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Abstract

In a recent paper, Harvey et al. (2013) [HLT] propose a new unit root test that allows for the

possibility of multiple breaks in trend. Their proposed test is based on the infimum of the sequence

(across all candidate break points) of local GLS detrended augmented Dickey-Fuller-type statistics.

HLT show that the power of their unit root test is robust to the magnitude of any trend breaks. In

contrast, HLT show that the power of the only alternative available procedure of Carrion-i-Silvestre

et al. (2009), which employs a pre-test-based approach, can be very low indeed (even zero) for the

magnitudes of trend breaks typically observed in practice. Both HLT and Carrion-i-Silvestre et al.

(2009) base their approaches on the assumption of homoskedastic shocks. In this paper we analyse

the impact of non-stationary volatility (for example single and multiple abrupt variance breaks,

smooth transition variance breaks, and trending variances) on the tests proposed in HLT. We show

that the limiting null distribution of the HLT unit root test statistic is not pivotal under non-

stationary volatility. A solution to the problem, which does not require the practitioner to specify

a parametric model for volatility, is provided using the wild bootstrap and is shown to perform

well in practice. A number of different possible implementations of the bootstrap algorithm are

discussed.
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1 Introduction

Given the apparent prevalence of deterministic breaks in trend observed in macroeconomic time series

data, it is now common practice to allow for such structural change when conducting unit root tests.

Initial work by Perron (1989) assumed the location of a potential single trend break to be known,

but more recent approaches have focused on the case where the possible break occurs at an unknown

point in the sample; see, inter alia, Zivot and Andrews (1992) [ZA], Banerjee et al. (1992), Perron

(1997) and Perron and Rodríguez (2003) [PR]. An important issue surrounding such procedures is

that there is also an underlying problem of uncertainty as to whether trend breaks exist in the data or

not. To illustrate the point, when a single trend break is known to be present, the test based on PR’s

local GLS detrended ADF statistic which allows for a trend break is (near) asymptotically efficient.

This holds provided the break point is known, or can be dated endogenously with sufficient precision.

However, when a trend break does not occur the PR test is not asymptotically efficient, the redundant

trend break regressor compromising power. Moreover, the asymptotic critical values for the PR test

based on an estimated break point differ markedly according to whether a trend break occurs or not.

In response to this problem, Kim and Perron (2009), Carrion-i-Silvestre et al. (2009) [CKP] and

Harris et al. (2009) [HHLT] focused on developing testing procedures which utilize auxiliary statistics

to detect the presence of trend break(s) occurring at unknown point(s) in the sample, and then use

the outcome of the detection step to indicate whether or not the unit root test employed should

include trend break(s) in the deterministic specification. Assuming the trend break magnitudes to

be fixed (independent of sample size), CKP and HHLT show their methods achieve asymptotically

efficient unit root inference in both the no trend break and trend break environments. Crucially they

assume the trend break magnitude(s) to be fixed, which renders the trend break pre-tests used in

these procedures consistent against breaks of fixed magnitude and so the correct unit root test variant

(either allowing for trend breaks or not) is applied in large samples. However, in finite samples the

pre-tests will not provide perfect discrimination; i.e., some degree of uncertainty will necessarily exist

in finite samples as to whether breaks are present or not. As a result, the asymptotic properties of

these procedures contrast sharply with the finite sample simulations reported in CKP and HHLT which

show the presence of pronounced “valleys” in the finite sample power functions (mapped as functions

of the break magnitudes), such that power is initially high for very small breaks, then decreases as

the break magnitudes increase, before increasing again.

Harvey et al. (2012) show that treating the trend break magnitudes to be local-to-zero (in a

Pitman drift sense), rather than fixed, allows the (local) asymptotic distribution theory to very closely

approximate this finite sample power valley phenomenon. This is because the local-to-zero model for

the breaks reflects in the asymptotic theory the uncertainty that necessarily exists in finite samples

as to whether trend breaks are present in the data or not. Harvey et al. (2013) [HLT] show that

the valleys problem worsens as the number of trend breaks present increases, other things being

equal. HLT argue that the typical trend break magnitudes seen with real macroeconomic data lie well

within these valley regions, suggesting that the CKP and HHLT methods may then be very poor at
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discriminating between the unit root null and stochastic stationary alternative in practice.

In response to these issues, HLT advocate an approach along the lines of that outlined by ZA and

PR for the case of a single putative trend break. ZA and PR propose using the infimum of t-ratio-type

OLS and local GLS detrended ADF statistics, respectively, taken across all candidate break points in

a trimmed range. HLT establish the result that, unlike the ZA test which can have an asymptotic size

which approaches one when a trend break occurs under the unit root null (see Vogelsang and Perron,

1998), the asymptotic size of the local GLS de-trended variant of PR, when run using asymptotic

critical values relevant to the no break case, does not exceed the nominal level where either a fixed or

a local-to-zero trend break occurs under the null. HLT generalise the contribution of PR by developing

a local GLS detrended infimum test which allows for multiple possible breaks in trend, again based

on asymptotic critical values which assume no breaks are present. They show that the local GLS

detrended infimum test eliminates the aforementioned power valleys. This necessarily comes at the

expense of some loss of power relative to the CKP test when no breaks are present. In a local-to-zero

trend break environment and where the putative break fractions are unknown it is not possible to

obtain unit root tests which are invariant (even asymptotically) to the break magnitudes, since the

unknown break fractions cannot be consistently estimated. HLT argue that the infimum tests they

propose come as close as one can come to achieving invariant inference under local trend breaks.

While the unit root test proposed in HLT allows for the possibility of breaks in the deterministic

trend function, importantly HLT make no allowance for time-varying behaviour in the unconditional

volatility of the driving shocks. In this paper we analyse the impact of non-stationary volatility in

the shocks on the infimum test of HLT, and demonstrate that the asymptotic distribution of the HLT

statistic is not pivotal and depends on the structure of the underlying volatility process. Simulation

results suggest that this can have a large impact on both the size (and power) properties of the infimum

test, most critically leading to severe over-size in certain cases. Since, for many macroeconomic

series, non-constancy in the unconditional volatility of the shocks appears to be a relatively common

phenomenon (see Cavaliere and Taylor, 2008, and the references therein), we consider approaches that

attempt to overcome this inference problem. Specifially, we propose an implementation of the HLT

test using the wild bootstrap principle, replicating in the re-sampled data the essential pattern of

heteroskedasticity present in the original shocks (which might include, for example, single or multiple

abrupt variance breaks, smooth transition variance breaks, or trending variances). The wild bootstrap

approach has proven to be effective in the case of standard unit root tests which allow for either a

constant or linear trend; see Cavaliere and Taylor (2008); moreover, Cavaliere et al. (2011) show that

it can also be successfully applied to the single putative trend break unit root test of HHLT, although

the power “valley” problem associated with HHLT still remains.

We consider a number of possible wild bootstrap-based procedures, none of which require the user

to specify any parametric model of volatility. The leading bootstrap test we consider is based on

re-sampling from the double differences of the original data. Double differencing is used since this

transforms any trend breaks present into outliers which have no impact in large samples. We demon-

strate that the resulting bootstrap infimum statistic shares the same limiting null distribution, when
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evaluated under the case of no breaks in trend, as the original infimum statistic of HLT under the

class of non-stationary volatility considered. This ensures that in the no-break case, the bootstrap

procedure is asymptotically correctly sized and also incurs no loss of asymptotic local power relative

to the original HLT test. In the more general setting of non-zero local breaks in trend, we demonstrate

that, in contrast to the HLT test, asymptotic over-size is now almost entirely absent. Other bootstrap

algorithms discussed include those which explicitly model the trend break component (using an esti-

mate of the break dates and break magnitudes) and, optionally, re-build the resulting estimated trend

break component back into the bootstrap data. Re-building the estimated trend break component

into the bootstrap data implies that, where trend breaks occur and are consistently estimated (the

latter requires the break magnitudes to be fixed and non-zero), the bootstrap statistic will replicate

the true asymptotic null distribution of the infimum statistic, rather than the limiting distribution

of that statistic appropriate for the no break case. This might be expected to improve power in the

case where trend breaks are present in the data given the observation of HLT that their test based

on no-break critical values has a tendency to be under-sized where breaks occur. However, for zero

and local magnitude trend breaks such a bootstrap statistic will not replicate the correct limiting null

distribution and so will not be correctly sized. The finite sample size and power performance of these

various bootstrap procedures are compared using Monte Carlo methods.

The paper is organised as follows. Our reference heteroskedastic multiple trend break model is

outlined in section 2. Section 3 reviews the contribution of HLT. Section 4 details the large sample

behaviour of the HLT unit root test statistic when the errors display non-stationary volatility. In

section 5 we outline our leading wild bootstrap-based implementations of the HLT test and establish

its asymptotic properties; we also describe the alternative bootstrap algorithms that we consider.

Simulation evidence presented in Section 6 suggests that the proposed bootstrap tests perform well in

small samples. Section 7 concludes. Proofs are collected in an Appendix.

In what follows we use the following notation: ⌊·⌋ denotes the integer part; ◦ denotes the Hadamard

product (i.e. element-wise multiplication);
w
→ denotes weak convergence,

p
→ convergence in probability,

and
w
→p weak convergence in probability (see, for example, Giné and Zinn, 1990), in each case as the

sample size diverges; 1(.) denotes the indicator function, and Ix := 1(x 6= 0) and I
y
x := 1(y > x); x := y

(x =: y) indicates that x is defined by y (y is defined by x), and
a
= denotes asymptotic equivalence;

finally, C := C[0, 1] denotes the space of continuous processes on [0, 1], and D := D[0, 1] the space of

right continuous with left limit (càdlàg) processes on [0, 1].
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2 The Heteroskedastic Multiple Trend Break Model

We consider the time series process {yt} generated according to the following model,

yt = µ+ βt+ γ ′DTt(τ 0) + ut, t = 1, ..., T, (2.1)

ut = ρTut−1 + εt, t = 2, ..., T, (2.2)

εt = C(L)et =
∞∑

j=0
cjet−j , (2.3)

et = σtzt (2.4)

where DTt(τ 0) := [DTt (τ0,1) , ..., DTt (τ0,m)]
′, the elements of which, for a generic fraction τ , are the

indicator variables, DTt(τ) := 1(t > ⌊τT ⌋)(t− ⌊τT ⌋). In this model τ 0 := [τ0,1, ..., τ0,m]
′ is the vector

of (unknown) putative trend break fractions, with γ := (γ1, ..., γm)
′ the associated break magnitude

parameters; a trend break therefore occurs in {yt} at time ⌊τ0,iT ⌋ when γi 6= 0, i = 1, ...,m. The break

fractions are assumed to be such that τ0,i ∈ Λ, for all i, where Λ := [τL, τU ] with 0 < τL < τU < 1; the

fractions τL and τU representing trimming parameters. It is also assumed that |τ0,i − τ0,j | ≥ η > 0,

for all i, j, i 6= j, such that the DGP admits (up to) m level breaks occurring at unknown points across

the interval Λ, with a sample fraction of at least ⌊ηT ⌋ observations between breaks. Notice, therefore,

that m and η must satisfy the relation m ≤ 1 + ⌊(τU − τL)/η⌋.
1

In (2.2), {ut} is an unobserved mean zero stochastic process, initialised such that u1 = op(T
1/2).

The following set of assumptions will also be taken to hold on (2.1)-(2.4).

Assumption A: A1. The lag polynomial satisfies C (z) 6= 0 for all |z| ≤ 1, and
∑∞
j=0 j|cj | <∞; A2.

zt ∼ IID(0, 1) with E|zt|
r < K <∞ for some r ≥ 4; A3. The volatility term σt satisfies σt = ω (t/T ),

where ω (·) ∈ D is non-stochastic and strictly positive. For t ≤ 0, σt ≤ σ̆ <∞.

Remark 1. Notice that {εt} in (2.3) is a linear process in {et}, the latter formed as the product of

two components, {zt} and {σt}. Since, under Assumption A2, {zt} is IID, conditionally on σt, the

error term et has mean zero and time-varying variance σ
2
t .

Remark 2. Before progressing it is worth commenting that, since the variance σ2t depends on T , a

time series generated according to (2.1)-(2.4) with σt satisfying Assumption A3 formally constitutes a

triangular array of the type {yT,t := dT,t + uT,t : 1 ≤ t ≤ T, T ≥ 2}, where dT,t is purely deterministic

and uT,t is recursively defined as uT,t := ρTuT,t−1 + C (L)σT,tzt, σT,⌊sT ⌋ := ω (s). However, since the

triangular array notation is not essential, for simplicity the subscript T will be suppressed in what

follows.

Assumption A coincides with the set of conditions adopted in Cavaliere and Taylor (2008). As-

sumption A1 is standard in the unit root literature. Assumption A2 is somewhat stronger than is

often seen, since it rules out certain forms of conditional heteroskedasticity, such as that arising from

1One might also consider a second model which allows for simultaneous breaks in the level of the process. However, as

noted by PR, pp.2,4, a change in intercept is a special case of a slowly evolving deterministic component (see Condition

B of Elliott et al.,1996, p.816) and, consequently, does not alter any of the large sample results presented in this paper.
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stationary GARCH models, in the errors. It is made to simplify exposition; the results stated in this

paper would continue to hold if this assumption was weakened along the lines detailed in Remark 1 of

Cavaliere and Taylor (2008,pp.46-47). The key assumption for the purposes of this paper is A3, which

only requires of the innovation variance that it is non-stochastic, bounded and displays a countable

number of jumps. A detailed discussion of the class of variance processes allowed under A3 is given in

Cavaliere and Taylor (2007); this includes variance processes displaying (possibly) multiple one-time

volatility shifts (which need not be located at the same point in the sample as the putative trend

breaks), polynomially (possibly piecewise) trending volatility and smooth transition variance breaks,

among other things. The conventional homoskedasticity assumption, as employed in HLT, that σt = σ

for all t, also satisfies Assumption A3, since here ω(s) = σ for all s. Although Assumption A3 imposes

the volatility process to be non-stochastic, this may be weakened along the same lines as are detailed

in Remark 2 of Cavaliere and Taylor (2008,p.47).

A quantity which will play a key role in what follows is given by the following function in C, known

as the variance profile of the process:

η (s) :=

(∫ 1

0
ω (r)2 dr

)−1 ∫ s

0
ω (r)2 dr. (2.5)

Observe that the variance profile satisfies η (s) = s under homoskedasticity while it deviates from s

in the presence of heteroskedasticity. Notice also that the quantity ω2 :=
∫ 1
0 ω (r)

2 dr which appears

in (2.5), by Assumption A3 equals the limit of T
−1
∑T
t=1 σ

2
t , and may therefore be interpreted as the

(asymptotic) average innovation variance. We will also use the result

T−1/2
⌊rT ⌋∑

t=1

σtzt
w
→ ωW η

0 (r)

where the process W η
0 (r) :=

∫ r
0 dW (η(s)) is known as a variance-transformed Brownian motion, i.e. a

Brownian motion under a modification of the time domain; see, for example, Davidson (1994).

3 HLT’s Infimum Test

Our interest centres on testing the unit root null hypothesis H0 : ρT = 1, against the local alternative,

Hc : ρT = 1− c/T , c > 0. Under the assumption of homoskedastic innovations, that is σt = σ for all t,

HLT develop a test of H0 against Hc which does not require the practitioner to assume knowledge of

whether trend breaks are present in the data or not. The test they propose is a multiple break version

of the minimum local GLS detrended Dickey-Fuller statistic proposed by PR (which is MDF 1 in the

notation below), following the approach taken by ZA in a single break OLS detrending environment.

Specifically, the test statistic proposed in HLT is

MDFm := inf
τ1,...,τm∈Λ,

|τ i−τj |≥η, ∀i6=j

DFGLSc̄ (τ ) (3.1)
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where DFGLSc̄ (τ ) denotes the standard t-ratio associated with π̂ in the fitted OLS ADF-type regression

∆ũt = π̂ũt−1 +

p∑

j=1

ψ̂j∆ũt−j + êt, t = p+ 2, ..., T, (3.2)

where ũt := yt − µ̃ − β̃t − γ̃ ′DTt(τ ), with [µ̃, β̃, γ̃
′]′ obtained from a local GLS regression of yρ̄ :=

[y1, y2 − ρ̄y1, ..., yT − ρ̄yT−1]
′ on Zρ̄,τ := [z1, z2 − ρ̄z1, ..., zT − ρ̄zT−1]

′, zt := [1, t,DTt(τ )
′]′ with

ρ̄ := 1 − c̄/T , for some c̄ > 0 which is user-supplied.2 This infimum unit root test rejects for large

negative values of the statistic; HLT provide recommended values of c̄, as well as asymptotic critical

values relevant to the no break case, γ = 0. As is standard, the lag truncation parameter, p, in (3.2)

is assumed to satisfy the following condition:

Assumption B. As T → ∞, the lag truncation parameter p in (3.2) satisfies the condition that

1/p+ p3/T → 0.

In what follows, it is useful to note that when p = 0, DFGLSc̄ (τ ) can be written in the simplified

form

DFGLSc̄ (τ ) =
ũ2T − ũ

2
1 −

∑T
t=2(∆ũt)

2

2
√
σ̂2e
∑T
t=2 ũ

2
t−1

(3.3)

where σ̂2e = (T − 2)
−1
∑T
t=2 ê

2
t .

In order to conduct an asymptotic analysis that appropriately mimics the relevant finite sample

power properties of unit root tests when uncertainty exists as to the presence of breaks, HLT conduct

their asymptotic analysis under a doubly-local setting; that is, in addition to allowing local-to-unity

behaviour in the autoregressive root, as above, they also model the trend break magnitudes as local-

to-zero. Accordingly, in this paper we set the break magnitudes in (2.1) to be γi,T = κiC(1)ω̄T
−1/2,

i = 1, ...,m, where the κi are finite constants, thereby adopting the appropriate Pitman drift for a

trend break in a local-to-unit root process.3

4 Asymptotic Behaviour ofMDFm under Non-Stationary Volatility

In this section we establish the large sample properties of the HLT unit root test outlined in the

previous section in the case where the volatility process σt is permitted to be generated by any

process satisfying Assumption A3.

Theorem 1 Let yt be generated according to (2.1)-(2.4) under Hc. Let Assumptions A and B hold,

and let γT = κC(1)ω̄T
−1/2. Then

MDFm
w
→ inf

τ1,...,τm∈Λ,
|τ i−τj |≥η, ∀i6=j

Dc,c̄(τ 0, τ ,κ, η) =: D
inf
c,c̄ (τ 0,κ, η) (4.1)

2We suppress the dependence of quantities such as ũt on τ for notational economy.
3Scaling the trend break by C(1)ω̄ is merely a convenience device allowing it to be factored out of the limit distribution

of the statistic.
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where

Dc,c̄(τ 0, τ ,κ, η) :=
Lc,c̄(1, τ 0, τ ,κ, η)

2 − 1

2
√∫ 1

0 Lc,c̄(r, τ 0, τ ,κ, η)
2dr

with

Lc,c̄(r, τ 0, τ ,κ, η) := W η
c (r) + κ

′{(r − τ 0) ◦ I
r
τ0
}

−

[
r

(r − τ ) ◦ Ir
τ

]′ [
ac̄ mc̄(τ )

′

mc̄(τ ) Dc̄(τ )

]−1 [
bc,c̄,η + κ

′fc,c̄(τ 0)

bc,c̄,η(τ ) + Fc,c̄(τ 0, τ )κ

]

where

ac̄ := 1 + c̄+ c̄
2/3, bc,c̄,η := (1 + c̄)W

η
c (1) + c̄

2
∫ 1
0 sW

η
c (s)ds,

Ir
τ0
denotes an m× 1 vector with ith element Irτ0,i, mc̄(τ ), bc,c̄,η(τ ) and fc,c̄(τ 0) denote m× 1 vectors

with ith elements

mc̄(τ i) := ac̄ − τ i(1 + c̄+ c̄
2/2− c̄2τ2i /6),

bc,c̄,η(τ i) := (1 + c̄− c̄τ i)W
η
c (1)−W

η
c (τ i) + c̄

2
∫ 1
τ i
(s− τ i)W

η
c (s)ds,

fc,c̄(τ0,i) := (1− τ0,i){ac̄ − c̄
2τ0,i(1 + τ0,i)/6}

respectively, Dc̄(τ ) and Fc,c̄(τ 0, τ ) denote m×m matrices with i, jth elements

dc̄(τ i, τ j) := (1− τmax) {ac̄ + c̄τmax − c̄(τ i + τ j)

+c̄2(τmax + τ
2
max)/3− c̄

2(τ i + τ j)(1 + τmax)/2 + c̄
2τ iτ j},

fc,c̄(τ0,j , τ i) := (1− τ0,j){ac̄ − c̄τ i − c̄2τ i(1− τ0,j)/2− c̄
2τ0,j(1 + τ0,j)/6}

−(τ i − τ0,j){1− c̄
2(τ i − τ0,j)

2/6}Iτ iτ0,j

respectively, with τmax := max(τ i, τ j), and where W
η
c (r) :=

∫ r
0 e
−(r−s)cdW (η(s)), where W (s) is a

standard Brownian motion and η(·) is the variance profile of the volatility process defined in (2.5).

Remark 3. For the homoskedastic case, HLT propose running the test using asymptotic null critical

values obtained from the right member of (4.1) calculated for c = 0 and κ = 0. They show numerically

that the asymptotic size of the resulting test is conservative when κ 6= 0 though only ever modestly

under-sized.

Remark 4. As can be seen from comparing the representations given in Theorem 1 with the corre-

sponding representations in Theorem 1 of HLT, the asymptotic null distribution of theMDFm statistic

is a function of the process W η
0 (r). This distribution reduces to the corresponding distribution given

in Theorem 1 of HLT only where the process is homoskedastic, such that ω(·) is a constant function;

here W η
0 (r) reduces to the standard Brownian motion, W0(r) = W (r). It is also clear from the rep-

resentations in Theorem 1 for c > 0 that the asymptotic local power functions of the HLT test will

also be affected by non-stationary volatility (even if critical values from the correct heteroskedastic

null distributions were used) since, as with the null case, it is only where ω(·) is constant that the

representation reduces to the corresponding representation in HLT.
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Remark 5. Notice that the limiting representation in (4.1) depends on the search set, Λ, just as it

does in the homoskedastic case. The asymptotic critical values reported in HLT are appropriate only

for Λ = [0.15, 0.85]. An advantage of using a bootstrap implementation of MDFm, as we shall propose

in section 5, is that inference can be conducted for any choice of Λ without the need for further tables

of asymptotic critical values.

To conclude this section we now quantify the impact of a one-time change in volatility on the

asymptotic size of the one-break test, MDF 1. Table 1 reports the asymptotic size of nominal 0.05-

level MDF 1 tests, with Λ = [0.15, 0.85], for a single abrupt shift in volatility from σ0 to σ1 at time

⌊τσT ⌋; i.e. for the volatility function

ω(s) = σ0 + (σ1 − σ0)1(s > τσ), s ∈ [0, 1] (4.2)

with τσ ∈ [0, 1]. Results are reported for σ1/σ0 ∈ {1/10, 1/5, 1/2.5, 1, 2.5, 5, 10} and τσ ∈ {0.3, 0.5, 0.7},

allowing for positive and negative breaks in volatility at a range of timings (the setting σ1/σ0 = 1 giving

the constant volatility case). We consider at most a single break in trend at time τ0,1 = {0.3, 0.5, 0.7}

(allowing for cases where shift in volatility and the break in trend coincide, and also where their tim-

ings differ), with local break magnitudes κ1 = {0, 3, 6, 9, 12} (κ1 = 0 representing the no-break case).

The sizes reported were computed using direct simulation of the limiting functionals in Theorem 1,

compared with the critical values reported in HLT. We used 50,000 Monte Carlo replications, approx-

imating the Brownian motion processes in the limiting functionals using NIID(0, 1) random variates,

with the integrals are approximated by normalized sums of 2,000 steps.

In the homoskedastic case (σ1/σ0 = 1), MDF 1 has exact size when κ1 = 0 since this is precisely the

case where the critical values are obtained. For other values of κ1, it is slightly under-sized, as in HLT.

When σ1/σ0 6= 1, however, the shift in volatility virtually always induces an increase in asymptotic

size relative to the corresponding homoskedastic case. The upward size distortions increase as σ1/σ0

deviates further from the homoskedastic case of σ1/σ0 = 1 (for both σ1 > σ0 and σ1 < σ0) for both

the no break and local break deterministic specifications. The size distortions are most severe when

the timings of the break in trend and the break in volatility are either both early (τ0 = τσ = 0.3)

or both late (τ0 = τσ = 0.7), with asymptotic size up to around 0.43 in the latter. The impact

of a volatility shift on test size is also seen to be strongly dependent on the direction of the shift:

when the volatility break occurs early, it is a downward shift that generates relatively greater size

distortions than when the shift is upward; conversely, when the volatility break occurs late, it is an

upward shift that generates the greater size distortions. It is clear from these results that the presence

of heteroskedasticity can have serious implications for the asymptotic size of the HLT unit root test, to

the extent that we cannot rely on HLT’s tabulated critical values to deliver a size-controlled procedure.

5 Bootstrap Infimum Tests

As demonstrated in the previous section, non-stationary volatility introduces a time deformation

aspect to the limiting distributions of the HLT unit root statistic, which alters its form vis-à-vis the
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homoskedastic case. In section 5.1 we propose a bootstrap analogue of the MDFm unit root test

from section 3. Subsequently in section 5.2 we establish the large sample properties of our proposed

bootstrap test. We also discuss in section 5.3 a number of alternative algorithms that might also be

expected to display good finite sample properties.

5.1 The Bootstrap Algorithm

In this section we present our proposed bootstrap algorithm. Our approach adopts a ‘wild bootstrap’

scheme (see, inter alia, Liu, 1988, and Mammen, 1993) applied to the second differences of the raw

data. This approach, in contrast to standard residual re-sampling schemes used for other bootstrap

unit root tests proposed in the literature, replicates the nature of the heteroskedasticity present in the

underlying shocks.

The following steps constitute our proposed bootstrap algorithm:

Algorithm 1 (Wild Bootstrap MDFm Test)

Step 1. Construct the second differences of the data; that is, ∆2yt := ∆yt −∆yt−1, t = 3, ..., T .

Step 2. Generate T bootstrap innovations ε∗t , t = 1, ..., T , as follows: ε
∗
t := wt∆

2yt, t = 3, ..., T , and

ε∗1 = ε∗2 = 0, where {wt}
T
t=1 denotes an independent N(0, 1) sequence.

Step 3. Construct the bootstrap sample as the partial sum process defined by

y∗t :=
t∑

i=1

ε∗i , t = 1, ..., T. (5.1)

Step 4. Compute the bootstrap test statistic

MDF∗m := inf
τ1,...,τm∈Λ,

|τ i−τj |≥η, ∀i6=j

DFGLSc̄ (τ )∗

with

DFGLSc̄ (τ )∗ =
ũ∗2T − ũ

∗2
1 −

∑T
t=2(∆ũ

∗
t )
2

2
√
σ̂∗2e

∑T
t=2 ũ

∗2
t−1

where ũ∗t := y∗t − µ̃∗ − β̃
∗
t − γ̃∗′DTt(τ ), with [µ̃

∗, β̃
∗
, γ̃∗′]′ obtained from a local GLS regression of

y∗ρ̄ := [y
∗
1, y

∗
2 − ρ̄y

∗
1, ..., y

∗
T − ρ̄y

∗
T−1]

′ on Zρ̄,τ := [z1, z2 − ρ̄z1, ..., zT − ρ̄zT−1]
′, zt := [1, t,DTt(τ )

′]′ with

ρ̄ := 1− c̄/T . Here σ̂∗2e = (T − 2)−1
∑T
t=2 ê

∗2
t with ê∗t obtained from the fitted OLS regression

∆ũ∗t = π̂∗ũ∗t−1 + ê
∗
t , t = 2, ..., T. (5.2)

Step 5. Bootstrap p-values are computed as: p∗T := G∗T (MDFm), where G
∗
T (·) denotes the conditional

(on the original sample data) cumulative density function (cdf) of MDF∗m. Notice, therefore, that the

bootstrap test, run at the ξ, 0 < ξ < 1, significance level, based on MDFm, is then defined such that it

rejects the unit root null hypothesis, H0 : ρT = 1 if p
∗
T < ξ.
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Remark 6. The second differencing involved in Step 1 of Algorithm 1 removes the effect of the

constant and linear trend and reduces each of the trend breaks present to a one-time outlier which

will then have no impact in the limit on the behaviour of the resulting bootstrap statistic based on

y∗t , regardless of whether the trend break magnitudes are local-to-zero or fixed. This follows since we

can write the scaled y∗t as

T−1/2y∗⌊rT ⌋ = T−1/2
∑⌊rT ⌋
t=3 wt∆

2ut + T
−1/2∑m

j=1 γjw⌊τ0,jT ⌋+11(⌊rT ⌋ > ⌊τ0,jT ⌋)

= T−1/2
∑⌊rT ⌋
t=3 wt∆

2ut + op(1) (5.3)

regardless of whether the γj magnitudes are O(T
−1/2) or fixed.

Remark 7. As shown in the proof of Theorem 2 below,

T−1/2y∗⌊rT ⌋
w
→p (2

∑∞
i=0 ci(ci − ci+1))

1/2ωW η
0 (r)

so we observe that the asymptotic effect of the heteroskedasticity on the bootstrap sample y∗t is the

same as that on the original raw data yt up to a constant multiple, (2
∑∞
i=0 ci(ci − ci+1))

1/2, which

is induced by the second differencing in Step 1; this constant is automatically scaled out of the limit

distribution of the bootstrap Dickey-Fuller statistics DFGLSc̄ (τ )∗.

Remark 8. As in Cavaliere and Taylor (2008), the unit root null is imposed on the re-sampling

scheme used in Step 3 of Algorithm 1. This has no impact on the power of the bootstrap tests

because, conditionally on the original data, the bootstrap innovations ε∗t from Step 2 of Algorithm

1 are serially uncorrelated, allowing us to set the lag length to zero in (5.2). In practice one might

also consider adding a sieve-based component to Algorithm 1, of the form outlined in section 3.3 of

Cavaliere and Taylor (2009), and selecting the lag length, p∗ say, in (5.2) as discussed in Cavaliere and

Taylor (2009, p.403).

Remark 9. In practice the cdf G∗T will be unknown but can be approximated in the usual way through

numerical simulation; see, inter alia, Hansen (1996) and Andrews and Buchinsky (2001). This is done

by generating B (conditionally) independent bootstrap statistics, say MDF ∗m,b, b = 1, ..., B, computed

as for MDF ∗m above but from y∗b,t obtained by substituting ε
∗
i in (5.1) with ε

∗
b,i := ε̂iwb:i, again with

starting values set to zero, and with {{wb:t}
T
t=1}

B
b=1 a doubly independent N(0, 1) sequence. The

simulated bootstrap p-value is then computed as p̃∗T := B−1
∑B
b=1 1

(
MDF ∗m,b ≤ MDFm

)
, and is such

that p̃∗T
a.s.
→ p∗T as B → ∞. An approximate standard error for p̃∗T is given by (p̃

∗
T (1 − p̃∗T )/B)

1/2; see

Hansen (1996, p.419).

5.2 Asymptotic Properties

In this section we derive the asymptotic properties of the wild bootstrap unit root test outlined in

Algorithm 1 both under the unit root null hypothesis and under near-integrated alternatives.

Our key result is now presented in Theorem 2. Here, for the case of zero or local-to-zero magnitude

trend breaks, we show that for any volatility process satisfying Assumption A3 the bootstrap statistics
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from section 5.1 allow us to retrieve asymptotically correct p-values appropriate for κ = 0 under the

unit root null.

Theorem 2 Let yt be generated according to (2.1)-(2.4) under Hc. Let Assumption A hold, and let

γT = κC(1)ω̄T
−1/2. Then for the bootstrap statistic outlined in Algorithm 1,

MDF∗m
w
→p D

inf
0,c̄(τ 0,0, η) (5.4)

where Dinf0,c̄(τ 0,0, η) is as defined in Theorem 1, with c = 0 and κ = 0. Moreover, if ρT = 1,

p∗T
w
→ U [0, 1] for κ = 0.

Theorem 2 demonstrates the usefulness of the wild bootstrap test from Algorithm 1: as the

number of observations diverges, the bootstrapped statistic converges to the same null distribution as

obtains for the original HLT test statistic when κ = 0. Notice that Dinf0,c̄(τ 0,0, η) does not depend

on τ 0 when κ = 0. Consequently, for κ = 0, the bootstrap p-values are uniformly distributed under

the null hypothesis, leading to tests with asymptotically correct size. Table 2 reports, for the same

settings as those relevant for Table 1, asymptotic sizes of the bootstrap test MDF ∗1 at the nominal

0.05-level; these results were obtained by simulation of Dinfc,c̄ (τ 0,κ, η) in (4.1) with c = 0, compared

with critical values obtained from simulation of Dinf0,c̄(τ 0,0, η). In line with Theorem 2, the asymptotic

sizes are exactly 0.05 when κ1 = 0, regardless of the nature of the volatility process. This stands

in marked contrast to the corresponding entries in Table 1, where the original MDF 1 was seen to

often exhibit severe upward size distortions in the presence of heteroskedasticity. When κ1 6= 0, the

asymptotic size ofMDF ∗1 is no longer exactly 0.05; this occurs because the bootstrap recovers a critical

value for MDF 1 appropriate only for κ1 = 0. Consequently, situations where MDF
∗
1 displays under-

(over-) size correspond to κ1 6= 0 cases where MDF 1 had size that was lower (higher) than for the

corresponding κ1 = 0 case. Notice, however, that whenever upward size distortions do occur, they are

only modest in nature, with asymptotic size never exceeding 0.065; similarly, much of the under-sizing

is also relatively modest.

An additional consequence of the result in Theorem 2 is that the bootstrap MDF ∗m test shares

the same asymptotic local power function as the standard HLT test, MDFm, had the (κ = 0) critical

values used for the latter been (infeasibly) adjusted to account for any heteroskedasticity present. In

the case where volatility is constant, it also then follows that there is no loss in asymptotic power,

relative to using the HLT test, from using the bootstrap MDF ∗m test from Algorithm 1.

5.3 Alternative Bootstrap Algorithms

The bootstrap algorithm for MDF ∗m given above replicates (asymptotically) the null distribution

Dinf0,c̄(τ 0,0, η) and, as shown in Table 2, this can lead to a degree of size distortion in the presence

of heteroskedasticity when κ 6= 0. A potential way to alleviate this behaviour is to estimate τ 0 and

γ and incorporate these estimates into the bootstrap data - the intention being that such data will

thereby mimic any trend break structure present in the original data. Generalizing the HHLT break
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date estimator to the multiple trend break case, a first differences-based estimator of τ 0 is provided

by

τ̃ := arg min
τ1,...,τm∈Λ,

|τ i−τj |≥η, ∀i6=j

T−1
T∑

t=2

ṽt (τ )
2 ,

where ṽt (τ ) are the residuals from the OLS regression

∆yt = β̃ + γ̃ ′∆DTt(τ ) + ṽt (τ )

with the corresponding estimator of γ being given by γ̃ = γ̃(τ̃ ), that is, γ̃ evaluated at τ̃ . The

drawback of this trend break estimation procedure is that under H0 and Hc, when κ = 0, τ 0 is

unidentified and τ̃ is then randomly distributed over Λ. It can also be shown that γ̃ = Op(T
−1/2)

in this case. Therefore, τ̃ and γ̃ will indicate spurious break timings with spurious local break

magnitudes of order T−1/2. In fact, the same is also true for local trend breaks with κ 6= 0 since τ̃ is

not a consistent estimator of τ 0. As a consequence, any bootstrap algorithm that incorporates τ̃ and

γ̃ cannot exactly replicate the distribution Dinf0,c̄(τ 0,κ, η) either for κ = 0 or κ 6= 0. However, since

τ̃ and γ̃ are consistent estimators of τ 0 and γ in the case when all elements of γ are non-zero and

of fixed magnitude4, pragmatism suggests we might still consider employing them in an alternative

bootstrap algorithm to that for MDF ∗m, notwithstanding their theoretical shortcomings in the context

of the zero or local trend breaks model. Three such alternatives are now presented, which differ from

MDF ∗m only in how the bootstrap sample y
∗
t is constructed.

(i) MDF ∗∗m : y
∗
t := γ̃

′DTt(τ̃ ) +
∑t
i=1 ε

∗
i , t = 1, ..., T.

(ii) MDF ′m: y
∗
t :=

∑t
i=2wtṽt (τ̃ ) , t = 2, ..., T, y∗1 = 0.

(iii) MDF ′′m: y
∗
t := γ̃

′DTt(τ̃ ) +
∑t
i=2wtṽt (τ̃ ) , t = 2, ..., T, y∗1 = 0.

Here MDF ∗∗m is similar to MDF ∗m, but reinstates the broken trend effects in Step 3 of Algorithm 1

using estimates. MDF ′m and MDF ′′m utilise an alternative approach to removing the broken trend

effects in Step 1 of Algorithm 1, with MDF ′m being an analog of MDF
∗
m but employing the residuals

ṽt (τ̃ ) directly instead of second differencing, while MDF
′′
m is the corresponding analog of MDF

∗∗
m .

6 Finite Sample Simulations

In this section we investigate the finite sample size and power properties of the original MDFm test

and the bootstrap tests MDF ∗m, MDF
∗∗
m , MDF

′
m and MDF

′′
m proposed above. For further comparison

we also report results for the CKP test, which we denote by CKPm, where m corresponds to the

maximum number of breaks considered in the procedure. In line with our asymptotic results we

set Λ = [0.15, 0.85] for the implementation of all tests, and also set the separation fraction between

consecutive breaks to be η = 0.15. We abstract from the effects of serial correlation, generating zt ∼

4The proof of this follows straightforwardly from the consistency proof given for the single break case in Cavaliere et

al. (2011).
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NIID(0,1) and C(L) = 1, and setting p = 0 in the Dickey-Fuller regressions, and we also make the

corresponding setting when constructing the CKPm statistics. In line with the local trend break

specification adopted in the large sample analysis, we set γT = κω̄TT
−1/2 with ω̄T :=

√
T−1

∑T
t=1 σ

2
t .

All simulations were conducted at the nominal 0.05 level using 1,000 Monte Carlo replications and

B = 499 bootstrap replications. In sections 6.1 and 6.2 below, we present results for finite sample size

and power, respectively.

6.1 Size

Tables 3 and 4 presents size results for CKP1, MDF 1 and its corresponding bootstrap variants for a

single break in trend and a single shift in volatility, with sample sizes T = 150 and T = 300 respectively.

We set µ = β = 0 without loss of generality, and here consider c = 0 (i.e. ρT = 1) with u1 = ε1. We

focus on the cases of τ0,1 = {0.5, 0.7} and τσ = {0.5, 0.7} with σ1/σ0 ∈ {1, 2.5, 5, 10} (we let σ0 = 1

without loss of generality), again setting κ1 = {0, 3, 6, 9, 12}; these representative combinations are

chosen so as to capture the pertinent features observed in the asymptotic results in Tables 1 and 2.

The finite sample size behaviour of MDF 1 is seen to closely mirror the patterns of asymptotic size

observed in Table 1, with the numerical values of the sizes when T = 300 bearing a close resemblance

to the corresponding asymptotic sizes across all settings. In particular, the test is most over-sized

either when no trend break occurs and τσ = 0.7, or a trend break is present and τ0 = τσ = 0.7, with

the distortions again at their most severe for the larger values of σ1/σ0. The sizes of CKP1 follow the

same pattern as those of MDF 1, with severe upward size distortions of a similar magnitude observed

in the worst cases. In contrast, the bootstrap test MDF ∗1 never displays any serious over-size across

the various deterministic and volatility settings considered, although it can be under-sized when both

a trend break and volatility change are present (in line with the limit results of Table 2). As regards

the alternative bootstrap approach MDF ∗∗1 , we see that much of the under-size associated with MDF
∗
1

is ameliorated through the reinstatement of the estimated break in the bootstrap samples, unless κ1 is

small (since here the break date and magnitude cannot be reliably estimated). Moreover, despite not

exactly replicating the null distribution asymptotically in the no-break case, MDF ∗∗1 retains good size

control in this case also; indeed, it is typically slightly closer to nominal size than MDF ∗1. Lastly, we

observe thatMDF ′1 andMDF
′′
1 display much the same size patterns asMDF

∗
1 andMDF

∗∗
1 , respectively,

although they tend to have somewhat greater size than the corresponding second difference-based

bootstrap procedures.

We now consider size simulations for a DGP involving two breaks in trend and a single shift in

volatility. Tables 5 and 6 report results for CKP2, MDF 2, MDF
∗
2, MDF

∗∗
2 , MDF

′
2 and MDF

′′
2 for T =

150 and T = 300, respectively, with trend break timings τ0,1 = 0.3, τ0,2 = 0.5 and τ0,1 = 0.5, τ0,2 = 0.7

with magnitudes κ1 = −κ, κ2 = κ where κ = {0, 6, 12}, and volatility settings τσ = {0.5, 0.7} with

σ1/σ0 ∈ {1, 5, 10}. For MDF 2, we observe over-size in the presence of heteroskedasticity, this being

particularly acute either when no trend breaks occur, or when trend breaks occur with the later set of

break timings (τ0,1 = 0.5, τ0,2 = 0.7). In line with the results above, the size distortions are greatest
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for later changes in volatility. CKP2 also suffers from severe over-size in the case of no trend breaks

when σ1/σ0 > 1, although when the trend breaks are non-zero, it becomes quite under-sized in many

cases; this latter feature arises because the break detection methodology implicit in the CKP approach

is ineffective in the presence of opposite signed local breaks of moderate magnitude (see HLT for more

details). As in the single trend break case, MDF ∗2 and MDF
∗∗
2 are not subject to serious over-size, and

while the former can again be under-sized in the presence of both trend breaks and volatility change,

this under-size is considerably reduced by MDF ∗∗2 . As before, size results for MDF
′
2 and MDF

′′
2 bear

a broad resemblance to those for MDF ∗2 and MDF
∗∗
2 , respectively, but again the sizes can be a little

inflated.

6.2 Power

Tables 7 and 8 report finite sample powers for T = 150 for the same settings as employed in Table 3, for

c = 20 and c = 30, respectively. In addition to presenting raw powers for all tests (including those for

CKP1 and MDF 1 for completeness despite their lack of size control), we also report two critical value-

adjusted versions of MDF 1 to aid comparison with the bootstrap procedures - a size-adjusted version

that uses the appropriate 0.05-level critical value for MDF 1 for each volatility process and local break

magnitude setting (denoted MDF adj1 in the tables) and also a partially adjusted version that retains

use of κ = 0 critical values but adjusts those critical values for the effects of any heteroskedasticity

present (denoted MDFhadj1 ). Given that MDF 1 was seen in Table 3 to always have finite sample size

in excess of nominal size (and sometimes dramatically so), the powers of both MDF adj1 and MDFhadj1

are lower than their raw power counterparts throughout. We observe that the powers of MDF ∗1 and

MDFhadj1 are generally quite similar, as we would expect in light of Theorem 2 and our associated

discussion. Also unsurprisingly, the powers of MDF ∗1 are almost identical to those of MDF
adj
1 when

κ1 = 0. In those κ1 6= 0 cases where MDF ∗1 is under-sized, it is seen to lose power compared to

MDF adj1 , and while the losses can be up to 0.25 (for c = 30), they are typically rather more modest.

As we might expect, MDF ∗∗1 makes up most of these relative power losses, having power close to that

of MDF adj1 in most cases, the exception being when κ1 is small (where MDF
∗∗
1 was seen to remain

under-sized). The powers of MDF ′1 and MDF
′′
1 are of course similar to (a little greater than) MDF

∗
1

and MDF ∗∗1 , respectively, in line with the corresponding size behaviour of these procedures.

Finally, Table 9 presents powers for T = 150 in the case of two breaks in trend, for the same

settings as in Table 5, for c = 30. Notice that CKP2 (and to a somewhat lesser extent CKP1 in Tables

7 and 8) displays the well-documented phenomenon of extremely low power for intermediate local

break magnitudes, caused by low break detection rates in these circumstances; see, inter alia, HLT.

As in the single trend break case, the powers ofMDF ∗2 are very close to those ofMDF
hadj
2 . In addition,

the MDF ∗2 powers are similar to those of MDF
adj
2 when κ = 0, but they typically fall below these

levels when κ 6= 0. However, MDF ∗∗2 is again seen to recover most of these losses relative to MDF adj2 .

Once more, MDF ′2 and MDF
′′
2 have similar levels of power to MDF

∗
1 and MDF

∗∗
1 , respectively.
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7 Conclusions

In this paper we have explored the impact that non-stationary volatility has on the infimum Dickey-

Fuller-type test proposed in Harvey et al. (2013) which allows for multiple possible breaks in trend.

Numerical evidence was presented which showed that non-stationary volatility can have potentially

serious implications for the reliability of this test with size often being very substantially above the

nominal level. This was shown to be a feature of the limiting distributions of the statistic. To help

rectify this problem, we have proposed wild bootstrap-based implementations of the Harvey et al.

(2013) test, this approach having proved to be highly successful in other unit root testing applications.

The proposed bootstrap tests have the considerable advantage that they are not tied to a given

parametric model of volatility within the class of non-stationary volatility processes considered. The

asymptotic effectiveness of our proposed bootstrap tests within the class of non-stationary volatility

considered was demonstrated. Monte Carlo simulation evidence for the case of a one-time change in

volatility for models with both a single break in trend and a double break in trend was also reported

which suggested that the proposed bootstrap unit root tests perform well in finite samples avoiding the

large over-size problems that can occur with the Harvey et al.’s (2013) test, yet emulating the finite

sample power properties of (infeasible) critical value-adjusted implementations of their test. In future

work, it would be interesting to explore the possibility of analagous procedures for GLS detrended

variants of Im et al. (2003)-type panel unit root tests where breaks in trend and non-stationary

volatility are potentially an issue for each series.

A Appendix

Proof of Theorem 1. For expositional brevity we demonstrate the result of Theorem 1 in the serially

uncorrelated case εt = et (i.e. C(L) = 1), setting p = 0 in (3.2) accordingly. The result continues

to hold under the more general conditions for εt of Assumption 1, provided Assumption B holds. In

what follows, we also set µ = β = 0 without loss of generality. We will make use of the following

weak convergence results, which follow from straightforward extensions of the results in Cavaliere and

Taylor (2007):

T−1/2u⌊rT ⌋
w
→ ωW η

c (r) (A.1)

T−3/2
∑T
t=⌊rT ⌋ ut−1

w
→ ω

∫ 1
rW

η
c (s)ds (A.2)

T−3/2
∑T
t=⌊rT ⌋ t∆ut

w
→ ω{W η

c (1)− rW
η
c (r)−

∫ 1
rW

η
c (s)ds} (A.3)

T−5/2
∑T
t=⌊rT ⌋ tut−1

w
→ ω

∫ 1
r sW

η
c (s)ds. (A.4)

First, for any τ1, ..., τm ∈ Λ, consider the estimators µ̃, β̃ and γ̃. Following HLT we find






µ̃

T 1/2β̃

T 1/2γ̃






w
→






1 0 0′

0 ac̄ mc̄(τ )
′

0 mc̄(τ ) Dc̄(τ )






−1

× lim
T→∞






hy1

T−1/2hy2

T−1/2p
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where

hy1 := y1 + (1− ρ̄)
∑T
t=2(yt − ρ̄yt−1),

hy2 := y1 +
∑T
t=2(yt − ρ̄yt−1){t− ρ̄(t− 1)}

and where the (m× 1) vector p has ith element

pi :=
∑T
t=⌊τ iT ⌋+1

(yt − ρ̄yt−1){t− ⌊τ iT ⌋ − ρ̄(t− ⌊τ iT ⌋ − 1)}.

For the limits of hy1, h
y
2 and the elements of p we obtain, using (A.1)-(A.4), and on definingDUt(τ0,i) :=

∆DTt(τ0,i),

hy1 = y1 + c̄T
−1(yT − y1) + c̄

2T−2
∑T
t=2 yt−1 = u1 + op(1),

T−1/2hy2 = c̄T−3/2
∑T
t=2 t∆ut + T

−1/2uT + c̄
2T−5/2

∑T
t=2 tut−1 + c̄T

−3/2∑T
t=2 ut−1

+ ωc̄
∑m
i=1 κiT

−2∑T
t=2 tDUt(τ0,i) + ω

∑m
i=1 κiT

−1(T − ⌊τ0,iT ⌋)

+ωc̄2
∑m
i=1 κiT

−3∑T
t=2 tDTt−1(τ0,i) + ω c̄

∑m
i=1 κiT

−2∑T
t=2DTt−1(τ0,i) + op(1)

w
→ c̄{ωW η

c (1)− ω
∫ 1
0W

η
c (s)ds}+ ωW η

c (1) + c̄
2 ω
∫ 1
0 sW

η
c (s)ds+ c̄ ω

∫ 1
0W

η
c (s)ds

+ωc̄
∑m
i=1 κi(1− τ

2
0,i)/2 + ω

∑m
i=1 κi(1− τ0,i)

+ωc̄2
∑m
i=1 κi{(1− τ

3
0,i)/3− τ0,i(1− τ

2
0,i)/2}+ ωc̄

∑m
i=1 κi(1− τ0,i)

2/2

= ω{bc,c̄,η + κ
′fc,c̄(τ 0)}, (A.5)

T−1/2pi = T−1/2uT − T
−1/2u⌊τ iT ⌋ + c̄T

−3/2∑T
t=⌊τ iT ⌋+1

t∆ut − c̄τ iT
−1/2∑T

t=⌊τ iT ⌋+1
∆ut

+ c̄T−3/2
∑T
t=⌊τ iT ⌋+1

ut−1 + c̄
2T−5/2

∑T
t=⌊τ iT ⌋+1

tut−1 − c̄
2τ iT

−3/2∑T
t=⌊τ iT ⌋+1

ut−1

+ω
∑m
j=1 κj(1− τ0,j)− ω

∑m
j=1 κj(τ i − τ0,j)I

τ i
τ0,j + ωc̄

∑m
j=1 κjT

−2∑T
t=⌊τ iT ⌋+1

tDUt(τ0,j)

−ωc̄
∑m
j=1 κjτ iT

−1∑T
t=⌊τ iT ⌋+1

DUt−1(τ0,j) + ωc̄
∑m
j=1 κjT

−2∑T
t=⌊τ iT ⌋+1

DTt−1(τ0,j)

+ωc̄2
∑m
j=1 κjT

−3∑T
t=⌊τ iT ⌋+1

tDTt−1(τ0,j)− ωc̄
2∑m

j=1 κjτ iT
−2∑T

t=⌊τ iT ⌋+1
DTt−1(τ0,j) + op(1)

w
→ ωW η

c (1)− ωW η
c (τ i) + ωc̄{W η

c (1)− τ iW
η
c (τ i)−

∫ 1
τ i
W η
c (s)ds} − ωc̄τ i{W

η
c (1)−W

η
c (τ i)}

+ c̄ ω
∫ 1
τ i
W η
c (s)ds+ c̄

2 ω
∫ 1
τ i
sW η

c (s)ds− c̄
2τ i ω

∫ 1
τ i
W η
c (s)ds

+ω
∑m
j=1 κj(1− τ0,j)− ω

∑m
j=1 κj(τ i − τ0,j)I

τ i
τ0,j

+ω c̄
∑m
j=1 κj{(1− τ

2
0,j)/2− (τ

2
i − τ

2
0,j)I

τ i
τ0,j/2} − ωc̄

∑m
j=1 κjτ i{1− τ0,j − (τ i − τ0,j)I

τ i
τ0,j}

+ω c̄
∑m
j=1 κj(1− c̄τ i){(1− τ0,j)

2/2− (τ i − τ0,j)
2
I
τ i
τ0,j/2}

+ωc̄2
∑m
j=1 κj [(1− τ

3
0,j)/3− τ0,j(1− τ

2
0,j)/2 − {(τ

3
i − τ

3
0,j)/3− τ0,j(τ

2
i − τ

2
0,j)/2}I

τ i
τ0,j ]

= ω{bc,c̄,η(τ i) +
∑m
j=1 κjfc,c̄(τ0,j , τ i)}, (A.6)

where (A.5) and (A.6) follow upon simplification after gathering terms.

