716 research outputs found

    Effect of microstructures on the electron-phonon interaction in the disordered metals Pd60_{60}Ag40_{40}

    Full text link
    Using the weak-localization method, we have measured the electron-phonon scattering times τep\tau_{ep} in Pd60_{60}Ag40_{40} thick films prepared by DC- and RF-sputtering deposition techniques. In both series of samples, we find an anomalous 1/τepT21/\tau_{ep} \propto T^2\ell temperature and disorder dependence, where \ell is the electron elastic mean free path. This anomalous behavior cannot be explained in terms of the current concepts for the electron-phonon interaction in impure conductors. Our result also reveals that the strength of the electron-phonon coupling is much stronger in the DC than RF sputtered films, suggesting that the electron-phonon interaction not only is sensitive to the total level of disorder but also is sensitive to the microscopic quality of the disorder.Comment: accepted for publication in Phys. Rev.

    Blow up criterion for compressible nematic liquid crystal flows in dimension three

    Full text link
    In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of liquid crystal director field.Comment: 22 page

    Dissociation cross sections of ground-state and excited charmonia with light mesons in the quark model

    Get PDF
    We present numerical results for the dissociation cross sections of ground-state, orbitally- and radially-excited charmonia in collisions with light mesons. Our results are derived using the nonrelativistic quark model, so all parameters are determined by fits to the experimental meson spectrum. Examples of dissociation into both exclusive and inclusive final states are considered. The dissociation cross sections of several C=(+) charmonia may be of considerable importance for the study of heavy ion collisions, since these states are expected to be produced more copiously than the J/psi. The relative importance of the productions of ground-state and orbitally-excited charmed mesons in a pion-charmonium collision is demonstrated through the s\sqrt {s}-dependent charmonium dissociation cross sections.Comment: 9 pages, 8 figure

    Open charm and charmonium production at relativistic energies

    Full text link
    We calculate open charm and charmonium production in Au+AuAu+Au reactions at s\sqrt{s} = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pNpN and πN\pi N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D+DˉD+\bar{D} pairs) is included dynamically. The 'comover' dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M02M_0^2, that is fitted to the J/ΨJ/\Psi suppression data for Pb+PbPb+Pb collisions at SPS energies. As a novel feature we implement the backward channels for charmonium reproduction by DDˉD \bar{D} channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is comparable to the dissociation by 'comoving' mesons. This leads to the final result that the total J/ΨJ/\Psi suppression at s\sqrt{s} = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the 'comover' dissociation is substantial and the backward channels play no role. Furthermore, even in case that all directly produced J/ΨJ/\Psi mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D+DˉJ/ΨD+\bar{D} \to J/\Psi + meson channels in central collisions of Au+AuAu+Au at s\sqrt{s} = 200 GeV which, however, is lower than the J/ΨJ/\Psi yield expected from binary scaling of pppp collisions.Comment: 42 pages, including 14 eps figures, discussions extended and references added, to be published in Phys. Rev.

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Percolation in three-dimensional random field Ising magnets

    Get PDF
    The structure of the three-dimensional random field Ising magnet is studied by ground state calculations. We investigate the percolation of the minority spin orientation in the paramagnetic phase above the bulk phase transition, located at [Delta/J]_c ~= 2.27, where Delta is the standard deviation of the Gaussian random fields (J=1). With an external field H there is a disorder strength dependent critical field +/- H_c(Delta) for the down (or up) spin spanning. The percolation transition is in the standard percolation universality class. H_c ~ (Delta - Delta_p)^{delta}, where Delta_p = 2.43 +/- 0.01 and delta = 1.31 +/- 0.03, implying a critical line for Delta_c < Delta <= Delta_p. When, with zero external field, Delta is decreased from a large value there is a transition from the simultaneous up and down spin spanning, with probability Pi_{uparrow downarrow} = 1.00 to Pi_{uparrow downarrow} = 0. This is located at Delta = 2.32 +/- 0.01, i.e., above Delta_c. The spanning cluster has the fractal dimension of standard percolation D_f = 2.53 at H = H_c(Delta). We provide evidence that this is asymptotically true even at H=0 for Delta_c < Delta <= Delta_p beyond a crossover scale that diverges as Delta_c is approached from above. Percolation implies extra finite size effects in the ground states of the 3D RFIM.Comment: replaced with version to appear in Physical Review

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    Hybrid Stars in a Strong Magnetic Field

    Full text link
    We study the effects of high magnetic fields on the particle population and equation of state of hybrid stars using an extended hadronic and quark SU(3) non-linear realization of the sigma model. In this model the degrees of freedom change naturally from hadrons to quarks as the density and/or temperature increases. The effects of high magnetic fields and anomalous magnetic moment are visible in the macroscopic properties of the star, such as mass, adiabatic index, moment of inertia, and cooling curves. Moreover, at the same time that the magnetic fields become high enough to modify those properties, they make the star anisotropic.Comment: Revised version with updated reference

    PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1

    Get PDF
    Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore