(-) = [jo(s)dW(s) is a p-variate continuous martingale defined in terms of the p-
variate Brownian motion W ().

REMARK 4.4. Lemma 4 establishes that the two scaled cumulated functions considered of the
wild bootstrap errors can replicate the limiting process of the corresponding quantities formed
from the original shocks, e;; cf. Lemma 1. Notice, however, that for this this result to hold
Assumption 1 must be satisfied, since this is needed to ensure that the restricted PML estimate,

0, from (1) is consistent, as demonstrated in Theorem 3. O

The next lemma, which is the bootstrap counterpart of Lemma 2, characterises the asymp-
totic behaviour of the three bootstrap sufficient statistics, Sjj,, ST, = Sg1 and S7;. These results

will subsequently be used in determining the limiting behaviour of the bootstrap PLR statistic.

Lemma 5. Let X; be generated as in Algorithm 1 and let By = diag(T~Y28,,1) and S}, :=

STo — S’flﬁ#&', with S;kj,z',j = 0,1 defined analogously to (7) but for the bootstrap data. Then,

under the conditions of Lemma 2,
2 ox P& 2 o P x P&
BYSHBT By Ss BT STy Bp Spo, Sto ©p o0 (22)
where 250, Yoo and 255 are as previously defined. Furthermore,
. 1 1
(BrSt Br, T2 Brst.) 5, < / G(s)G(s)ds, / G(s)dM(s)’) , (23)
0 0
where G(u) := (M(u)'C'8,,1), and
I oox HH DT
BrST1 18" =5 0. (24)
Finally, if Assumption 2 is strengthened to Assumption 2', then
25" 1. %, N(0,9), (25)
where QF is a positive definite matriz, defined in the Appendiz.
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REMARK 4.5. It is useful to compare the asymptotic distributions involving S;; in Lemma 5 with
the corresponding distributions in Lemma 2. In the non-stationary directions of the system,
both (BTSHBT,Tl/2BTSlg) and its bootstrap counterpart <BT BT,TI/QBTSTE) have the
same limiting distributions; compare (12) and (23). These distributions depend on the time
series behaviour of the unconditional volatility of the shocks (through the function o (-) of
Assumption 2(a)) but not on the dynamics of the conditional volatility of z;. Conversely, in the
stationary directions of the system the wild bootstrap cannot, in general, replicate the correct
limiting distributions. For example, the limiting variance of T'V/23*# Si_, which is given by QF
(see equation (25)), is not equivalent to the limiting variance Q of TV/25#/S;_ (see equation
(11)). This disparity occurs because 2 depends on the cross moments, F(z;z; ® zt_,;zgfj) = T4j,

which the wild bootstrap cannot replicate since, conditionally on the sample data,
E*(ejef @ef e ;) = E*(E&w; ® &) jwi—iwe_j)
= (BEE (w)) ® (Ei—iE)_j E (wi—swi—j)) =0

for all i # j. Therefore, it is anticipated that bootstrap PLR test statistics for hypotheses that
include restrictions on «, and which therefore involve B#/Si‘e, will not be asymptotically pivotal

under the null unless 7 := sup, . ||74|| = 0. O

We are now in a position to detail the asymptotic null properties of the wild bootstrap PLR
statistic from Algorithm 1. Here, the bootstrap PLR statistics for tests on «, tests on 3, and
tests on « and (3 are respectively denoted by LR} («), LR} (5) and LR (v, B).

Theorem 4. Let the conditions of Lemma 5 hold. Then:

(a) the asymptotic distribution of B;, p1 and &* is given by

(i ) 5 ([ cavroconan) [ oy
where G.(u) = diag(f' e (B, 8,)" 1 1)G(u) and My(u) = (/'S o) ta/S™ M (u).
If, in addition Assumption 2 is strengthened by Assumption 2', then
TV — &) %, N0, I, © S53197, © S51)),
(c) Under Hopg, LRY (53) f)p LR (B), and, if Assumption 2 is strengthened to Assumption
2', then under Hos, LR} (o) u—);p LRI (a),and finally under Hoyop,
LR (. ) “) LR(8) + LR (0) (26)

where LRo(B) is as defined in (15) and LRI (), which is independent of LRoo(B), is
defined as

_ 1/2
LR (0):= 7' (RalT @ S5H0NT @ SAIR, )



where Z ~ N (0, 1,,), independent of (G, My).

For general linear hypotheses on a and 87, the limiting null distribution of the bootstrap
PLR statistic LR} from Algorithm 1 can be seen to depend on the limiting variance matrix
QF, rather than on the limiting variance matrix 2 as is the case for the original LRy statistic;
cf. part (c) of Theorem 1. Consequently, the bootstrap PLR test will not have the same first-
order limiting null distribution as the original PLR statistic unless Qf = Q. This equality holds
under the condition 7 = 0. Where this holds, LRl (a) and LR (a) coincide, which means
that LRY (o) ﬁp LR oo (). For joint hypotheses on o and f, in addition to 7 = 0 it is also
necessary that the condition that ¢ = 0 holds.

For completeness we formalise this result in the following corollary, which gives the condi-
tions under which the bootstrap PLR test is guaranteed to be first-order asymptotically valid.
Here Pj denotes the (wild bootstrap) p-value associated with the PLR test statistic.

Corollary 2. Let the conditions of Lemma 5 hold. Then, under Hog,
Py 5 U0, 1] (27)

where U[0,1] denotes a uniform distribution on [0,1]. Under Hys, (27) holds provided that
Assumption 2 holds with T = 0. Finally, under Hoap, (27) holds provided that Assumption 2
holds with T =0 and o = 0.

REMARK 4.6. Notice from the results in Corollary 2 that neither Assumption 2’ nor the

restriction that either 7 = 0 or o = 0 need hold when testing on 57 alone.

REMARK 4.7. Under the alternative hypothesis, it is proved in Cavaliere, Nielsen and Rahbek
(2015) for the i.i.d. bootstrap and under the assumption that the shocks ¢; are i.i.d., that the
bootstrap PLR statistic is of Op+ (1), in probability. An immediate consequence of this result is
that the bootstrap PLR test is consistent, due to the divergence of the standard LRy statistic
under the alternative hypothesis. While their framework covers hypotheses on 8 only (more
specifically, hypotheses that fully specify the co-integration space), we conjecture that their
result can be extended to our framework by using the asymptotic results given here and that

this result will also hold for the corresponding Wald-based tests. O

We conclude this section by detailing the asymptotic null distribution of the bootstrap Wald
statistic, W7, from Algorithm 1. Here we let P; denote the (wild bootstrap) p-value associated
with the Wald test statistic.

Theorem 5. Let the conditions of Lemma 5 hold. Then under Hog, W7 (/3) u—)*>p Weo (B), where
W (B) is as given in (20). Under Hyq, if Assumption 2’ holds then W, («) li;p Z'Z, where
Z ~ N (0,1,,). Under Houp, if Assumption 2’ holds and o = 0, then W (o, 5) ﬂp Weo (a, B),
where W (i, B) is as given in (20). Consequently, in each of these three cases, Py — U0, 1].
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REMARK 4.8. A comparison of the results in Theorem 5 and Corollary 2 highlights the result
that the wild bootstrap implementation of Wald tests for hypotheses which involve a do not
require the restriction 7 = 0 to hold in order to be (first-order) asymptotically valid, in contrast
to the corresponding wild bootstrap PLR tests. This because the use of PML standard errors is
sufficient to deliver asymptotically x? Wald test statistics for hypotheses on «, as follows from

Theorem 2, and the wild bootstrap replicates this asymptotic x? null distribution. ]

5 Monte Carlo Simulations

In this section we use Monte Carlo simulation methods to compare the finite sample perfor-
mance of the asymptotic PLR and Wald tests from Section 3 with the corresponding wild
bootstrap tests from Section 4. For comparison, we also report results for standard i.i.d. boot-
strap versions of the PLR and Wald tests. We note that the i.i.d. bootstrap statistics are first
order asymptotic equivalent to the standard PLR and Wald tests and hence the i.i.d. bootstrap
tests are asymptotically valid if and only if the corresponding asymptotic tests are valid.

Our simulation DGP is the VAR(1) process of dimension p = 2,3 and 4, with co-integrating
rank r =1 and

AXy=af' X1+, of = (-0.2, ;71)7 B = (1, ;71)-

where 0,,, denotes an m-vector of zeros. The process is initialised at Xg = 0 and we consider
sample sizes of T" = 100,200 and 400. A restricted constant term is included in the estima-
tion. All experiments are run over 10,000 Monte Carlo replications using B = 499 bootstrap
repetitions. In the context of Algorithm 1, any samples violating the root check conditions in
step (ii) are discarded. For each bootstrap procedure the observed (rounded) frequency of such
violations was below 0.1% in all cases.

As in Section 2, the errors are defined as e; = 042, z; being a martingale difference sequence
with unit unconditional variance matrix. Three versions of the unconditional variance matrix

Y = o0} are considered. Specifically, with ¢,, denoting an m-vector of ones, we consider

Zgl) = (1=p)lp+prpt, =%
2%2) = Uti
Egs) = (ve—p)Ip + ptp ; = (v — 1)1, + b))

which we label Cases 1, 2 and 3, respectively. In each case, we set p = 0.4 (implying a moderate
degree of correlation between the components of ;) and v, = 2 H[o,%) (%) +0.5 ]I[%,l] (%), such
that the time-varying volatility factor v; displays a negative shift a third of the way through

the sample.® Notice that the volatility factor is normalised such that v := folv (s)ds = 1,

3This particular structure for v; is chosen to mimic the pattern of unconditional volatility seen in the interest

rate data used in the empirical example in Section 6.
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which implies that 20 =% i =1,2,3, where () is defined analogously to the definition of ¥
in Lemma 2. For ¥; = Egl), the errors ¢; are unconditionally homoskedastic. For 3; = E?),
a common time-varying factor affects the whole unconditional variance matrix. In this case,
o/, X(u)E7 o = 0, and the estimator BQ of the co-integrating vector is asymptotically mixed
Gaussian; cf. Remark 3.5. Finally, for ¥; = Ef’) there are no common unconditional volatility

factors, and so 32 is not mixed Gaussian. Regarding z;, this is generated as the linear map
z = Aey (28)

where A is an invertible p x p matrix which is constant over time, with the p components of
et := (eit,...,ep)" independent across i = 1,...,p. Without loss of generality, we set A = I,.
Each of the p components e;; is specified to follow a stationary GARCH(1,1) process driven
by standard normal innovations; ie, e; = h;t/Q‘fit, i = 1,...,p, where &, is ii.d. N(0,1),
independent across i, and hy = (1 —dy — dy) + doe?,t_l + dihit—1, t = 0,...,T. Results are
reported for (do,d;) € {(0.0,0.0),(0.05,0.94)}; notice that: (a) for the former the errors are
i.i.d. Gaussian; (b) for the latter dp and d; are chosen such that dy + d; is close to unity as
tends to be observed with financial data, yet still satisfies an eight order moment assumption,
see He and Terisvirta (1999). In both cases, 7;; = 0 for all i # j; cf. Assumption 2 (b).*
We report results for tests of the following hypotheses

HOB:62:07 HOQ:OQ:Ov

where 3y = (0p—1 : Iy—1)B and ap = (0p—1 : Ip—1)cv, together with tests of the joint hypothesis
Hynp = Hop N Hp,. The general algorithms to obtain restricted estimates discussed in Section
3.1 are not needed here, as the the PLR test statistics for these specific hypotheses admit a
closed-form expression, see Johansen (1996).

In each case we report empirical rejection frequencies [ERFs] under the null hypothesis for
the tests which reject for large values of the PLR and Wald statistics when compared to: (i)
asymptotic (x?) critical values; (ii) wild bootstrap critical values; (iii) i.i.d. bootstrap critical
values, where the bootstrap errors in step (i) of Algorithm 1 are instead obtained by i.i.d.

sampling from the re-centered {e;}7_;. All tests are run at the nominal 5% significance level.
Insert Tables 1-3 about here

Results are reported in Tables 1, 2 and 3 for p = 2, p = 3 and p = 4, respectively. Entries
in italics correspond to tests which are not asymptotically valid; cf. Sections 3 and 4. The

following observations can be drawn from these results:

“We also ran additional Monte Carlo simulations for analogous conditionally heteroskedastic DGPs but which
do not satisfy the restriction that 7;; = 0 for all 4 # j. We found almost no differences from the results reported
here. This is perhaps not too surprising in the light of the observations made in point 5 of the summary of the

simulations results below.
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1. The results highlight the tendency for significant oversize in the standard asymptotic PLR
and Wald tests, even in cases where these are asymptotically valid. For example, in Case
1 (ii.d.) for p = 3 and T' = 100, the ERF of the asymptotic tests range from 13.4% to
49.0%. Even for T' = 400, the asymptotic Wald test on  shows ERFs in excess of 10%.
For cases where the asymptotic tests are valid, both the i.i.d. and wild bootstrap versions
of these perform well, with ERFs significantly closer to the 5% nominal level than is seen

for the asymptotic tests.

2. In general, where the tests are known to be asymptotically valid, the observed size dis-

tortions are seen to decrease with the sample size T', as would be expected.

3. Other things being equal, the observed size distortions (of both the asymptotically valid
and invalid tests) display a clear dependence on the dimension of the system, p. In
particular, these tend to increase significantly with p. For example, the asymptotic PLR
test for Hog in Case 3 with no GARCH, for 7" = 100 displays an ERF of 20.3% for
p = 2, rising to 41.5% for p = 3 and 61.6% for p = 4. In this case, the ERFs of the
corresponding wild bootstrap PLR test are 5.4% for p = 2, 6.7% for p = 3 and 7.4%
for p = 4. The advantage of the wild bootstrap over the i.i.d. bootstrap in terms of
finite sample size control also becomes increasingly evident the higher the dimension of
the system, consistent with the observation that the distortions seen in the corresponding

asymptotic tests become more pronounced as p increases, other things equal.

4. Of the bootstrap tests considered, the wild bootstrap PLR test appears, on average, to
perform best, particularly so for the joint test of Hy,g. For example, for p = 4 in Case
2 with no GARCH and T' = 100 (T" = 400), the wild bootstrap PLR test has an ERF
of 4.8% (5.1%) while the wild bootstrap Wald test has an ERF of 12.9% (6.9%). In this
example, the invalidity of the i.i.d. bootstrap PLR test is clearly demonstrated, while the
ii.d. bootstrap Wald test has an ERF of 14.9% for T' = 100 reducing only to 8.0% for
T = 400. It is also noteworthy that even for tests of Hp, (where the Wald statistic has
an asymptotically pivotal limiting distribution under all of the DGPs considered, while
the limiting null distribution of the PLR statistic is pivotal only under Case 1 when no
GARCH is present) the wild bootstrap PLR test displays superior finite sample control to
either the i.i.d. or wild bootstrap Wald tests in the vast majority of the results reported in
Tables 1-3. Although an asymptotic refinement might be conjectured for the i.i.d. Wald
test here, this does not appear to translate into better finite sample size control than the

wild bootstrap PLR test.

5. A comparison of the results for the i.i.d. and the GARCH(1,1) cases suggests little ap-
parent differences between the two. This is to be expected for tests of Hyg, since these
tests are asymptotically valid in both cases. Only very small differences are seen in those

tests involving Hy, that are asymptotically invalid under GARCH dynamics, suggesting
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that, at least for the GARCH(1,1) model considered here, the impact on finite sample

behaviour is rather limited.

The foregoing results all pertain to the behaviour of the tests under the null hypothesis.
Unreported simulations under the alternative hypothesis show that the size-corrected power of
wild bootstrap tests is only slightly smaller than that of the corresponding asymptotic tests; a
similar result was found by Cavaliere, Nielsen and Rahbek (2015).

6 Empirical Application

In this section we apply the methods developed in the previous sections to an empirical model
of the term structure of interest rates in the US. We use monthly observations over the period
1970:1-2009:12 on government zero yields y;(7) for maturities 7 = 3,12, 36,60, 120 (measured in
months), and hence we consider a VAR model for X; = (y:(3),v:(12), 4+(36), 1+ (60), y:(120))’.
The zero yields have been constructed from the CRSP un-smoothed Fama and Bliss (1987)
forward rates, see Diebold and Li (2006). The maturities have been chosen such that the
dimension of the VAR model stays manageable (p = 5), and yet a reasonable coverage of the
short, middle and long end of the term structure is obtained.

The econometric analysis of term structure data in recent years has been dominated by
factor models, in particular the dynamic Nelson-Siegel model of Diebold and Li (2006). In this
model, the time-series behaviour of y;(7) is described by the sum of level, slope and curvature

factors (f1; through f3;), each multiplied by their factor exposures:

1— e—)\T 1— e—)\T B
ye(T) = f1e + ?f% + ()\T —e )\T> f3t, (29)

where the shape parameter A\ could be time-varying but in practice is often taken as constant
(Diebold and Li (2006) set A = 0.0609). An idiosyncratic error term is implicitly needed to fit
the model to the data.

Depending on the unit root properties of fi¢, for and f3¢, the model has clear co-integration
implications. If all three factors have a unit root (and are not co-integrated), then a VAR model
of dimension p = 5 should contain 3 common trends and hence r = p — 3 = 2 co-integrating
relations. If the level and slope factors have a unit root, but the curvature factor is stable, then
r = 3; this is found by Diebold and Li (2006). Finally, if only the level factor has a unit root,
then r =4 and 8/, = (1,...,1), so that 5'X; consists of spreads y;(7) — y:(3) for 7 > 3. This
hypothesis also arises as the so-called (weak-form) expectations hypothesis of interest rates; see
Campbell and Shiller (1987).

We estimate a VAR(2) model with a constant term for Xy, using observations on the first
two months of 1970 as starting values; hence, the estimation sample is 1970:3—2009:12, with
T = 478. The lag order k = 2 is selected by the Hannan-Quinn information criterion; the

Schwarz (Bayesian) criterion selects k = 1, but a first-order VAR model displays some rather
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large first-order residual autocorrelation coefficients. The VAR(2) has much smaller, though
apparently significant residual autocorrelation. However, this significance may be partly driven
by the time-varying volatility; see Godfrey and Tremayne (2005). The Lagrange-multiplier
F-tests for first- and second-order residual (vector) autocorrelation in the VAR(2) model have
asymptotic p-values of 0.004 and 0.005; however, the corresponding wild bootstrap p-values
are 0.32 and 0.42, respectively. This already illustrates the large impact that non-stationary
volatility may have on the validity of standard asymptotic inference methods, for these data.
To visualise the possible presence of non-stationary volatility, we plot time series of VAR(2)
residuals, as well as the corresponding variance profiles, in Figure 1. The variance profiles, see
Caveliere and Taylor (2007), are plots of Vi (u)/Vrii(1) against u € [0, 1], where Vi z(u) =
T Ztglfj 2. Deviations of this function from the diagonal (45 degree) line indicate the
presence of persistent changes in volatility. We focus on the first, third and fifth residual,
corresponding to the 3-month, 3-year and 10-year yields. In all series we may clearly distinguish
a period of relatively high volatility around the late 1970s and early 1980s, and a period of low
volatility since the mid-1980s (associated with the Great Moderation). This pattern is most
pronounced in the short rate residuals, and dampened in the longer-maturity residuals. In
addition to unconditional heteroskedasticity, we tested and found evidence for the presence of

conditional heteroskedasticity, after correcting for shifts in the unconditional variance.
Insert Figure 1 and Table 4 about here

Table 4 displays the trace test statistics for co-integration rank (with restricted constant),
together with asymptotic, standard bootstrap and wild bootstrap p-values. The asymptotic
p-values are obtained using the procedure given in MacKinnon, Haug and Michelis (1999); the
standard (sieve-type) bootstrap follows Cavaliere, Rahbek and Taylor (2012), whereas the wild
bootstrap procedure is implemented as in Cavaliere, Rahbek and Taylor (2014); in all cases we
take B = 999 bootstrap replications. The standard bootstrap p-values are included to assess
to what extent the difference between the asymptotic and wild bootstrap results are due to the
correction for non-stationary volatility, or due to finite sample problems only.

We observe that there is strong evidence against r = 0 or r = 1, regardless of the p-value
method used. The asymptotic and standard bootstrap p-values also lead us to reject r = 2
(at the 5% level), but the wild bootstrap leads to weaker evidence for » > 3. Rejection of
r = 3 against r > 4 is not supported by any of the methods at conventional significance levels,
although the asymptotic p-value would lead us to consider this possibility more seriously than
the wild bootstrap p-value. We conclude that a co-integration rank of r = 3 is supported by
the data (although only at the 10% significance level for the wild bootstrap procedure). In the
remainder of this section, we analyse some hypotheses on the co-integration parameters 8 and
adjustment coefficients a. Because this exercise is intended as an illustration of the procedures
proposed in this paper, we do so both in the context of the model with r = 4, where the

weak-form expectations hypothesis of interest rates of Campbell and Shiller (1987) holds, and
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for the model with r = 3, suggested by the rank tests in Table 1.
The unrestricted (but normalised) estimates of A7 and « in the model with r = 4, together

with the PML standard errors, are as follows:

—1.02 —-0.99 —-0.95 -0.87 0.11 -0.15 0.22 —-0.07

0.03)  (0.07)  (0.10)  (0.12) (0.24)  (0.49)  (0.48)  (0.14)

1 0 0 0 —0.48 0.40 —-0.13 —0.02

(0.16)  (0.34)  (0.37)  (0.12)

B = 0 ! 0 0 a=| -030 —002 011 —0.02
0 0 1 0 ’ (0.12) (0.26) (0.28) (0.09)

—0.34 0.19 -0.10 0.02

0 0 0 1 (0.12)  (0.24)  (0.24)  (0.08)

—-0.27 —-0.89 —-042 -—-2.11 —0.26 —0.06 0.20 —-0.09

(0.16)  (0.43)  (0.56)  (0.67) (0.11)  (022)  (021)  (0.07)

Note that Theorem 2 implies that the PML standard errors of ¢&;; (and hence Wald tests based
on these standard errors) are asymptotically valid. However, the simulation results in Section 5
show that the wild bootstrap version of the PLR test has much better finite sample properties,
which is why we will use this test for hypotheses on a.

We observe that B# is fairly close to the theoretical value implied by the expectations
hypothesis, or equivalently by the hypothesis of a dynamic Nelson-Siegel model with stable slope
and curvature factors. In the notation of Section 2.2, this hypothesis and the normalisation

used above correspond to

0000 10

1000 0 0 -1

0100 00 -1
S # H# _ _
&t = o = , ¢ =cT = , Rg=L4®(1 0), qsg=

0010 St oo ’ | A

0001 00 1

0000 0 1

The PLR statistic for the expectations hypothesis (with restricted estimates computed using
the switching algorithm discussed in Section 3.1) is equal to 8.01, with an asymptotic p-value
of 0.09, but a wild bootstrap p-value of 0.34. Therefore, this hypothesis cannot be rejected
(conditional on a co-integration rank of r = 4), although the asymptotic p-value would cast
some doubt on it.

A possible hypothesis of interest on « is that its first row is zero. This corresponds to the
hypothesis of weak exogeneity of the short rate X1; = y,(3) for the co-integration parameters.
Equivalently, it corresponds to the hypothesis that the single common trend (the non-stationary
level factor) is fully driven by the disturbance from the first equation of the VAR model (¢, e, =
e1t). In the notation of Section 2.2, this corresponds to R, =[ Iy 0 ] and g, = 0. The PLR
test for this hypothesis has an asymptotic p-value of 0.25 and a bootstrap p-value of 0.68, so
this hypothesis cannot be rejected.

The PLR test for the joint hypothesis (stationary spreads and weak exogeneity of y:(3)) has

an asymptotic p-value of 0.08 and a wild bootstrap p-value of 0.54. This gives another example
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of a hypothesis where asymptotic and bootstrap inference might yield different conclusions, at
least if a significance level of 10% were adopted.

We now consider hypotheses in the model with » = 3 co-integrating vectors. Here the
spreads s¢(7) := y:(7) — y(3) are not (all) stable, but a hypothesis of interest is that the co-
integrating relations can be expressed in terms of these, which requires 8'(1,...,1) = 0. The
PLR statistic for this hypothesis has an asymptotic p-value of 0.24, and a wild bootstrap p-value
of 0.46, so this hypothesis is not rejected. The PML estimates under this restriction are

0.13 -0.21 0.28

—1.007 —-0.71 —0.44 (0.24) (0.50) (0.49)

—0.48 0.42 -0.11

1 0 0 (0.16)  (0.34)  (0.38)

B — 0 1 0 & = —0.30 0.06 0.09
’ (0.12) (0.26) (0.29)

0 0 1 ~034 022 —0.10

0.007 —0.29 —0.56 (0.12) (0.23) (0.24)

(0.07) (0.12) (0.11) —0.25 —-0.09 0.21

(0.11)  (0.21)  (0.21)

For example, the second co-integrating vector implies that the three-year spread s;(36) minus
0.29 times the 10-year spread s;(120) is stable. The particular normalisation of 5 chosen in this
representation is inspired by the fact that the one-year spread s;(12) is close to being stable (as
the estimate of 0.007 indicates). This would mean that the coefficient a in a stable relation of
the form of s;(7) — a - s¢(12) is not well defined, as it is normalised on the wrong variable.
Finally, it may be of interest to test whether the co-integrating relation found here is in
agreement with a dynamic Nelson-Siegel model of the form (29) with A = 0.0609. This requires
that the matrix § is orthogonal to both the vector of level factor exposures (a vector of ones),

and the vector of slope factor exposures. It is easily seen that this corresponds to the hypothesis

s:(12) — 0.26 - 5,(120)
Ho: B'Xe =] s:(36) —0.65 - 5,(120)
5(60) — 0.83 - 5,(120)

The PLR test for this hypothesis (in the unrestricted model with » = 3) has a wild bootstrap
p-value of 0.01, which leads us to reject this hypothesis. A simpler model, in which the slope
factor exposure increases linearly with the horizon 7, corresponds to a hypothesis that cannot

be rejected, with a wild bootstrap p-value of 0.24.

7 Conclusions

We have investigated the impact of time-varying volatility in co-integrated VAR models on the
standard methods of estimation (PML estimators) and hypothesis testing (PLR tests) on the
coefficients of the co-integrating relations () and the adjustment coefficients («) outlined in
Johansen (1996). In particular, for a very general model which allows both conditional and un-

conditional heteroskedasticity of a quite general form, we have shown that the PML estimates
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remain consistent but that their limiting distributions depend in general on nuisance param-
eters arising from the underlying volatility process. The latter is also shown to be the case
for the limiting null distributions of the PLR statistics, with the implication that the result-
ing PLR tests can have true size significantly in excess of the nominal significance level when
based on conventional x? critical values. Solutions to this problem based on Wald tests and on
the use of the wild bootstrap were subsequently discussed. The conditions under which these
methods yield asymptotically valid inference were provided, with the wild bootstrap implemen-
tation of the Wald test shown to require only a relatively mild strengthening of the necessary
moment conditions for this to be obtained under the class of time-varying volatility processes
considered. Monte Carlo evidence was reported for a variety of conditionally and uncondition-
ally heteroskedastic models which suggested that the proposed bootstrap co-integration tests
perform well in finite samples largely avoiding the oversize problems that can occur with the
standard tests, the latter being worse, other things equal, the higher the dimension of the
system. Finally, an application to the term structure of interest rates in the US was used to
highlight the differences that can occur in practice between standard and bootstrap inferences
regarding hypotheses on the co-integrating vectors and adjustment coefficients.

We end with a suggestion for further research. Our aim has been to deliver tests on a and
B based on standard PML estimates (i.e. those which obtain for Gaussian i.i.d. errors) but
which are (asymptotically) robust to a wide class of heteroskedasticity in the errors. Where
heteroskedasticity is present, the PML estimates are not efficient and consequently tests derived
using the true ML estimates would be anticipated to be more efficient. As with the approach
we have taken here, one would, however, probably not want to use an estimation method which
assumed a particular parametric model for the volatility process, since this would be expected
to perform poorly (quite possibly worse than PML-based tests) if an inappropriate volatility
model was specified. However, under rather stronger conditions on the volatility process than
are considered here, it may be possible to develop tests which are asymptotically efficient using
an adaptive approach, based on non-parametric estimation of the sequence of unconditional
variance matrices. This has been developed for the univariate case by Boswijk (2005). Because
the asymptotic distributions of the resulting statistics are not expected to be free of nuisance

parameters, this should be combined with the wild bootstrap as in the present paper.

A  Appendix

A.1 Preliminary Results

The following Lemma will be used throughout.

Lemma A.1. Let g; be defined as in Assumption 2. Then, as T — oo,

() T' ST By Fior) = T8 oehuol B S = [ 2 (s) ds;
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(ii) T_l 23;1 (E (6{/6“}}/71) ® Etfi) = T_l 2321 (O‘thta'% (%9 Jt,izt,i) ﬁ) 0 fO’/“i Z 1,‘

(i) 7130 (B (ereh Fir) ® &1 ief i) = T (0ihio} @ 01 ize—izl iTi—j)
Mo (s) @0 ()] 745 [0 (s) @0 (s)] ds, fori,j > 1.

Proof. For part (i), notice that Zt Vothiol = 7 Zt 10t (hy — L) o+ Et | 0¢0%, where
T'SF 60, — £. For the term T-'3[_, oy (hy — I,) 0} we can proceed as in Theorem
A.1 of Cavaliere and Taylor (2009), using sup, ||h¢|| < oo (which is implied by the moment
assumption on &;) and that || (u) o (u)’ | is a cadlag process in D[0, 1]. Notice that Cavaliere
and Taylor (2009) require the stochastic term (h; — I,) to be a mixingale, but their proof of
Theorem A.1 goes through by replacing this assumption with Assumption 2(b) i. of Section 2.
Parts (ii) and (iii) follow similarly. O

A.2 Results for The Asymptotic Test Statistics

Proof of Lemma 1. Assumption 2(b) implies that z; satisfies a functional central limit
theorem (Brown, 1971, Theorem 3), since the higher moment assumption implies a conditional
Lindeberg condition. Therefore
1 LT
Wr () == m;zt BwW(), (A1)

where W is a p-dimensional standard Brownian motion. Next, define JT(u) = aLT“ J+1, 0<u<
1, and o7(1) := o, such that My (-) := [, or(s)dWr(s) = T1/2 Zt [ oz = Tl/g Zt i J( )2t.

We also define the following approximant

W1r() 1= [ oe)dW(s) Tﬂzp 1),

where 0~ (0) = 0 (0) and, for any u € (0,1], 0~ (u) := limg, 0 (u) (notice that o~ (u) exists

as o (u) is cadlag). Because supr T~ 31 E(||2]|*) = p < o0, it follows from Theorem 2.1 of
Hansen (1992b) that

(Wrp, Mp) 5 (W, M). (A.2)

Therefore, in order to derive the weak limit of My it suffices to prove that MT and Mt are

sufficiently close in the sup norm, in the sense that

uggHMT = Mr(u)| = 0, (1), (A.3)

see Billingsley (1968, Theorem 4.1). To see (A.3), notice that

(w) = Mr(u)|| = 2 07 (k) — o ()|
u€(0,1]
< T*ﬂzimbff—a*iuww
< max T2z x T [|o(4) o ()| = I x P

90y
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where J}l) and J:(FQ) are implicitly defined. In order to analyse J:(FQ), let fij¢ = |0ij (%) 0 (%)’
with f;;+ < fij == 2sup, |oj (v) |, where fi; < oo since o () — and therefore o; (-) — is cadlag.

Then, we can write
T T T T
S Fie= fial(fige > 1)+ > fisl(fije < 4) < fi D Wfije > 7) + L.
t=1 =1 t=1 t=1

Since ; (-) is cadlag, the number K;j 1 of jumps such that |o; (u) — oy (u )‘ > 1/T is finite for

every T (see e.g. Davidson (1994), p. 458), and therefore Zthl fije < f,J i +1=0(1), for

any 1. Since o has finite dimension p X p, it also holds that Jg)

< pmaxij=i,_p fije = O (1).
As far as J;l) is concerned, we have that J;l) —p 0 since for any € > 0, by Bonferroni’s and
Markov’s inequalities

P (Jj@) > 6) = P (t HllaXTTfl/Q [EAES 6) < max 2] > 6Tl/2>

T

T

< P H H> T1/2 Hth SuptE(HZtH ) =0
2 P (Il > ) <3 =G <~ ar
t=1 t=1

since sup; E(||z]|*) < oo by Assumption 2(b)iv. Since J}l) = 0p (1) and J:(,,Q) = 0O(1), the

convergence in (A.3) holds and therefore
(Wr(-), Mr(-)) = (W(), M (")), (A.4)

as required.
Next, recalling that fol My (s)dMrp(s) = + LT (Zz ) s,) e}, and using the result that

T T
1 1
supp 5 > E(eel) = supp 75 3 [lo(£)]* < oo,
t=1 t=1

because o is cadlag and hence bounded, applying Theorem 2.1 of Hansen (1992b) once more,
we find

1 y 1
Vec/ My (s)dMr(s) — Vec/ M (s)dM (s)',
0 0

jointly with (A.4). O

Proof of Lemma 2. Define X?t = (thﬂvzétﬂ)/v with Zg = 8% Z14; therefore, X?t
equals X; except that the mean p’ has been subtracted from B'X;_1. This means that Xi =
@Xﬁt_l + Fey, see Section 2.1, a stable vector process (because p(®) < 1) with zero mean,
except for the effect of fixed starting values. Because H<I>ZH < ¢\ for some positive constant
¢ and |A| < 1, we therefore may write X# = @tX# +30, ‘i, ;= =Y SO Fe i+ 0p(1),
where the 0p,(1) term will be neglected in the following.

First, as in Lemma A.1 of Cavaliere, Rahbek and Taylor (2010b) we have that

T — —
u =T Bi—1984-1 = - - ;
M 8 Mss P P Mg Moo

(A.5)
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from which we find %Sy, 8% = %' My 7 — B# Mio My, Moy 5% 5 Mpgg — Mpy My, Mop =:
Y35. The convergence in (A.5) is obtained as follows.
Consider
— tf

1 I Y » 1 Lot
T;Xﬁt 1X,Bt 1= TZZ;

1
O Fey el OV
t=1 i= 1

j=

T t-1
1 , ,
= T Z Z (PZ_IFO'tfihtfiU;_iF/¢Z_ll
t=1 i=1
t

-1

T
1 : .
+T Z Z q)lilF(éEt_ié‘;fi — O't_z‘ht_ioéfi)F/@lill
t=1 i=1
T ot-1 t-1
"' Fey_ie; ;F'®Y = Ap+ Bp + Cr,
1 j=1,5#i

1
5
t:1 1= 1,5

where Ap, By and Cp are implicitly defined. Using Lemma A.1 (a), we find that

T-1 T—1 o0
- 1 R o .
Ap =" @"'F <T Zathta;> F'o-V 5N O PSP,

i=1 =1

Next, By = Y. ' @i-1F ( ST o (zez) — ht)ag) F'®~V = 0,(1), by the martingale law of
large numbers, using the fact that z; has finite fourth moment, o, is a bounded sequence, and
| @[] < eX'. Using the fact that E(e;—ie}_;|F—x) = 0 with k = max(i, j) + 1 and that e, e;_;
has bounded variance because o; and 7;; are bounded, it follows that C7 = 0,(1), which proves
(A.5).

By the same approach, we have

( /B#’Mls ) . Zxﬁt 1525 (AG)

M2a

so that 8#/S1g = %Sy + 7' S11 8%’ = B My — 8% Mg My, M. + 57#'S11 %/ B g0/ =
250, and, defining S, := M., — M52M2721M28 with M., :=T"! Zthl e},

Seo = aB?'Si+ Sx

= 045#/510 + SE&‘ + SElB#O/

= aB? S+ M.. — Moo My, Mae + Moy %0/ — Moo My, Moy 7o/
— Ozigo +¥= Oziggal +¥= 200.
This proves (10).

To prove (11), we start with vec Xﬁt 184 = vec @' Lx# Goct + S vec @1 Fey_ie). For any

fixed n € N, consider the decomposition

T
1 n n
T1/2 > vec X?it_lsé =S¥ + R + Ror, (A7)
t=1
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where (taking z; = 0 and hence ¢, = 0 for ¢t < 0)

T
S;n) = T1/2 ZZVGC‘I)Z 1F€t 25t Z(Ip®¢z_1F / Z Ot Q 0r—j Zt®ztfi),
t=1 i=1 i=1 t=1
1 T
Rgzl) = Tl/zz Z vec ' Fey_jey, Ror = WZ vec ®'° 1X§0 €¢-
t=1i=n+1 t=1

We will focus first on the limit of Sr}n) as T — oo for fixed n, and then let n — oo to obtain the
limiting distribution of the right-hand side of (A.7), where we need to show that || Ror|| = 0,(1)
and lim,, oo limsupy_, o P(HR&@H > €) = 0 for all € > 0, see Proposition 6.3.9 of Brockwell
and Davis (1991).
Consider the process
(2t ® 2¢-1)
Ut(n) _
(2t ® 2t—n)

Assumption 2 (b) implies that Ut(n) is a vector martingale difference sequence, with conditional
variance matrix satisfying 7 ST E (U(n t(n)/]ft_l) L) = E(Ut(n)Ut(”)/)7 where 7(") is a
matrix with blocks 745, 4,5 = 1,...,n. Furthermore, the finite (4r)th moment of z; implies that
Ut(n) has a finite (2r)th moment, » > 1, which in turn implies a Lindeberg condition, such that

Ut(n) satisfies the invariance principle of Brown (1971), i.e

WlT() |T-] Wl()
W= =yt s W= |
Wor(-) = Wa(-)

where W) is a vector Brownian motion with variance matrix 7, independent of W because
E(Ut(n)zg) = 0 by Assumption 2 (b) ii

Next, we may write S\ = S (I © & 1F) [Mor(s) @ or(s — i/T)]dWir(s), which by
Theorem 2.1 of Hansen (1992b) converges weakly to

n

S =3I, " 'F) /0 1[0(3) ® o(s)]dWi(s) ~ N(0, V™),
i=1

with V() .= 37 i (L@ @) fo )@ 0 (s)]Tijlo(s) @ o(s)]'ds(I, ® ®I~1F). Because
o(u) and 7;; are bounded and p(®) < 1, hmn_>Oo V) =V = V(®) and as n — oo, S B
N(0,V).

It is easily seen that the assumptions imply that Rgr has mean zero and variance of order
T~ so that ROT = 0p(1). Similarly, for each fixed T and n, Rg? ) has mean zero and variance
matrix ZZ =n+1 ?:_711+1(Ip ® 1) [% EtT:iH(Ut ® Foyi)Tij(0 @ FUt—j)/} (I, ® ®771), the
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matrix norm of which is less than

T-1 T-1 A 1 T ‘
> > ez X o @ Foririon® Fory)| |1, © &7

i=n+1 j=n+1 t=i+1
0o 0 o
< Z Z P||FtIi—2 For )7 Foi Y
> i:n+1j:n+1p” ” n<z’IEE<Li(<T,H(Ut® gt 1)71](0t® gt ])| >

and since the final factor is bounded because o(u) and 7;; are bounded, this converges to 0 as
n — oo. Therefore, using Chebyshev’s inequality, lim,,_,c lim supy_, o, P(HREFn )H > ¢) =0, for
all € > 0, and hence T—1/2 Zthl vec X;t_lag % N(0,V). From the definition of 3#'S., this in
turn implies 7V/26% 8. 5 N(0,Q), with Q = [I : —MﬁzMQEI] \% [I : —MﬁzM{zl}/. This proves
(11).

To prove (12) and (13), we note that from (3) with uD; = ap) and hence CuD; = 0, we

have

BLZy =

( TGOS i+ B S + B.Ch) >
: |

Letting Gr(-) = BpZy |7.141, we have Gr(-) % G(-), using the fact that (/S is linear in
Xg, and Y 2X,8LT- | = 0p(1). Therefore, using the continuous mapping theorem [CMT] and
Theorem 2.1 of Hansen (1992b), we have that

(BpMi By, BrMy.) = </01 GT(S)GT(S)/dSa/O1 GT(S)dMT(S),>

kY < /0 ' G(s)Gs)'ds, /0 1 G(s)dM(s)/> . (A.8)

The fact that Zy; is a linear process in €; with exponentially decaying weights implies that
BiyMig = O,(T7Y?),  BypM 57 = 0,(T7Y?), (A.9)

which together with (A.5) and (A.6), implies that (A.8)—(A.9) also holds with My, and M,
replaced by Sy1 and Si., respectively. O

Proof of Theorem 1. Consistency of B# follows from the limiting behaviour of the con-
centrated pseudo-log-likelihood (9), together with the results of Lemma 2. This is analysed in
detail in Lemmas 13.1 and Theorem 13.3 of Johansen (1996), which can be applied directly to
the present case. Tt also follows that 3y — 8y = Op(T~") and p; — p = O,(T~1/?), and this in
turn implies that & = 5’013#(3#/5113#)*1 = So1 87 (87 S p7) ! + op(1) TN 205255 = «, and
similarly 3 = 500—5013#(8#/5113#)_15#/510 = See— S (8% 5118%) 71 p# S1c+0p(1) B 3.
The PML estimator of ¥ is readily obtained from the un-concentrated pseudo-log-likelihood,
and this leads to W = My (Mag — Mai 7 &) = U + My;! [Mgl(ﬁ# ' Bran + Mgg} L
This proves part (a).

For the asymptotic distributions of the estimators, we use the fact that consistency at the

appropriate rate, and a sufficient degree of differentiability, allows the following result based on
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a second-degree Taylor approximation of £:

L 92(6 R A(
Dy -0)= (~DrGgor) Db

where 0 is the parameter vector and Dy is a matrix chosen such that the matrix in parentheses

+0p(1), (A.10)

converges to a finite non-singular limit; see the proof of Theorem 3 for details of the expansion

in (A.10) applied to the more general case of restricted estimators. Choosing

# -1
I,®D 0 T, 0
g vec 35 ’ Dy BT 7 Dsr (p—7) :
veca' 0 7121, 0 T-1/2

we have

#g S 1 >

Dép(%(a) _ Tvec(D/’BTcJ_ISkZ_] L) w vec fO_AG(s)dM(;S)’E Loy (A1)

0 T2 vec(8%'8.571) NQO,[E @ LIQE™ @ L]

B D,Taﬂ(e)DT _ (o/_f]’loz) ® (T Diypc?' S11¢’ Dgr) (o/i*l_) ® (12D} e S11 67)
9000 (E~1a) @ (TV2B# Sy1¢% Dyr) Sl ® (8751, 8%)
+ Op(l)
-1 1 / /
o (@2 )e (Jy AG(5)G(s)'dsa’) B A12)
0 E_l X 255

where A = diag(c/, 8, (8. 8,)7!,1); this matrix arises from

Tﬁl/QC/LXt_l

T2 Digre? 21y = < 1

) = AB%ZH + Op(l),

because | X;—1 = | B(B'B) 1B Xi—1+¢, B (B B.) " B Xi—1. Note that ¥ is the pseudo-true
value of 3; formally, one should include vech Y in the parameter vector 6, or use the pseudo-
log-likelihood concentrated with respect to X, but this will lead to the same result, since the
asymptotic information is block-diagonal with respect to vech 3l and the other parameters.
Combining (A.10), (A.11) and (A.12) leads to part (b).

For part (c), let 6 denote the PMLEs under the restrictions in (5). Consistency of , which
is proved formally in Theorem 3, together with a second-order Taylor series expansion leads to

the following expression of the PLR test statistic under Hy:

A~

LRy := —2 (z(é) - z(é)) = (0 — OYH( — ) + 0,(1),

where H = —82£(0)/000¢'. Standard derivations involving restricted ML estimation lead to
D' (0—0) = —Dp'H 'R (RH'R) ' R(6 — 0) + 0,(1). Let Dy := diag(T~'1,,, T~ /%1,,), so
that

D;'RDr — R. (A.13)

Here we use the fact that the restrictions do not involve p;, so that Rgﬁf only involves linear

combinations of the O,(T~!)-consistent estimator 3. Then

X 3 ~ . . -1
LRr = (0-0)(DrR'D;") (D' RDr)(DrHDr) (DrR Dy')

)
(D' RDp)D3 (0 — 6) + 0,(1),
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and combining this with (A.10), (A.11), (A.12) and (A.13), this leads to the results in part (c),
where Z ~ N (0, I,.) is obtained as the limit in distribution of

1/2

(Ra[f ® S5A01 © £ R, ) TY2R, vec(a — o).

Because the asymptotic distribution of T2 vec(& — a)’ is defined from the Brownian motions
Wi, see the proof of Lemma 2, and these are independent of W and hence (G., M,), it follows
that if p = 0, then Z is also independent of these.

The proof of (14) follows as a specialization when Hy = Hoy, or Hy = Hyg. O

Proof of Lemma 3.  The proof follows the same approach as the proof of Lemma A.5
of Cavaliere, Rahbek and Taylor (2010b). As indicated there, it suffices to prove Vp(u) 2
V(u) for fixed u € [0, 1], which is then strengthened to uniform convergence because Vi (u)
is monotonically increasing and V (u) is continuous in u. Letting Vi (u) = 7! Zt 1 5t5t, we

have Vi (u) — Vi (u) = 0,(1) because of consistency (at the appropriate rate) of 4. Moreover,

|Tu] |Tu]
Vr(u) = 71 Z ey = 71 Z O122,0)
t=1 t=1
|Tu] [Tu] [Tu]

= IZO't ztzt ht Ut+leUt Ut—f—TlZotat
t=1
=: AlT()+A2T()+A3T(),

with Aj7 (), Aor () and Asp (-) defined implicitly. Now consider each of these terms. First,
since (z;2z; — ht) is a martingale difference sequence with bounded fourth order moments and
oy is non-stochastic and bounded, oy (22, — hy) o} is uncorrelated over time and A7 (u) 5
0 by a standard application of Chebyshev’s inequality. Second, since by Assumption 2 (i)

-1 ZtTuJ (he — I,) 2 0 and oy = o (t/T) with o (-) cadlag, by Lemma A.1 we have that
Agr (u) 2 0. Finally, Assumption 2 (a) implies that AgT( )= ZLTUJ St/T) — [, S(s)ds.
Taken together, these results imply that Vp(u % fo s)ds, as required. U

Proof of Theorem 2. The results will follow from the asymptotic properties f, which is

defined from sums of the type Y1, (&8, ® ZitZ},), i,j = 1,2. Consider first

1

T 1
T © B ZuZiBr) = [ dVi(s) ® Gr(s)Gr(s)),
0

t=1
where the right-hand side should be read as a matrix with blocks fol Gr(s)Gr(s) dVr,(s).
Because Lemma 3 and the results in the proof of Lemma 1 imply (GT( ) VT( ) B (G(),V (),
we find ST (88} © By 21 Z1,Br) % [}[dV(s) @ G(s = [/[2(s) ® G(5)G(s)]ds. Note
that V(-) is a deterministic matrix function of bounded varlatlon, so that the limiting integral
is a Lebesgue-Stieltjes integral, and the result follows from the CMT. This in turn implies

T

S () © Dlyyet' 2, 23y Do) / ) @ Gls)Gels)')ds, (A14)
t=1
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where D7 and G.(-) are as defined in (the proof of) Theorem 1. Next, consider

T T

1 .. 1
o EEoXE, XE ) =5 (e o XE, (XE, ) +op(D),
t=1 t=1

where X?t is as defined in the proof of Lemma 2, and the asymptotic negligibility of the estima-
tion error in &; follows from consistency at the appropriate rate of 4, and the fact that Xzﬁ’ ,_1isa
stable process with bounded fourth moments. Using again X?t_l = @t_lngo—i-zzf;} O 1Fey_;,

we find

! t—1 ¢t—1
1 . ) .
T Z(gtgg ® Xz’é,tflxg,/tfl) =7 Z Z (g8} @ @ 1F€tﬂ'€£_jF'<I>’J 1
=1 t=1 i=1 j=1
1 X
+f Z(stsg Y @t_lxgﬁoxzﬁ;@n&ﬂ)
t=1
| Tt | |
+T Z (5t5:t & [@t—lxgoeg_iF’(I)/z—l + q)z_lF@t—iXZ%q)lt_l])-

1

I
I\

)

The second right-hand side term is 0,(1) by L; convergence, because e} has bounded
mean, and p(®) < 1. Similarly, the third term is op(1), as g6} ® e¢—; has bounded mean by
Assumption 2 (b) ii. (As before, take z; = 0 and hence e, = 0 for ¢ < 0.) By Assumption 2 (b)

iii and the law of large numbers, we have T~ S°]_ (212 ® 2z ;) = 745. Consequently,

1 T
7o @ ext, XE )
t=1
oo lNee) 1
NN e eF) / [0(5) @ o()]ri5l0(s) @ o (s)) ds(I, @ B FY, (A.15)
i=1 j=1

which equals V = V() defined in the proof of Lemma 2. Following the same approach, it can

be shown that

T
1 =
w73 28 ® Darcl ZuX; ) 5 0. (A.16)
t=1

The result of Theorem 2 now follows from (A.14)-(A.16), combined with (A.10)-(A.12) and
the results of Theorem 1. 0

Proof of Theorem 3. The proof mimics the proof of consistency given in Theorem 4.7 of
Kristensen and Rahbek (2013) [KR13], and is based on an application of KR13 (Lemma D.1),
where a third-order Taylor expansion of the log-likelihood function is employed. In fact, the
proof we give below implies also weak convergence of the QMLE , see KR13 (Lemma D.2
with vp := T). With ¢ := (¢',4')" € Rl*% the criterion function in Lemma D.1 in KR13
reduces here to, cf. (6), Qr (¥) := —£¢(9) for which we need to evaluate first-, second- and
third-order differentials. Moreover, in terms of Lemma D.1, set Up = Vp = VT Dy, where

Dyt is a normalization matrix defined below.

35



Note initially that under Hy, vec (/) = G + g and vec (6#) = H¢ + h, and therefore,
using in particular 7% = & + c’fﬁf,

dvec (6%) = (L@cl") Hds and dvec (o) = Gav, (A.17)

Hence it follows immediately that the first- and second-order derivatives of ¢ (-), and hence of
Q7 (), from the proof of Theorem 1 can be applied using classic rules for Jacobians as is done
next.

Consider the first-order differentials of ¢ (1) in the direction dd, d¢ (¢; d¥). We find that
~Lde(9;d9) = tr {2—1ad5#’ [Sw . Snﬁ#a’} } +tr {E_ldaﬂ#’ [Sw - 5115#0/} } :
which evaluated at ¢ = 9, gives
—Ld0 (9g;d9) = tr {cf’slngladﬁg ’} +tr {6#’Sk2’1da}
/
= dvec (6#) vec (cfSlEE_la> + dvec (o/) vec (ﬁ#'SkZ_l) .

Observe, using standard matrix calculus, that d vec (o) vec (ﬁ#'SlsE_l) = dy'G’ vec (B#’SlgE_l),
/
and, similarly, d vec (ﬂ#) vec (cfSlEE*la) = d¢'H' vec (éfcfSlEZ)*la). Inserting the nor-

malization matrix Dgr from (A.9), we find,
a¢/ H'vec (e} Djyret'$1.57 0 ) = dg/H' (1, @ & Djr ) vee (/5137 "a)

That is, the normalisation Dyp := (Ir ® DBTET> H replaces (I, ® Dgr) in (A.9). Likewise,
VTG vec (B#’Slsi_l) converges, such that with Dyp := diag (D¢T, T‘l/QIlw) replacing Dt in
(A.9), we have that

H' vec (ETA fol G(s)dM(s)’E_]_la>
NOG[E'eL] QS 0L]G)

Consider next the second-order differentials of £ () in the directions di and dvJ, d*¢ (19; dd, d2_9).
Observe that by definition,

— L% (9;d0,dD) = tr {z—ldadﬁ#’ [Slo - Snﬂ#a’” ~tr {2—1ad6#’sllﬁ#dd’}
—tr {a’Eiladﬂ#/SudB#} + tr {EildadB#l {SIO - Sllﬁ#o‘/] }
+tr {Z_ldaﬁ#/&lﬁ#d@/} —tr {a’E_ldaﬁ#/SndB#}

and, hence, at ¥ = ¥y,
—d*C (Vo3 dp, dp) = —tr {a'Z_ladﬂ#lsndﬁ#}
= —vec (dﬁf)/ <o/2_1a ® CTISHCT) vec (dﬁf)
— _d§'H' (a’E_la ® ETCTS’HCTET) Hdg.
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As before, inserting Dy we find,

a9/ Dygr (/> a @ et t'suctet’) DyrHdg

—do'H' (a's e @ et [ Dpret'Suct Dar| ') Hag

which converges weakly, see (A.10). Likewise,

— 2 (g dp,d) = —tr{Z7 dap Sy da |

= —d'c' (Ve pHS0 6% ) Gay,
which converges in probability, see (A.10). Finally, —%dzf (Vo; dop, dip) = tr {E_ldadﬂ#’Slg} —
tr {Efladﬁ#’Snﬁ#da’}, where, for example, the last term can be rewritten as,
/
tr {Z_ladﬁ#'Snﬁ#da'} = vec (dﬁf) (o/Z_l ® CT/SHB#) vec (do/)
— d¢'H' (Ir ® aﬁ) <o/2*1 ® cfsnﬁﬂ Gdip,

and Dgr can be inserted as above. Collecting terms, we find, using (A.10), that

920(9) w
D! (—— Dyr 4
VTN 9009 ) g, m=5

H' <O/E_1a ® Ej"f Uol AG(S)G(S),A/dS} Ef) H 0
0 G(2'®%ee) G

Finally, consider third-order differentials of £ (), d3¢(-) say, in the directions dv, d and
dy*. Using Lemma D.1 in KR13, the supremum of the norm of +d3/(-) needs to be bounded
in probability uniformly over ¥ € N (9y), where the sequence of neighbourhoods is given by,
N7 (%) = {19 ] TlT/2 |9 — dol| < e}. Here T;/Z :=T~Y/2Dy] and (some small) ¢ > 0. In terms
of dv in the differential, d¢} should be normalised as T;I/ 2d19; and likewise for ¥, ¥*. Now, the
only non-zero third-order differentials of #¢() have the form, tr{da* Eild&dﬂz#'cT,Sn f} and
tr{o/E_ld@dﬁ#'cf&wﬁdﬁ#*}. Consequently, using the identities in (A.17), and in particular
that in N (99), ¢ — ¢g = T~ Y/2h, with ||h|| < €, it follows that,

e (907 2w, 17 o R, 1 )

T-!' sup
YENT(90)

is bounded by Cr ||dd|| ||dd]| [|d*|| || +S11|| = Op (1), since ||5S511|| converges weakly, and Cp

contains (standard) terms converging in probability. The consistency Vi follows by similar

)

arguments as in the proof of Lemma 3. O

A.3 Results for the bootstrap tests

Proof of Lemma 4. The proof follows as in the proof of Lemma A.5 in Cavaliere, Rahbek
and Taylor (2010b) by showing that the conditional variance of M7 (-) satisfies
[Tu [Tu)

]
* k k 1 ~ ~ 1 ~ o~ v
E* (M7(uw)M7(u)') = T g Ectbry = T g B+ 0, (1) B /0 Y (s)ds.
t=1 t=1
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The latter convergence is established in Theorem 3 and this completes the proof. g

Proof of Lemma 5. As done for the proof of Lemma 2, define X?: = (Z5111> Z3141)s
with th = B#/th; therefore, Xﬁ* equals X;t except that pj Dy has been added to B/Xf_l.
This means that X?t* = éX?j_l + Fef, where ® and F' are defined as ® and F but with
the restricted estimators replacing the population parameter values. Moreover, since ||®*| <
¢\ for some positive constant ¢ and |A| < 1 (see the proof of Lemma 2), the consistency of
the restricted estimators implies that for T large enough, ||| < ¢\. The initial value is
X?’B = XZ;O, as the bootstrap sample is initialised at the original data. We may therefore write
X?t* = CthX?O* + Zf;é PIFer , = étx?go + Zz;é O Fer = Zz;é ®'Fef ;4 0, (1), where the
op (1) term will be neglected in the following.
First, as in Lemma A.7 of Cavaliere, Rahbek and Taylor (2010b) we have that

S A SH# HH# T 00 ~ ~

M+ M 1 N y * S ) M, M

/8 1}5 /B 12 _ Z X?t_lxﬁ#tl_l p_)p Z (I)ZFEFIQU = _ﬁ/B _52 ,
M3 Mso T " ’ =0 Mg Moo

(A.18)
from which we find 3785, 87 = 37 Mz BT — B MM Mg BT By Mg — Moy Mo =
Y35. The convergence in (A.18) follows by the triangle inequality using the following two

: *x okl __ = =/ 2 * * kI _ = =/
results. First, as efe}’ = £.4&. ,wi and hence E* (¢fe;’) = &.&;, we have that

T T
* 1 % FEx/ 1 * 5 k!
t=1 t=1

o0
%) O FLF,
=0
since, by consistency of the restricted estimators and Lemma A.1(i), 312! §i-1F (T‘l ST éc,té’c,t> Foi-t
B3, O FEF'®Y, and furthermore

-1 1 T o 2 (T2 2 1
O e S R L > P
i=1 t=T—i+1 i=0
1 - .
< erg max, |Ecattill = 0p (1),

as cr = O, (1) and
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T

1
P (Ttmax BN e> < P (e = eT)
t=1
sup, B (|[Eeill”) B ((Ehize)”)
- e2T - e2T —0
as €; has finite 47 order moments.
Second, using the fact that efej’ — E* (efe}’) = &c48..; (wf — 1), we have that
Zxﬂt 1X§:/ 1 ( ZX,Bt 1X§é:/ 1)
S S e
=7 Z QiR (er_ierls — E* (e_i€tls)) F'o~V 1+ Rx.
t=1 i=1
e N o
= lF (T Ecully (Wi — 1)) F'oY 4 Ry, (A.19)
=0 t=1

where RS :=T-1 S S —1 j 17375% O F(ef et J)F’CDJ V. To show that (A.19) is of o} (1)
in probability, notice first that

T-1 =
vec (Z PR (T Zéqté;t (wt2 - 1)) F’Ci)i_l’>
t=1

i=1

(B (0 o (#9) (3wt -0)

i=1

_ ((; ET: (2 ((#71F) e (cp—lp))) vee (Beil,) (w? — 1))) :

which (conditionally on the data) is the average of an independent sequence with variance
1 Lot o -t o !
L3 (R (59) o (6719 ) e ot oty (£ () (517)
t=1 \i=1 i=

which is of o, (1) as Zz 1 ((@Z 1F> ® (éi_lﬁ’>> = O, (1) and & has finite fourth order
moments. Similarly it can be shown that R7. is of o, (1), in probability.

In the same way of (A.18) it can be proved that
,..#/
g7 My P
( R E Zxﬁt e, o, (A.20)
M25

which also implies, as in the proof of Lemma 2, that B#,SI‘O p—*>p 2550/ =: 250, and 5§, p—*>p 00-
This proves (22).

To prove (23) and (24), as in the proof of Lemma 2 notice that we have

B 1/2 C t—1 o* S C
B%th:< ( Z’L 1 21+BJ_ t— l+BJ_ 0) +0;(1)
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in probability (see also Lemma A.4 in Cavaliere, Rahbek and Taylor (2010b) for details on
the oy (1) term). Letting G7(-) = BZFZT,LT-JH’ we have G7.(+) ﬂp G(+). Using the CMT and
Theorem 2.1 of Hansen (1992b), together with Lemma 4, we have that

(B’TMEBT,BTMI;) = < /O 1G*T(S)G*T(s)/ds, /0 1G}(s)dM}(s)')
= < /0 1 G(s)G(s) ds, /0 1 G(s)dM(s)’) :

Because Z3, is a linear process in &} with exponentially decaying weights, B/ Mj, = O, (T —1/2)
and B{FMI*DB’# = O;;(T_l/Q), in probability, which together with (A.18) and (A.20), implies
that (A.8)—(A.9) also holds with M7 and Mj. replaced by S}, and S7., respectively.

Finally, to prove (25), we start with

t—1
Y = wvec Xﬁ:_lsz" = vec (é“xﬁ;“ - Z @ilﬁafi> er’
i=1

t—1
= vec (cﬁt—lxﬁgej’) + vec (Z i)i_lﬁ‘sf_ief')
i=1

t—1
= vecC (étilxz&;€:/> + Z (8: & éiilﬁgrii>
=1

t—1

= vec (@t_lxgge;f') + (Ip ® (Ci)z_lﬁ')) (ef ®ef ) = Y5 + Y7

i=1

with Y{, and Y7", defined implicitly. We now prove that show that T-1/2 Zle Y, satisfies (in
probability) a CLT by showing (i) that 7—1/2 23:1 Y7, satisfies (in probability) a CLT and (ii)

that 7—1/2 Zle Yy, = 05 (1) (in probability).