We therefore have that





µ̃

T 1/2β̃

T 1/2γ̃






w
→






1 0 0′

0 ac̄ mc̄(τ )
′

0 mc̄(τ ) Dc̄(τ )






−1 




u1

ω{bc,c̄,η + κ
′fc,c̄(τ 0)}

ω{bc,c̄,η(τ ) + Fc,c̄(τ 0, τ )κ}






17



which gives the limit of T−1/2ũ⌊rT ⌋ as

T−1/2ũ⌊rT ⌋ = T−1/2y⌊rT ⌋ − T
−1/2µ̃− T−1/2β̃⌊rT ⌋ − T−1/2γ̃ ′{(⌊rT ⌋ − ⌊τT ⌋) ◦ Ir

τ
}

= T−1/2u⌊rT ⌋ + ωκ
′{(r − τ 0) ◦ I

r
τ0
} −

[
r

(r − τ ) ◦ Ir
τ

]′ [
T 1/2β̃

T 1/2γ̃

]

+ op(1)

w
→ ωW η

c (r) + ωκ
′{(r − τ 0) ◦ I

r
τ0
}

−

[
r

(r − τ ) ◦ Ir
τ

]′ [
ac̄ mc̄(τ )

′

mc̄(τ ) Dc̄(τ )

]−1 [
ω{bc,c̄,η + κ

′fc,c̄(τ 0)}

ω{bc,c̄,η(τ ) + Fc,c̄(τ 0, τ )κ}

]

= ωLc,c̄(r, τ 0, τ ,κ).

Next,

σ̂2e = (T − 2)−1
T∑

t=2

ê2t

= T−1
T∑

t=2

(∆ũt)
2 + op(1)

= T−1
T∑

t=2

ε2t + op(1)
p
→ ω2

Given p = 0, write DFGLSc̄ (τ ) in the form

DFGLSc̄ (τ ) =
ũ2T − ũ

2
1 −

∑T
t=2(∆ũt)

2

2
√
σ̂2e
∑T
t=2 ũ

2
t−1

=
(T−1/2ũT )

2 − T−1
∑T
t=2(∆ũt)

2

2
√
σ̂2eT

−2
∑T
t=2 ũ

2
t−1

+ op(1)

w
→

ω2Lc,c̄(1, τ 0, τ ,κ,η)
2 − ω2

2
√
ω2.ω2

∫ 1
0 Lc,c̄(r, τ 0, τ ,κ, η)

2dr
= Dc,c̄(τ 0, τ ,κ, η).

The stated result for MDFm then follows from this fixed τ representation, using the relevant

arguments proved in Zivot and Andrews (1992) and an application of the continuous mapping theorem

[CMT].

Proof of Theorem 2. In what follows, we again set µ = β = 0 with no loss of generality. Throughout

the proof of Theorem 2, we use ιk to denote the k×1 unit vector, and P
∗ and E∗ to denote respectively

the probability and expectation conditional on the realization of original sample. Moreover, for a

given sequence X∗
T computed on the bootstrap data, the notation X

∗
T = o∗p (1) is taken to mean that

P ∗ (|X∗
T | > ǫ)→ 0 in probability for any ǫ > 0 as T →∞.

According to Algorithm 1, we have that

T−1/2y∗⌊rT ⌋ := T−1/2
⌊rT ⌋∑

t=1

ε∗t = T−1/2
⌊rT ⌋∑

t=3

wt∆
2yt .
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Since wt is independent N (0, 1), we have that, conditionally on the original sample,

T−1/2y∗⌊rT ⌋ ∼ N (0, VT (r))

with VT (r) := T−1
∑⌊rT ⌋
t=3

(
∆2yt

)2
. As in Cavaliere and Taylor (2008), if

VT (r)
p
→ κ2

∫ r

0
ω (s)2 ds (A.7)

pointwise for some positive constant κ (independent of r) then it holds that

T−1/2y∗⌊·T ⌋
w
→p ω

∗W η
0 (·) (A.8)

where ω∗ := κ(
∫ 1
0 ω (s)

2 ds)1/2 andW η
0 (r) :=

∫ r
0 dB (η (s)) is a variance-transformed Brownian motion

with variance profile η (r) :=
(∫ 1
0 ω (s)

2 ds
)−1 ∫ r

0 ω (s)
2 ds. To show that (A.7) holds, first notice that

∆2yt = γ
′
T∆

2DTt (τ0) + ∆
2ut, which implies that VT (r) can be written as

VT (r) = T−1
⌊rT ⌋∑

t=3

(
∆2ut

)2
+ T−1

⌊rT ⌋∑

t=3

(
γ ′T∆

2DTt (τ0)
)2
+ 2T−1

⌊rT ⌋∑

t=3

(
∆2ut

) (
γ ′T∆

2DTt (τ0)
)

where ∆2DTt (τ0) is a vector of m impulse dummies, i.e. its i-th element is given by I (t = ⌊τ iT ⌋+ 1).

Hence, as γT = O
(
T−1/2

)
we have that

sup
r∈[0,1]

T−1
⌊rT ⌋∑

t=3

(
γ ′T∆

2DTt (τ0)
)2
≤ T−1

T∑

t=3

(
γ ′T∆

2DTt (τ0)
)2
= T−1

(
γ ′TγT

)
= O

(
T−2

)
.

Similarly, we have that

sup
r∈[0,1]

∣∣∣∣∣∣
T−1

⌊rT ⌋∑

t=3

(
∆2ut

) (
γ ′T∆

2DTt (τ0)
)
∣∣∣∣∣∣
≤ T−1

T∑

t=3

∣∣∆2ut
∣∣ ∣∣γ ′T∆

2DTt (τ0)
∣∣

≤ 4T−1 sup
t=1,...,T

|ut|
T∑

t=3

∣∣γ ′T∆
2DTt (τ0)

∣∣

= 4T−1 sup
t=1,...,T

|ut|
(
ι′m|γT |

)
= Op

(
T−1

)
.

Hence, for ṼT (r) := T−1
∑⌊rT ⌋
t=3

(
∆2ut

)2
we have that supr∈[0,1] |VT (r) − ṼT (r) | →p 0. Therefore, to

prove that (A.7) holds we need to show that ṼT (r) converges to the right member of (A.7). Since

∆ut = (−c/T )ut−1 + εt, we have that

∆2ut = (−c/T )∆ut−1 +∆εt

= (−c/T )2ut−2 + (−c/T )εt−1 + εt − εt−1

which implies, after some simple algebra, and using the facts that supt |ut| = Op
(
T 1/2

)
and that εt

has bounded second moments, that

sup
r∈[0,1]

∣∣∣∣∣∣
ṼT (r)− T

−1

⌊rT ⌋∑

t=3

(εt − εt−1)
2

∣∣∣∣∣∣
= υT
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where υT is of op (1). Since εt − εt−1 has the LP representation

εt − εt−1 =

∞∑

i=0

ciet−i −

∞∑

i=1

ci−1et−i = c0et +

∞∑

i=1

(ci − ci−1) et−i =

∞∑

i=0

c̃iet−i

with c̃0 := c0 and c̃i := (ci − ci−1), i = 1, 2, ..., we can proceed as in the proof of Theorem 2 in

Cavaliere and Taylor (2007) to show that

T−1
⌊rT ⌋∑

t=3

(εt − εt−1)
2 p
→

∞∑

i=0

c̃2i

(∫ r

0
ω (u)2 du

)
= 2

(
∞∑

i=0

ci (ci − ci+1)

)(∫ r

0
ω (u)2 du

)

= κ2
(∫ r

0
ω (s)2 ds

)

with κ := (2
∑∞
i=0 ci (ci − ci+1))

1/2. This implies that ṼT (r), and hence VT (r), both converge in

probability to κ2
∫ r
0 ω (s)

2 ds, as required. Hence (A.7) and therefore (A.8) hold.

By the bootstrap invariance principle (A.8) and the CMT we then find that

T−3/2
∑T
t=⌊rT ⌋ y

∗
t−1

w
→p ω

∗
∫ 1
rW

η
0 (s)ds

T−3/2
∑T
t=⌊rT ⌋ t∆y

∗
t
w
→p ω

∗{W η
0 (1)− rW

η
0 (r)−

∫ 1
rW

η
0 (s)ds}

T−5/2
∑T
t=⌊rT ⌋ ty

∗
t−1

w
→p ω

∗
∫ 1
r sW

η
0 (s)ds.

analogously to (A.2)-(A.4) in the proof of Theorem 1. Further, paralleling the arguments in the proof

of Theorem 1, and using the fact that T−1/2y∗⌊rT ⌋ does not depend on c or κ in the limit,






µ̃∗

T 1/2β̃
∗

T 1/2γ̃∗






w
→p






1 0 0′

0 ac̄ mc̄(τ )
′

0 mc̄(τ ) Dc̄(τ )






−1 




0

ω∗b0,c̄,η

ω∗b0,c̄,η(τ )




 (A.9)

giving the limit of T−1/2ũ∗⌊rT ⌋ as

T−1/2ũ∗⌊rT ⌋ = T−1/2y∗⌊rT ⌋ − T
−1/2µ̃∗ − T−1/2β̃

∗
⌊rT ⌋ − T−1/2γ̃∗′{(⌊rT ⌋ − ⌊τT ⌋) ◦ Ir

τ
}

= T−1/2y∗⌊rT ⌋ −

[
r

(r − τ ) ◦ Ir
τ

]′ [
T 1/2β̃

∗

T 1/2γ̃∗

]

+ op(1)

w
→p ωW

η
0 (r)−

[
r

(r − τ ) ◦ Ir
τ

]′ [
ac̄ mc̄(τ )

′

mc̄(τ ) Dc̄(τ )

]−1 [
ω∗b0,c̄,η

ω∗b0,c̄,η(τ )

]

= ω∗L0,c̄(r, τ 0, τ ,0,η) .

We now consider the limit behaviour of σ̂∗2e := (T − 2)−1
∑T
t=2 ê

∗2
t and show that for any ǫ > 0

and conditionally on the original sample,

P ∗
(∣∣σ̂∗2e − ω

∗2
∣∣ > ǫ

) p
→ 0 . (A.10)

Using the weak convergence (in probability) result for T−1/2ũ∗⌊rT ⌋ and for the bootstrap estimators of

the deterministic components in (A.9), it is straightforward to see that, for any ǫ > 0, we have that

20



P ∗
(∣∣∣σ̂∗2e − (T − 2)−1

∑T
t=2 ε

∗
t
2
∣∣∣ > ǫ

)
→ 0 in probability. Hence, to prove (A.10) it suffices to show

that

P ∗

(∣∣∣∣∣
1

T − 2

T∑

t=2

ε∗t
2 − ω∗2

∣∣∣∣∣
> ǫ

)
p
→ 0 , (A.11)

see also Cavaliere and Taylor (2008, proof of Theorem 2).

To prove (A.11) consider the equalities:

1

T

T∑

t=2

ε∗2t =
1

T

T∑

t=2

(
∆2yt

)2
w2t =

1

T

T∑

t=2

(
∆2yt

)2
+
1

T

T∑

t=2

(
∆2yt

)2
ξt = VT (1) + fT

with ξt := w2t−1 an independent sequence of centered χ
2 (1) random variables, and fT := T−1

∑T
t=2

(
∆2yt

)2
ξt.

As shown above, see (A.7), we have that VT (1) → κ2
∫ r
0 ω (s)

2 ds = ω∗2, in probability. Moreover,

conditionally on the sample,

E∗
(
f2T
)
= E∗

(
1

T

T∑

t=1

(
∆2yt

)2
ξt

)2
=
1

T 2

T∑

t=1

T∑

s=1

(
∆2yt

)2 (
∆2ys

)2
E (ξtξs) =

1

T 2

T∑

t=1

(
∆2yt

)4
E
(
ξ2t
)

=
4

T

(
1

T

T∑

t=1

(
∆2yt

)4
)

=
4

T

(
1

T

T∑

t=1

(
∆2ut

)4
)

+ op
(
T−1

)

=
4

T

(
1

T

T∑

t=1

(εt − εt−1)
4

)

+ op
(
T−1

)
= Op

(
T−1

)

since T−1
∑T
t=1 (εt − εt−1)

4 is of Op (1) under Assumption A2. Hence, we finally have that, for any

ǫ > 0, a simple (conditional) version of Tchebychev’s inequality yields

P ∗(|fT | > ǫ) ≤
E∗
(
f2T
)

ǫ2
p
→ 0

and hence that fT = o∗p (1). This proves (A.11).

Finally, we can write,

DFGLSc̄ (τ )∗ =
(T−1/2ũ∗T )

2 − T−1
∑T
t=2(∆ũ

∗
t )
2

2
√
σ̂∗2e T

−2
∑T
t=2 ũ

∗2
t−1

+ o∗p(1)

w
→p

ω∗2L0,c̄(1, τ 0, τ ,0,η)
2 − ω∗2

2
√
ω∗2.ω∗2

∫ 1
0 L0,c̄(r, τ 0, τ ,0, η)

2dr
= D0,c̄(τ 0, τ ,0, η).

