434 research outputs found

    Constraints on the Bulk Standard Model in the Randall-Sundrum Scenario

    Full text link
    We derive constraints on the Randall-Sundrum scenario with the standard model fields in the bulk. These result from tree level effects associated with the deformation of the zero mode wave-functions of the W and the Z once electroweak symmetry is broken. Recently Cs\'{a}ki, Erlich and Terning pointed out that this implies large contributions to electroweak oblique parameters. Here we find that when fermions are allowed in the bulk the couplings of the WW and the ZZ to zero-mode fermions are also affected. We perform a fit to electroweak observables assuming universal bulk fermion masses and including all effects and find constraints that are considerably stronger than for the case with fermions localized in the low energy boundary. These put the lowest Kaluza-Klein excitation out of reach of the Large Hadron Collider. We then relax the universality assumption and study the effects of flavor violation in the bulk and its possible signatures.Comment: 18 pages, 2 ps figure

    Multiplicity distributions inside parton cascades developing in a medium

    Get PDF
    The explanation of the suppression of high-pT hadron yields at RHIC in terms of jet-quenching implies that the multiplicity distributions of particles inside a jet and jet-like particle correlations differ strongly in nucleus-nucleus collisions at RHIC or at the LHC from those observed at e+e- or hadron colliders. We present a framework for describing the medium-induced modification, which has a direct interpretation in terms of a probabilistic medium-modified parton cascade, and which treats leading and subleading partons on an equal footing. We show that our approach can account for the strong suppression of single inclusive hadron spectra measured in Au-Au collisions at RHIC, and that this implies a characteristic distortion of the single inclusive distribution of soft partons inside the jet. We determine, as a function of the jet energy, to what extent the soft fragments within a jet can be measured above some momentum cut.Comment: 5 pages, 4 eps-figures; talk given at Hot Quarks 2006, Villasimius (Sardinia, Italy), May 15-20, 200

    Classical and Quantum Integrable Systems in \wt{\gr{gl}}(2)^{+*} and Separation of Variables

    Full text link
    Classical integrable Hamiltonian systems generated by elements of the Poisson commuting ring of spectral invariants on rational coadjoint orbits of the loop algebra \wt{\gr{gl}}^{+*}(2,{\bf R}) are integrated by separation of variables in the Hamilton-Jacobi equation in hyperellipsoidal coordinates. The canonically quantized systems are then shown to also be completely integrable and separable within the same coordinates. Pairs of second class constraints defining reduced phase spaces are implemented in the quantized systems by choosing one constraint as an invariant, and interpreting the other as determining a quotient (i.e., by treating one as a first class constraint and the other as a gauge condition). Completely integrable, separable systems on spheres and ellipsoids result, but those on ellipsoids require a further modification of order \OO(\hbar^2) in the commuting invariants in order to assure self-adjointness and to recover the Laplacian for the case of free motion. For each case - in the ambient space Rn{\bf R}^{n}, the sphere and the ellipsoid - the Schr\"odinger equations are completely separated in hyperellipsoidal coordinates, giving equations of generalized Lam\'e type.Comment: 28 page

    Induced Gravity on Intersecting Branes

    Full text link
    We establish Einstein-Hilbert gravity couplings in the effective action for Intersecting Brane Worlds. The four-dimensional induced Planck mass is determined by calculating graviton scattering amplitudes at one-loop in the string perturbation expansion. We derive a general formula linking the induced Planck mass for N=1 supersymmetric backgrounds directly to the string partition function. We carry out the computation explicitly for simple examples, obtaining analytic expressions.Comment: references added, minor changes to discussion of path integral normalization on page

    Jet hadrochemistry as a characteristics of jet quenching

    Full text link
    Jets produced in nucleus-nucleus collisions at the LHC are expected to be strongly modified due to the interaction of the parton shower with the dense QCD matter. Here, we point out that jet quenching can leave signatures not only in the longitudinal and transverse jet energy and multiplicity distributions, but also in the hadrochemical composition of the jet fragments. In particular, we show that even in the absence of medium effects at or after hadronization, the medium-modification of the parton shower can result in significant changes in jet hadrochemistry. We discuss how jet hadrochemistry can be studied within the high-multiplicity environment of nucleus-nucleus collisions at the LHC.Comment: 15 pages, 7 figures, LaTe

    Strange particle production at RHIC in a single-freeze-out model

    Get PDF
    Strange particle ratios and pT-spectra are calculated in a thermal model with single freeze-out, previously used successfully to describe non-strange particle production at RHIC. The model and the recently released data for phi, Lambda, anti-Lambda, and K*(892) are in very satisfactory agreement, showing that the thermal approach can be used to describe the strangeness production at RHIC.Comment: We have added the comparison of the model predictions to the newly released Lambda and K*(892) pT-spectra from STA

    Theory of Hysteresis Loop in Ferromagnets

    Get PDF
    We consider three mechanisms of hysteresis phenomena in alternating magnetic field: the domain wall motion in a random medium, the nucleation and the retardation of magnetization due to slow (critical) fluctuations. We construct quantitative theory for all these processes. The hysteresis is characterized by two dynamic threshold fields, by coercive field and by the so-called reversal field. Their ratios to the static threshold field is shown to be function of two dimensionless variables constituted from the frequency and amplitude of the ac field as well as from some characteristics of the magnet. The area and the shape of the hysteresis loop are found. We consider different limiting cases in which power dependencies are valid. Numerical simulations show the domain wall formation and propagation and confirm the main theoretical predictions. Theory is compared with available experimental data.Comment: RevTex, 13 pages, 8 figures (PostScript), acknowledgements adde

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro
    corecore