Part (i). With 7} := o (w1, ws, ..., w:), notice that, conditionally on the data, E* (ijt‘}-;l) =
0 and hence {Yﬁt,ff } is a vector martingale difference sequence. We prove that a central
limit theorem holds on 7~1/2 Z;le YY", by proving that its conditional variance converges in
probability and that (conditionally on the data) the Lindeberg condition holds.
First, since for ¢ > 1, E* ((62‘ ®5Li) (6,}" ® Sfﬂ»)/ |]:£"_1) = E* (6?62‘/ ® efﬂ-s;",iIff_l) =
(Eeufly ®er_ier’;), we have that
t—1 o Ly
B (iVilFL) = 3 (o (871F)) B (e @ sieil) 1) (Lo (871F))

i=1
t—1

0¥ [ ~ ~\/
= (e (#70)) et o) (o (#75))
=1

t—1 o ~ o N
oy ( e (q)rl F)) (BenBly ® Er_iEl_imi_s) (Ip ® (qﬂﬂ F) ) 7
=1

where 7, := w? — 1. Averaging across ¢ yields
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1 T
ZE* (Y;*Y;*/|ft*71)
t=1

.Z ( L ( i1 F)) (BerBl ) ® Eep il ) (Ip ® (@el F)')
> (I,, ® (@H F)) (Boil s ® BepiEly_imis) (Ip ® <(§H p)’>

el

where Vo r and Vy; are implicitly defined. Notice that Vi*p = o}, (1), in probability, since by
Chebychev’s inequality

T
x 1 2i-10)) (2 = - = i1\
Vip = 7 ZZ (Ip ® <(I> 1F)) (Benfrs ® Eet—ifry iMi—i) <Ip ® <<I> 1F) >
T—1T—t

1 s 1= N N . ~ 1=\
= Y (18 (87F)) (ursitens S 2uitten) (Lo (87F))

t=1 i=1
= 0 (1) in probability,

as 7, is (conditionally) independent and &; has finite 8" moments.

Regarding Vp 7, we have that

T -1
1 ~i = o ~ _ AN
Vor = % > (IP ® ((I)z ' ) (Eeer ® Ecp—ifepi) <Ip ® (‘I’z 1F> )

t=1 i=1
T-1 1 i ) /
= 3 (p® (¥7F)) 7D (el @ Eoimiily—s) ( Bo (#1F) >
1=0 i—1
_ oy, g
- Vbj’} + ROTLTa

where, for any n < T — 1, we set

- g 1 = N
Vo =Y ( L® (qﬂ‘l p)) 70 (ertly @izt ) (Ip ® <q)z—1 F) > 7

=0 t=1

and

— ~i 1~ 1 T N
M= X (5o (870F)) 1 3 Guttetuii ) (e (87F))

i=n-+1 t=i+1

T-1 T

: 1 4
= Y (o @) = Y (e eaic) (Lo (@7F)) +0,(1),
i=n+1 t=i+1

where the oy, (1) term does not depend on n. We now derive the limit of VO(?) as T — oo for

fixed n, and then let n — oo to obtain the limiting distribution of V7, where we also need to

show that lim, .o lim supy_, o, P(HR((]TL%H > ¢€) =0 for all € > 0, as in the proof of Lemma 2.
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For fixed n,

%(3) — zn: ( IL® (@—1 ﬁ)) ;Tiz (Beifry @ Ect—ifry ) (Ip ® <(i)i—1 F) />
=0 t=1
L f: (I, ® (' F)) / [0(s) @ o(s)]Tiio(s) ® o (s))'ds (Ip ® (cbi—lF)’) =yt

i=0 0

—_

since for any fixed ¢, we have that

| T | T
T Z (Bepfrs ®Eet—ifny ;) = T Z (6t ® erigt ) + 0p (1)
t=1 t=1

1 T—i
/ / /
— Z Et&y — Uthtat) & €t—i5t—i> +
t=1

1
. /O [0(s) ® o(8)]riilo(s) ® o(s)]'ds

T—i

1

7 Z (othiot @ ovizi—izi_;0%_;) + 0p (1)
=1

'ﬂ

by Lemma A.1(iii) and as ((stsg — othio}) ®5t_2-627@-) is a martingale difference array with
bounded 17 moments, so that a WLLN applies (see e.g. Hall and Heyde (1980, Theorem 2.13
(1))). Next, we have that

lim VOl =3 (1, @ (61F)) / 0(s) ® o(s)]riilo(s) @ o(s)]'ds (1, & (& F)') = V.
=0 0

n—oo
> 6)

Finally we have that, for T large enough,

g

T

T—
Z (he (@'F) 5 3 (@) (o @ F))
i=n-+ t

—=i+1

P(|RSH > €)

T—1 T
: 1
< P ( Z H(Ip ® (<I>Z_1F))H2 T g (wsi ®5t,i5;_i) > e)
i=n+1 t—it1

)

Sl e @ )P E|ES i e oae)| g
= ; < . —0

B(Cka @ e @ F) [ |4 i (et 0 2imie )

€

as n — oo. This completes the proof that T-' ST | E* (Y7, YR ) p—*>p 748
We prove the (conditional) Lindberg conditions by showing that 72 ZtT:1 E* (||Y1*tH4)

—p 0. First, we have that, since ¢} is independent under P*,

i—1 4 - 4
B vyt = B (Z (aF) e;‘_,) — " ;| B Z(éi—lﬁ) o
=1 =1
4

IN

K [|Ece|* B

t—1 o _
3 (@HF) e
=1

with K = E|w}|. Moreover,
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4

t—1
E* Z (&)i_lﬁ) Er_;
=1
t—1 o =1 2
- E* ((Z 5;”_Z-F’<I>Z_1’> (Z @’_lFsz‘_i>>
i=1 i=1
t—1 t—1 o o ~ 2
=E° | ) D & ,FoTVI Py
i=1 j=1
t—1 t—1 2
< B oD w (PR (i)
=1 j=1
t—1 t—1 t—1 t—1 A
I (F’(I)Z_l"lﬂ_lF> tr <F’<I>k_1’¢>l_1F) o
i=1 j=1 k=1 [=1
Since
B (eiliei_jeilieir) = B (wipwiejwigwin) (Eep—ifep—jEei—ifot—k)
2
< (k?—ll—J)(ct i€et— J)
we have that
t—1 t—1 5
7 ZE* IYEl) < Ko Znectn St (O UE) (2 ) = 0, (1),
i=1 j=1

[ ~ . 1 ~\2
since ¢; has finite 8% moments and tr (F/ LY _IF) is exponentially decaying, see above.

Part (ii). To show this part if suffices to notice that, since X# = X# due to the initialization

of the bootstrap sample, we have that (conditionally on the original sample)

T T T
T-1/2 ZY&t = T2 Zvec (q)t 1X§0* f') =771/ Zvec (@t 1X§0 f')
t=1 t=1 t=1
T ~
- Y (e d )
t=1

has variance % Zthl (E* (erel) ® (ét—lxgﬁoxgﬁéét—h)) — % Z?zl (gciglc’t ® ‘i’t_lxﬁéoxéééét‘“)
p—*>p 0, under the stated assumptions. This result completes the proof of (25), since, from the defi-

nition ofB#/st, it implies Tl/zB#/STE ﬁp N(0, QT), with QF := [I : —MﬂgMil] %4l [I : —M52M231}/.
O

Proof of Theorem 4. It follows using the same steps as in the proof of Theorem 1, using

the wild bootstrap results of Lemma 5. g

Proof of Corollary 2. Theorems 4 and 5 imply that, uniformly in probability, the (condi-
tional) cdf of the bootstrap statistic LRY satisfies G%. (-) — F (-), with F' the cdf of the limiting
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distribution of LRy. This implies that, under the null hypothesis, P; converges weakly to
U[0, 1], see Hansen (2000, proof of Theorem 5). O

Proof of Theorem 5. It follows using the same steps as in the proof of Theorem 2,
using the wild bootstrap results of Lemma 5 and the fact that, under the assumptions of
the Theorem we have that, as T — oo, Vii(u) = T~ 1ZLT“J grey = 1771 tLTTJ efer +
o, (1) —>p Jo X(s)ds =: V(u), uniformly in u € [0,1]. This result can be proved by notic-
ing that + ZtLﬂfJ gief = 7 ZtLTiLJ Eeally (wf — 1) + ZthfJ Ectéry —p V(u), as, by Lemma 3,

-1 Zt 1 z-:ctz-:ct —p V(u) and, conditionally on the data, &..&..; (wf — 1) is an independent

sequence and T~! thlj Ectbey (wf - 1) converges to 0 by standard arguments. O
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Table 4: Trace test statistics (Q,) for co-integration rank (r), with asymptotic (pasy), standard
bootstrap (pips) and wild bootstrap (pwps) p-values.

Qr

DPAsy

PiBs

PWBS

=W N = O3

191.6 0.000
105.3 0.000
41.66 0.009
17.44 0.117
2.664 0.645

0.000
0.000
0.007
0.127
0.658

0.000
0.000
0.087
0.286
0.795

Figure 1: Time series (ei) and variance profiles (vi) of VAR(2) residuals, i = 1,3, 5.
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