As in the proof of Theorem 1, the stated result forMDF ∗m then follows from this fixed τ representation,

using the relevant arguments proved in Zivot and Andrews (1992) and an application of the CMT.
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Table 1. Asymptotic size of MDF 1 tests: 1 break in trend

τ0,1 = 0.3 τ0,1 = 0.5 τ0,1 = 0.7

σ1/σ0 κ1 τσ = 0.3 τσ = 0.5 τσ = 0.7 τσ = 0.3 τσ = 0.5 τσ = 0.7 τσ = 0.3 τσ = 0.5 τσ = 0.7

1/10.0 0 0.309 0.138 0.070 0.309 0.138 0.070 0.309 0.138 0.070
3 0.325 0.156 0.081 0.133 0.145 0.078 0.059 0.046 0.059
6 0.349 0.174 0.085 0.105 0.129 0.075 0.052 0.030 0.039
9 0.355 0.171 0.077 0.103 0.112 0.066 0.052 0.029 0.031

12 0.345 0.160 0.071 0.101 0.103 0.061 0.052 0.029 0.029

1/5.0 0 0.240 0.124 0.068 0.240 0.124 0.068 0.240 0.124 0.068
3 0.251 0.139 0.077 0.123 0.129 0.075 0.065 0.049 0.059
6 0.268 0.154 0.081 0.090 0.115 0.072 0.046 0.029 0.038
9 0.270 0.150 0.073 0.087 0.100 0.064 0.045 0.028 0.031

12 0.261 0.140 0.067 0.086 0.092 0.059 0.045 0.028 0.028

1/2.5 0 0.113 0.087 0.061 0.113 0.087 0.061 0.113 0.087 0.061
3 0.117 0.096 0.068 0.082 0.088 0.067 0.058 0.049 0.052
6 0.119 0.100 0.067 0.058 0.080 0.063 0.035 0.028 0.035
9 0.114 0.096 0.061 0.054 0.068 0.055 0.032 0.026 0.028

12 0.109 0.088 0.056 0.052 0.062 0.051 0.031 0.025 0.025

1.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.049 0.049 0.049 0.051 0.051 0.051 0.044 0.044 0.044
6 0.043 0.043 0.043 0.045 0.045 0.045 0.033 0.033 0.033
9 0.038 0.038 0.038 0.039 0.039 0.039 0.027 0.027 0.027

12 0.035 0.035 0.035 0.036 0.036 0.036 0.025 0.025 0.025

2.5 0 0.067 0.092 0.114 0.067 0.092 0.114 0.067 0.092 0.114
3 0.066 0.062 0.073 0.077 0.099 0.092 0.070 0.099 0.112
6 0.052 0.044 0.055 0.077 0.093 0.071 0.064 0.096 0.105
9 0.044 0.041 0.051 0.069 0.084 0.066 0.056 0.089 0.100

12 0.041 0.040 0.050 0.064 0.079 0.064 0.050 0.081 0.095

5.0 0 0.078 0.144 0.257 0.078 0.144 0.257 0.078 0.144 0.257
3 0.078 0.066 0.093 0.093 0.159 0.154 0.085 0.159 0.267
6 0.060 0.051 0.082 0.096 0.157 0.126 0.083 0.171 0.281
9 0.050 0.050 0.081 0.086 0.143 0.122 0.071 0.162 0.285

12 0.047 0.049 0.080 0.080 0.133 0.120 0.065 0.150 0.279

10.0 0 0.081 0.170 0.362 0.081 0.170 0.362 0.081 0.170 0.362
3 0.082 0.064 0.099 0.099 0.186 0.180 0.090 0.188 0.382
6 0.062 0.054 0.095 0.102 0.185 0.158 0.088 0.204 0.414
9 0.053 0.053 0.094 0.092 0.169 0.156 0.076 0.197 0.426

12 0.049 0.053 0.094 0.086 0.159 0.154 0.070 0.183 0.420

T
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Table 2. Asymptotic size of MDF
∗

1
tests: 1 break in trend

τ0,1 = 0.3 τ0,1 = 0.5 τ0,1 = 0.7

σ1/σ0 κ1 τσ = 0.3 τσ = 0.5 τσ = 0.7 τσ = 0.3 τσ = 0.5 τσ = 0.7 τσ = 0.3 τσ = 0.5 τσ = 0.7

1/10.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.054 0.057 0.058 0.010 0.052 0.057 0.004 0.010 0.043
6 0.060 0.065 0.061 0.009 0.046 0.054 0.004 0.008 0.028
9 0.061 0.062 0.055 0.008 0.038 0.047 0.004 0.008 0.022

12 0.058 0.057 0.050 0.008 0.035 0.044 0.004 0.007 0.021

1/5.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.053 0.057 0.057 0.018 0.053 0.056 0.009 0.015 0.043
6 0.057 0.064 0.060 0.013 0.047 0.053 0.007 0.010 0.028
9 0.056 0.061 0.054 0.012 0.039 0.047 0.006 0.009 0.023

12 0.053 0.056 0.050 0.012 0.035 0.043 0.006 0.009 0.021

1/2.5 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.051 0.056 0.055 0.035 0.051 0.054 0.025 0.027 0.042
6 0.050 0.059 0.055 0.024 0.046 0.050 0.015 0.015 0.028
9 0.048 0.055 0.049 0.022 0.039 0.044 0.013 0.014 0.023

12 0.045 0.051 0.045 0.022 0.035 0.040 0.013 0.013 0.021

1.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.049 0.049 0.049 0.051 0.051 0.051 0.044 0.044 0.044
6 0.043 0.043 0.043 0.045 0.045 0.045 0.033 0.033 0.033
9 0.038 0.038 0.038 0.039 0.039 0.039 0.027 0.027 0.027

12 0.035 0.035 0.035 0.036 0.036 0.036 0.025 0.025 0.025

2.5 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.049 0.032 0.031 0.059 0.054 0.039 0.053 0.054 0.049
6 0.039 0.022 0.023 0.058 0.049 0.029 0.048 0.053 0.045
9 0.033 0.020 0.021 0.052 0.045 0.026 0.041 0.048 0.042

12 0.030 0.020 0.020 0.048 0.041 0.025 0.038 0.043 0.040

5.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.050 0.017 0.014 0.060 0.054 0.023 0.054 0.056 0.051
6 0.037 0.014 0.012 0.061 0.052 0.018 0.052 0.059 0.055
9 0.031 0.013 0.012 0.055 0.046 0.017 0.045 0.056 0.055

12 0.029 0.013 0.012 0.050 0.042 0.017 0.040 0.049 0.053

10.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
3 0.050 0.012 0.007 0.060 0.056 0.013 0.054 0.058 0.053
6 0.037 0.011 0.007 0.062 0.055 0.012 0.054 0.063 0.060
9 0.031 0.011 0.007 0.056 0.048 0.011 0.047 0.060 0.061

12 0.028 0.010 0.007 0.051 0.043 0.011 0.042 0.054 0.060

T
.2



Table 3. Finite sample size of tests: 1 break in trend, T = 150

τ0,1 = 0.5, τσ = 0.5 τ0,1 = 0.5, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.054 0.082 0.054 0.052 0.059 0.070 0.054 0.082 0.054 0.052 0.059 0.070
3 0.045 0.083 0.052 0.057 0.061 0.065 0.045 0.083 0.052 0.057 0.061 0.065
6 0.051 0.073 0.047 0.050 0.053 0.060 0.051 0.073 0.047 0.050 0.053 0.060
9 0.055 0.065 0.044 0.044 0.045 0.056 0.055 0.065 0.044 0.044 0.045 0.056

12 0.048 0.060 0.040 0.043 0.043 0.057 0.048 0.060 0.040 0.043 0.043 0.057

2.5 0 0.093 0.116 0.047 0.049 0.058 0.061 0.112 0.160 0.040 0.046 0.056 0.065
3 0.083 0.137 0.049 0.051 0.062 0.067 0.080 0.134 0.039 0.043 0.047 0.070
6 0.094 0.132 0.053 0.049 0.061 0.061 0.086 0.108 0.023 0.038 0.031 0.060
9 0.095 0.116 0.045 0.041 0.055 0.059 0.096 0.101 0.021 0.046 0.029 0.060

12 0.096 0.112 0.043 0.041 0.051 0.058 0.094 0.100 0.020 0.049 0.029 0.064

5.0 0 0.125 0.177 0.058 0.055 0.063 0.060 0.248 0.327 0.041 0.040 0.059 0.058
3 0.123 0.190 0.059 0.057 0.069 0.067 0.118 0.211 0.017 0.021 0.027 0.047
6 0.149 0.191 0.053 0.053 0.065 0.062 0.134 0.161 0.014 0.042 0.020 0.064
9 0.152 0.172 0.051 0.046 0.057 0.062 0.153 0.161 0.014 0.044 0.021 0.065

12 0.142 0.170 0.046 0.047 0.052 0.059 0.148 0.163 0.013 0.049 0.021 0.067

10.0 0 0.149 0.211 0.059 0.057 0.066 0.059 0.333 0.402 0.053 0.050 0.070 0.064
3 0.147 0.217 0.058 0.054 0.066 0.064 0.141 0.221 0.012 0.016 0.014 0.035
6 0.166 0.213 0.054 0.047 0.061 0.059 0.160 0.186 0.010 0.046 0.013 0.066
9 0.170 0.196 0.046 0.044 0.053 0.054 0.185 0.184 0.011 0.048 0.011 0.064

12 0.162 0.190 0.043 0.043 0.048 0.055 0.173 0.184 0.011 0.048 0.012 0.065

τ0,1 = 0.7, τσ = 0.5 τ0,1 = 0.7, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.054 0.082 0.054 0.052 0.059 0.070 0.054 0.082 0.054 0.052 0.059 0.070
3 0.035 0.067 0.032 0.042 0.042 0.055 0.035 0.067 0.032 0.042 0.042 0.055
6 0.044 0.062 0.032 0.049 0.048 0.062 0.044 0.062 0.032 0.049 0.048 0.062
9 0.061 0.058 0.034 0.048 0.041 0.064 0.061 0.058 0.034 0.048 0.041 0.064

12 0.051 0.050 0.029 0.046 0.036 0.057 0.051 0.050 0.029 0.046 0.036 0.057

2.5 0 0.093 0.116 0.047 0.049 0.058 0.061 0.112 0.160 0.040 0.046 0.056 0.065
3 0.095 0.139 0.045 0.047 0.059 0.057 0.107 0.157 0.043 0.050 0.056 0.063
6 0.119 0.144 0.050 0.045 0.056 0.059 0.130 0.157 0.041 0.045 0.053 0.064
9 0.125 0.134 0.048 0.048 0.061 0.059 0.140 0.146 0.045 0.046 0.055 0.060

12 0.117 0.128 0.041 0.044 0.051 0.059 0.135 0.143 0.038 0.037 0.051 0.057

5.0 0 0.125 0.177 0.058 0.055 0.063 0.060 0.248 0.327 0.041 0.040 0.059 0.058
3 0.140 0.194 0.067 0.063 0.070 0.066 0.255 0.327 0.057 0.054 0.074 0.068
6 0.178 0.211 0.068 0.063 0.074 0.070 0.277 0.349 0.055 0.051 0.075 0.063
9 0.185 0.209 0.063 0.055 0.067 0.066 0.325 0.369 0.059 0.049 0.072 0.064

12 0.172 0.194 0.060 0.053 0.068 0.066 0.318 0.358 0.053 0.048 0.062 0.060

10.0 0 0.149 0.211 0.059 0.057 0.066 0.059 0.333 0.402 0.053 0.050 0.070 0.064
3 0.157 0.216 0.072 0.058 0.071 0.071 0.354 0.430 0.065 0.054 0.080 0.065
6 0.205 0.237 0.070 0.058 0.078 0.073 0.407 0.473 0.066 0.058 0.084 0.063
9 0.215 0.240 0.064 0.055 0.072 0.063 0.453 0.494 0.066 0.055 0.087 0.069

12 0.197 0.226 0.062 0.056 0.070 0.066 0.427 0.473 0.066 0.052 0.078 0.068

T
.3



Table 4. Finite sample size of tests: 1 break in trend, T = 300

τ0,1 = 0.5, τσ = 0.5 τ0,1 = 0.5, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.059 0.049 0.036 0.043 0.044 0.051 0.059 0.049 0.036 0.043 0.044 0.051
3 0.046 0.060 0.047 0.048 0.055 0.069 0.046 0.060 0.047 0.048 0.055 0.069
6 0.054 0.055 0.040 0.048 0.046 0.057 0.054 0.055 0.040 0.048 0.046 0.057
9 0.070 0.050 0.036 0.044 0.043 0.056 0.070 0.050 0.036 0.044 0.043 0.056

12 0.066 0.045 0.033 0.045 0.042 0.055 0.066 0.045 0.033 0.045 0.042 0.055

2.5 0 0.090 0.106 0.043 0.042 0.050 0.056 0.109 0.123 0.037 0.044 0.043 0.055
3 0.076 0.101 0.038 0.043 0.047 0.050 0.072 0.094 0.029 0.034 0.035 0.044
6 0.112 0.103 0.032 0.033 0.043 0.045 0.085 0.080 0.022 0.032 0.027 0.045
9 0.112 0.092 0.031 0.031 0.043 0.045 0.106 0.072 0.021 0.039 0.026 0.049

12 0.104 0.088 0.031 0.041 0.040 0.050 0.095 0.068 0.021 0.038 0.025 0.047

5.0 0 0.131 0.142 0.044 0.041 0.051 0.046 0.230 0.264 0.049 0.051 0.060 0.061
3 0.114 0.162 0.046 0.043 0.054 0.045 0.112 0.162 0.023 0.029 0.024 0.034
6 0.162 0.161 0.046 0.038 0.054 0.045 0.132 0.132 0.016 0.039 0.018 0.051
9 0.164 0.144 0.041 0.036 0.045 0.047 0.160 0.130 0.017 0.043 0.018 0.055

12 0.152 0.135 0.042 0.038 0.047 0.048 0.152 0.130 0.017 0.044 0.018 0.054

10.0 0 0.144 0.177 0.043 0.044 0.050 0.042 0.314 0.372 0.053 0.047 0.064 0.059
3 0.138 0.197 0.051 0.043 0.050 0.047 0.131 0.180 0.009 0.017 0.016 0.020
6 0.187 0.195 0.052 0.042 0.055 0.049 0.154 0.157 0.008 0.043 0.012 0.054
9 0.183 0.173 0.046 0.036 0.047 0.046 0.189 0.158 0.008 0.045 0.011 0.052

12 0.180 0.164 0.043 0.039 0.047 0.048 0.179 0.157 0.008 0.045 0.013 0.052

τ0,1 = 0.7, τσ = 0.5 τ0,1 = 0.7, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.059 0.049 0.036 0.043 0.044 0.051 0.059 0.049 0.036 0.043 0.044 0.051
3 0.043 0.050 0.038 0.040 0.040 0.062 0.043 0.050 0.038 0.040 0.040 0.062
6 0.047 0.037 0.032 0.039 0.034 0.051 0.047 0.037 0.032 0.039 0.034 0.051
9 0.060 0.036 0.033 0.042 0.033 0.048 0.060 0.036 0.033 0.042 0.033 0.048

12 0.060 0.031 0.028 0.046 0.029 0.051 0.060 0.031 0.028 0.046 0.029 0.051

2.5 0 0.090 0.106 0.043 0.042 0.050 0.056 0.109 0.123 0.037 0.044 0.043 0.055
3 0.088 0.106 0.048 0.049 0.054 0.056 0.100 0.128 0.041 0.048 0.046 0.057
6 0.114 0.107 0.046 0.047 0.050 0.058 0.121 0.119 0.045 0.048 0.049 0.053
9 0.136 0.112 0.051 0.053 0.057 0.062 0.149 0.110 0.042 0.045 0.047 0.050

12 0.133 0.100 0.046 0.048 0.054 0.060 0.155 0.108 0.040 0.044 0.045 0.049

5.0 0 0.131 0.142 0.044 0.041 0.051 0.046 0.230 0.264 0.049 0.051 0.060 0.061
3 0.127 0.167 0.054 0.045 0.052 0.050 0.237 0.274 0.051 0.049 0.062 0.055
6 0.170 0.178 0.052 0.047 0.055 0.052 0.279 0.295 0.050 0.045 0.059 0.053
9 0.208 0.180 0.057 0.047 0.061 0.061 0.330 0.290 0.044 0.041 0.054 0.048

12 0.206 0.175 0.054 0.050 0.059 0.060 0.333 0.295 0.047 0.042 0.054 0.050

10.0 0 0.144 0.177 0.043 0.044 0.050 0.042 0.314 0.372 0.053 0.047 0.064 0.059
3 0.143 0.196 0.050 0.044 0.055 0.048 0.342 0.397 0.056 0.053 0.061 0.058
6 0.195 0.217 0.059 0.048 0.061 0.056 0.402 0.424 0.063 0.054 0.072 0.061
9 0.254 0.207 0.057 0.044 0.065 0.060 0.447 0.435 0.066 0.049 0.069 0.062

12 0.236 0.202 0.053 0.046 0.058 0.058 0.435 0.441 0.064 0.047 0.069 0.061

T
.4



Table 5. Finite sample size of tests: 2 breaks in trend, κ1 = −κ, κ2 = κ, T = 150

τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.5 τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.054 0.088 0.044 0.051 0.047 0.080 0.054 0.088 0.044 0.051 0.047 0.080
6 0.016 0.068 0.035 0.050 0.046 0.075 0.016 0.068 0.035 0.050 0.046 0.075

12 0.007 0.043 0.022 0.038 0.030 0.061 0.007 0.043 0.022 0.038 0.030 0.061

5.0 0 0.129 0.277 0.045 0.045 0.059 0.063 0.258 0.353 0.044 0.048 0.065 0.071
6 0.008 0.095 0.014 0.041 0.017 0.057 0.006 0.079 0.005 0.033 0.007 0.058

12 0.024 0.067 0.011 0.040 0.013 0.054 0.019 0.072 0.006 0.046 0.008 0.067

10.0 0 0.162 0.327 0.049 0.049 0.073 0.064 0.356 0.453 0.047 0.052 0.072 0.070
6 0.011 0.102 0.012 0.042 0.015 0.049 0.003 0.085 0.004 0.037 0.004 0.062

12 0.024 0.069 0.009 0.039 0.008 0.050 0.018 0.081 0.004 0.051 0.005 0.067

τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.5 τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.054 0.088 0.044 0.051 0.047 0.080 0.054 0.088 0.044 0.051 0.047 0.080
6 0.007 0.052 0.022 0.035 0.032 0.055 0.007 0.052 0.022 0.035 0.032 0.055

12 0.009 0.045 0.023 0.044 0.028 0.061 0.009 0.045 0.023 0.044 0.028 0.061

5.0 0 0.129 0.277 0.045 0.045 0.059 0.063 0.258 0.353 0.044 0.048 0.065 0.071
6 0.039 0.271 0.059 0.061 0.074 0.086 0.045 0.267 0.034 0.045 0.048 0.067

12 0.063 0.277 0.050 0.049 0.069 0.075 0.075 0.251 0.032 0.043 0.044 0.063

10.0 0 0.162 0.327 0.049 0.049 0.073 0.064 0.356 0.453 0.047 0.052 0.072 0.070
6 0.053 0.331 0.059 0.057 0.081 0.075 0.064 0.338 0.030 0.048 0.048 0.065

12 0.075 0.334 0.054 0.050 0.070 0.074 0.099 0.326 0.030 0.043 0.042 0.060

T
.5



Table 6. Finite sample size of tests: 2 breaks in trend, κ1 = −κ, κ2 = κ, T = 300

τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.5 τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.059 0.057 0.038 0.054 0.045 0.075 0.059 0.057 0.038 0.054 0.045 0.075
6 0.011 0.044 0.026 0.036 0.034 0.056 0.011 0.044 0.026 0.036 0.034 0.056

12 0.009 0.031 0.022 0.039 0.026 0.050 0.009 0.031 0.022 0.039 0.026 0.050

5.0 0 0.136 0.237 0.045 0.048 0.052 0.060 0.242 0.299 0.046 0.047 0.056 0.066
6 0.009 0.077 0.017 0.032 0.017 0.040 0.004 0.063 0.004 0.033 0.006 0.040

12 0.030 0.055 0.008 0.033 0.010 0.045 0.025 0.053 0.004 0.043 0.005 0.053

10.0 0 0.148 0.286 0.051 0.056 0.061 0.066 0.336 0.421 0.045 0.055 0.058 0.066
6 0.011 0.086 0.010 0.036 0.011 0.046 0.004 0.065 0.002 0.038 0.003 0.045

12 0.032 0.064 0.005 0.037 0.007 0.042 0.028 0.061 0.002 0.046 0.003 0.053

τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.5 τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.059 0.057 0.038 0.054 0.045 0.075 0.059 0.057 0.038 0.054 0.045 0.075
6 0.014 0.038 0.024 0.037 0.031 0.047 0.014 0.038 0.024 0.037 0.031 0.047

12 0.016 0.028 0.017 0.035 0.019 0.051 0.016 0.028 0.017 0.035 0.019 0.051

5.0 0 0.136 0.237 0.045 0.048 0.052 0.060 0.242 0.299 0.046 0.047 0.056 0.066
6 0.046 0.234 0.044 0.043 0.046 0.058 0.046 0.212 0.031 0.045 0.041 0.059

12 0.071 0.237 0.038 0.046 0.048 0.059 0.091 0.192 0.022 0.040 0.030 0.051

10.0 0 0.148 0.286 0.051 0.056 0.061 0.066 0.336 0.421 0.045 0.055 0.058 0.066
6 0.049 0.286 0.051 0.047 0.057 0.055 0.060 0.285 0.029 0.052 0.037 0.064

12 0.089 0.287 0.052 0.050 0.058 0.064 0.118 0.273 0.024 0.037 0.031 0.049

T
.6



Table 7. Finite sample power of tests: 1 break in trend, T = 150, c = 20

τ0,1 = 0.5, τσ = 0.5 τ0,1 = 0.5, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.774 0.547 0.422 0.422 0.416 0.422 0.448 0.462 0.774 0.547 0.422 0.422 0.416 0.422 0.448 0.462
3 0.176 0.521 0.424 0.438 0.421 0.424 0.454 0.460 0.176 0.521 0.424 0.438 0.421 0.424 0.454 0.460
6 0.459 0.509 0.429 0.430 0.417 0.419 0.437 0.470 0.459 0.509 0.429 0.430 0.417 0.419 0.437 0.470
9 0.495 0.510 0.464 0.425 0.411 0.429 0.434 0.490 0.495 0.510 0.464 0.425 0.411 0.429 0.434 0.490

12 0.491 0.510 0.476 0.422 0.411 0.434 0.437 0.497 0.491 0.510 0.476 0.422 0.411 0.434 0.437 0.497

2.5 0 0.774 0.599 0.376 0.376 0.365 0.355 0.389 0.394 0.760 0.626 0.352 0.352 0.368 0.382 0.399 0.407
3 0.226 0.585 0.357 0.368 0.358 0.347 0.385 0.373 0.240 0.565 0.343 0.305 0.306 0.336 0.335 0.378
6 0.523 0.557 0.329 0.359 0.355 0.334 0.375 0.370 0.496 0.551 0.397 0.293 0.303 0.385 0.328 0.438
9 0.543 0.557 0.367 0.356 0.349 0.343 0.372 0.392 0.550 0.549 0.406 0.292 0.303 0.404 0.331 0.454

12 0.530 0.554 0.391 0.355 0.346 0.352 0.368 0.396 0.538 0.549 0.399 0.292 0.302 0.416 0.327 0.456

5.0 0 0.765 0.618 0.242 0.242 0.279 0.276 0.307 0.296 0.757 0.662 0.244 0.244 0.236 0.227 0.276 0.273
3 0.262 0.599 0.247 0.246 0.281 0.259 0.309 0.279 0.297 0.571 0.290 0.184 0.179 0.216 0.209 0.263
6 0.522 0.575 0.246 0.231 0.280 0.242 0.292 0.279 0.519 0.558 0.320 0.185 0.176 0.324 0.204 0.352
9 0.535 0.575 0.268 0.234 0.275 0.253 0.289 0.293 0.574 0.557 0.333 0.185 0.175 0.340 0.200 0.367

12 0.528 0.571 0.294 0.232 0.274 0.272 0.293 0.311 0.569 0.559 0.331 0.183 0.176 0.343 0.200 0.368

10.0 0 0.762 0.623 0.198 0.198 0.242 0.240 0.270 0.258 0.755 0.669 0.145 0.145 0.152 0.152 0.179 0.177
3 0.273 0.609 0.203 0.202 0.241 0.218 0.276 0.243 0.316 0.570 0.271 0.098 0.103 0.150 0.136 0.212
6 0.530 0.583 0.202 0.191 0.237 0.207 0.268 0.235 0.521 0.561 0.280 0.097 0.105 0.271 0.129 0.311
9 0.537 0.580 0.243 0.194 0.233 0.209 0.264 0.257 0.567 0.559 0.287 0.097 0.105 0.296 0.128 0.321

12 0.533 0.583 0.251 0.193 0.230 0.220 0.261 0.270 0.565 0.560 0.285 0.096 0.103 0.296 0.127 0.323

τ0,1 = 0.7, τσ = 0.5 τ0,1 = 0.7, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.774 0.547 0.422 0.422 0.416 0.422 0.448 0.462 0.774 0.547 0.422 0.422 0.416 0.422 0.448 0.462
3 0.206 0.537 0.464 0.426 0.423 0.446 0.446 0.488 0.206 0.537 0.464 0.426 0.423 0.446 0.446 0.488
6 0.417 0.508 0.453 0.419 0.404 0.455 0.435 0.510 0.417 0.508 0.453 0.419 0.404 0.455 0.435 0.510
9 0.548 0.509 0.476 0.422 0.403 0.481 0.437 0.536 0.548 0.509 0.476 0.422 0.403 0.481 0.437 0.536

12 0.528 0.511 0.505 0.417 0.402 0.500 0.435 0.550 0.528 0.511 0.505 0.417 0.402 0.500 0.435 0.550

2.5 0 0.774 0.599 0.376 0.376 0.365 0.355 0.389 0.394 0.760 0.626 0.352 0.352 0.368 0.382 0.399 0.407
3 0.321 0.652 0.434 0.444 0.427 0.429 0.461 0.458 0.390 0.676 0.406 0.405 0.406 0.408 0.448 0.462
6 0.550 0.654 0.399 0.433 0.425 0.401 0.461 0.447 0.561 0.667 0.409 0.393 0.399 0.410 0.438 0.457
9 0.656 0.654 0.400 0.433 0.416 0.400 0.451 0.459 0.673 0.675 0.399 0.388 0.389 0.408 0.434 0.450

12 0.643 0.655 0.428 0.427 0.413 0.404 0.453 0.460 0.650 0.674 0.427 0.385 0.388 0.405 0.433 0.455

5.0 0 0.765 0.618 0.242 0.242 0.279 0.276 0.307 0.296 0.757 0.662 0.244 0.244 0.236 0.227 0.276 0.273
3 0.370 0.683 0.294 0.300 0.334 0.325 0.381 0.354 0.497 0.726 0.263 0.312 0.309 0.288 0.346 0.340
6 0.577 0.685 0.286 0.293 0.335 0.306 0.371 0.345 0.620 0.729 0.253 0.302 0.299 0.270 0.336 0.310
9 0.674 0.685 0.284 0.287 0.329 0.290 0.358 0.338 0.705 0.724 0.246 0.294 0.287 0.261 0.325 0.296

12 0.668 0.685 0.286 0.282 0.328 0.287 0.356 0.353 0.687 0.723 0.243 0.293 0.289 0.257 0.319 0.302

10.0 0 0.762 0.623 0.198 0.198 0.242 0.240 0.270 0.258 0.755 0.669 0.145 0.145 0.152 0.152 0.179 0.177
3 0.385 0.699 0.246 0.260 0.306 0.282 0.341 0.315 0.524 0.730 0.168 0.186 0.200 0.188 0.240 0.219
6 0.587 0.695 0.241 0.258 0.301 0.257 0.329 0.296 0.632 0.740 0.162 0.185 0.196 0.174 0.230 0.199
9 0.676 0.697 0.246 0.248 0.292 0.252 0.326 0.291 0.708 0.735 0.146 0.176 0.189 0.158 0.220 0.191

12 0.670 0.696 0.239 0.242 0.286 0.252 0.323 0.298 0.683 0.736 0.146 0.179 0.184 0.151 0.215 0.195

T
.7



Table 8. Finite sample power of tests: 1 break in trend, T = 150, c = 30

τ0,1 = 0.5, τσ = 0.5 τ0,1 = 0.5, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.982 0.869 0.797 0.797 0.782 0.793 0.813 0.823 0.982 0.869 0.797 0.797 0.782 0.793 0.813 0.823
3 0.504 0.867 0.775 0.788 0.764 0.761 0.800 0.808 0.504 0.867 0.775 0.788 0.764 0.761 0.800 0.808
6 0.833 0.866 0.781 0.783 0.760 0.766 0.791 0.818 0.833 0.866 0.781 0.783 0.760 0.766 0.791 0.818
9 0.838 0.865 0.815 0.784 0.760 0.778 0.790 0.832 0.838 0.865 0.815 0.784 0.760 0.778 0.790 0.832

12 0.830 0.865 0.826 0.785 0.762 0.794 0.791 0.839 0.830 0.865 0.826 0.785 0.762 0.794 0.791 0.839

2.5 0 0.973 0.881 0.691 0.691 0.680 0.678 0.719 0.710 0.956 0.877 0.642 0.642 0.666 0.658 0.693 0.700
3 0.483 0.851 0.660 0.671 0.661 0.648 0.680 0.672 0.493 0.813 0.611 0.565 0.578 0.605 0.612 0.641
6 0.804 0.847 0.622 0.667 0.649 0.637 0.677 0.680 0.765 0.811 0.671 0.564 0.579 0.649 0.600 0.704
9 0.834 0.847 0.678 0.673 0.650 0.653 0.681 0.712 0.810 0.811 0.680 0.564 0.577 0.675 0.606 0.717

12 0.821 0.850 0.696 0.669 0.650 0.673 0.681 0.719 0.808 0.812 0.678 0.563 0.578 0.687 0.602 0.723

5.0 0 0.963 0.874 0.504 0.504 0.547 0.541 0.598 0.583 0.935 0.861 0.431 0.431 0.439 0.431 0.477 0.473
3 0.490 0.837 0.481 0.479 0.520 0.496 0.560 0.537 0.491 0.774 0.494 0.350 0.356 0.395 0.400 0.438
6 0.779 0.835 0.477 0.469 0.510 0.486 0.542 0.523 0.733 0.773 0.522 0.347 0.356 0.495 0.394 0.555
9 0.816 0.836 0.505 0.464 0.511 0.489 0.539 0.545 0.783 0.772 0.528 0.349 0.357 0.522 0.393 0.573

12 0.807 0.836 0.538 0.461 0.510 0.512 0.536 0.559 0.782 0.770 0.525 0.348 0.359 0.524 0.389 0.574

10.0 0 0.959 0.866 0.418 0.418 0.481 0.467 0.528 0.506 0.927 0.852 0.269 0.269 0.273 0.272 0.326 0.313
3 0.493 0.835 0.401 0.400 0.461 0.433 0.503 0.463 0.484 0.760 0.445 0.205 0.208 0.273 0.261 0.322
6 0.779 0.833 0.410 0.397 0.452 0.418 0.489 0.459 0.721 0.761 0.453 0.205 0.209 0.434 0.247 0.475
9 0.815 0.830 0.455 0.391 0.451 0.430 0.485 0.481 0.771 0.762 0.463 0.205 0.213 0.458 0.244 0.502

12 0.804 0.831 0.468 0.391 0.449 0.445 0.484 0.497 0.769 0.761 0.457 0.202 0.214 0.460 0.242 0.503

τ0,1 = 0.7, τσ = 0.5 τ0,1 = 0.7, τσ = 0.7

σ1/σ0 κ1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1 CKP1 MDF 1 MDF
adj
1

MDF
hadj
1

MDF
∗

1 MDF
∗∗

1 MDF
′

1 MDF
′′

1

1.0 0 0.982 0.869 0.797 0.797 0.782 0.793 0.813 0.823 0.982 0.869 0.797 0.797 0.782 0.793 0.813 0.823
3 0.520 0.881 0.806 0.786 0.766 0.792 0.802 0.838 0.520 0.881 0.806 0.786 0.766 0.792 0.802 0.838
6 0.755 0.865 0.802 0.772 0.754 0.796 0.790 0.857 0.755 0.865 0.802 0.772 0.754 0.796 0.790 0.857
9 0.885 0.865 0.836 0.776 0.757 0.823 0.794 0.872 0.885 0.865 0.836 0.776 0.757 0.823 0.794 0.872

12 0.865 0.863 0.856 0.779 0.757 0.837 0.785 0.880 0.865 0.863 0.856 0.779 0.757 0.837 0.785 0.880

2.5 0 0.973 0.881 0.691 0.691 0.680 0.678 0.719 0.710 0.956 0.877 0.642 0.642 0.666 0.658 0.693 0.700
3 0.599 0.912 0.739 0.745 0.730 0.723 0.766 0.755 0.635 0.893 0.671 0.669 0.693 0.701 0.725 0.732
6 0.811 0.906 0.700 0.732 0.727 0.706 0.758 0.754 0.791 0.888 0.689 0.666 0.679 0.694 0.711 0.727
9 0.889 0.903 0.705 0.735 0.725 0.709 0.767 0.761 0.884 0.885 0.682 0.666 0.688 0.699 0.718 0.740

12 0.878 0.906 0.741 0.740 0.730 0.721 0.761 0.780 0.874 0.888 0.721 0.668 0.690 0.696 0.713 0.741

5.0 0 0.963 0.874 0.504 0.504 0.547 0.541 0.598 0.583 0.935 0.861 0.431 0.431 0.439 0.431 0.477 0.473
3 0.616 0.901 0.539 0.557 0.606 0.584 0.652 0.621 0.649 0.886 0.424 0.481 0.490 0.487 0.521 0.506
6 0.799 0.902 0.526 0.540 0.598 0.568 0.646 0.604 0.782 0.882 0.420 0.477 0.486 0.478 0.523 0.499
9 0.873 0.901 0.530 0.539 0.598 0.556 0.650 0.611 0.863 0.882 0.418 0.471 0.478 0.464 0.513 0.489

12 0.873 0.901 0.555 0.544 0.598 0.560 0.645 0.633 0.857 0.883 0.423 0.466 0.480 0.456 0.508 0.489

10.0 0 0.959 0.866 0.418 0.418 0.481 0.467 0.528 0.506 0.927 0.852 0.269 0.269 0.273 0.272 0.326 0.313
3 0.622 0.894 0.471 0.479 0.549 0.526 0.585 0.557 0.657 0.882 0.302 0.334 0.332 0.320 0.386 0.366
6 0.799 0.900 0.450 0.475 0.532 0.491 0.582 0.525 0.775 0.877 0.282 0.318 0.323 0.299 0.366 0.327
9 0.870 0.895 0.468 0.473 0.534 0.477 0.577 0.538 0.859 0.875 0.255 0.312 0.318 0.289 0.350 0.321

12 0.877 0.895 0.467 0.470 0.528 0.471 0.577 0.552 0.844 0.879 0.258 0.309 0.316 0.270 0.358 0.322

T
.8



Table 9. Finite sample power of tests: 2 breaks in trend, κ1 = −κ, κ2 = κ, T = 150, c = 30

τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.5 τ0,1 = 0.3, τ0,2 = 0.5, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
adj
2

MDF
hadj
2

MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
adj
2

MDF
hadj
2

MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.982 0.703 0.595 0.595 0.540 0.578 0.588 0.654 0.982 0.703 0.595 0.595 0.540 0.578 0.588 0.654
6 0.000 0.679 0.598 0.574 0.506 0.568 0.554 0.663 0.000 0.679 0.598 0.574 0.506 0.568 0.554 0.663

12 0.000 0.667 0.695 0.560 0.499 0.614 0.541 0.703 0.000 0.667 0.695 0.560 0.499 0.614 0.541 0.703

5.0 0 0.963 0.760 0.292 0.292 0.296 0.297 0.346 0.353 0.935 0.758 0.319 0.319 0.301 0.314 0.360 0.379
6 0.000 0.554 0.382 0.165 0.174 0.354 0.199 0.410 0.000 0.527 0.477 0.165 0.146 0.374 0.178 0.454

12 0.013 0.545 0.470 0.162 0.170 0.415 0.193 0.482 0.016 0.526 0.479 0.165 0.148 0.464 0.176 0.515

10.0 0 0.959 0.758 0.211 0.211 0.223 0.227 0.266 0.267 0.927 0.764 0.198 0.198 0.198 0.206 0.236 0.252
6 0.000 0.549 0.370 0.110 0.125 0.326 0.139 0.371 0.000 0.523 0.430 0.086 0.086 0.357 0.103 0.403

12 0.017 0.538 0.448 0.106 0.127 0.388 0.133 0.448 0.017 0.524 0.432 0.085 0.089 0.440 0.102 0.473

τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.5 τ0,1 = 0.5, τ0,2 = 0.7, τσ = 0.7

σ1/σ0 κ CKP2 MDF 2 MDF
adj
2

MDF
hadj
2

MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2 CKP2 MDF 2 MDF
adj
2

MDF
hadj
2

MDF
∗

2 MDF
∗∗

2 MDF
′

2 MDF
′′

2

1.0 0 0.982 0.703 0.595 0.595 0.540 0.578 0.588 0.654 0.982 0.703 0.595 0.595 0.540 0.578 0.588 0.654
6 0.000 0.684 0.660 0.561 0.502 0.594 0.547 0.676 0.000 0.684 0.660 0.561 0.502 0.594 0.547 0.676

12 0.006 0.670 0.686 0.558 0.503 0.649 0.540 0.718 0.006 0.670 0.686 0.558 0.503 0.649 0.540 0.718

5.0 0 0.963 0.760 0.292 0.292 0.296 0.297 0.346 0.353 0.935 0.758 0.319 0.319 0.301 0.314 0.360 0.379
6 0.003 0.785 0.325 0.351 0.363 0.366 0.396 0.413 0.001 0.695 0.309 0.266 0.258 0.307 0.290 0.364

12 0.002 0.782 0.321 0.339 0.354 0.358 0.401 0.429 0.011 0.678 0.297 0.249 0.240 0.292 0.270 0.350

10.0 0 0.959 0.758 0.211 0.211 0.223 0.227 0.266 0.267 0.927 0.764 0.198 0.198 0.198 0.206 0.236 0.252
6 0.003 0.785 0.227 0.275 0.289 0.276 0.324 0.324 0.001 0.692 0.211 0.153 0.155 0.215 0.185 0.254

12 0.002 0.788 0.265 0.263 0.277 0.268 0.316 0.325 0.014 0.672 0.216 0.145 0.147 0.193 0.167 0.246

T
.9


