622 research outputs found

    Supersymmetric particle mass measurement with invariant mass correlations

    Full text link
    The kinematic end-point technique for measuring the masses of supersymmetric particles in R-Parity conserving models at hadron colliders is re-examined with a focus on exploiting additional constraints arising from correlations in invariant mass observables. The use of such correlations is shown to potentially resolve the ambiguity in the interpretation of quark+lepton end-points and enable discrimination between sequential two-body and three-body lepton-producing decays. The use of these techniques is shown to improve the SUSY particle mass measurement precision for the SPS1a benchmark model by at least 20-30% compared to the conventional end-point technique.Comment: 29 pages, 23 .eps figures, JHEP3 style; v2 adds some references and small clarifications to text; v3 adds some more clarifications to the tex

    Mass Determination in SUSY-like Events with Missing Energy

    Full text link
    We describe a kinematic method which is capable of determining the overall mass scale in SUSY-like events at a hadron collider with two missing (dark matter) particles. We focus on the kinematic topology in which a pair of identical particles is produced with each decaying to two leptons and an invisible particle (schematically, ppYY+jetspp\to YY+jets followed by each YY decaying via YXNY\to \ell X\to \ell\ell'N where NN is invisible). This topology arises in many SUSY processes such as squark and gluino production and decay, not to mention t\anti t di-lepton decays. In the example where the final state leptons are all muons, our errors on the masses of the particles YY, XX and NN in the decay chain range from 4 GeV for 2000 events after cuts to 13 GeV for 400 events after cuts. Errors for mass differences are much smaller. Our ability to determine masses comes from considering all the kinematic information in the event, including the missing momentum, in conjunction with the quadratic constraints that arise from the YY, XX and NN mass-shell conditions. Realistic missing momentum and lepton momenta uncertainties are included in the analysis.Comment: 41 pages, 14 figures, various clarifications and expanded discussion included in revised version that conforms to the version to be publishe

    Gravitino Dark Matter Scenarios with Massive Metastable Charged Sparticles at the LHC

    Get PDF
    We investigate the measurement of supersymmetric particle masses at the LHC in gravitino dark matter (GDM) scenarios where the next-to-lightest supersymmetric partner (NLSP) is the lighter scalar tau, or stau, and is stable on the scale of a detector. Such a massive metastable charged sparticle would have distinctive Time-of-Flight (ToF) and energy-loss (dE/dxdE/dx) signatures. We summarise the documented accuracies expected to be achievable with the ATLAS detector in measurements of the stau mass and its momentum at the LHC. We then use a fast simulation of an LHC detector to demonstrate techniques for reconstructing the cascade decays of supersymmetric particles in GDM scenarios, using a parameterisation of the detector response to staus, taus and jets based on full simulation results. Supersymmetric pair-production events are selected with high redundancy and efficiency, and many valuable measurements can be made starting from stau tracks in the detector. We recalibrate the momenta of taus using transverse-momentum balance, and use kinematic cuts to select combinations of staus, taus, jets and leptons that exhibit peaks in invariant masses that correspond to various heavier sparticle species, with errors often comparable with the jet energy scale uncertainty.Comment: 23 pages, 10 figures, updated to version published in JHE

    Measurement of the Gluino Mass via Cascade Decays for SPS 1a

    Full text link
    If R-parity conserving supersymmetry is realised with masses below the TeV scale, sparticles will be produced and decay in cascades at the LHC. In the case of a neutral LSP, which will not be detected, decay chains cannot be fully reconstructed, complicating the mass determination of the new particles. In this paper we extend the method of obtaining masses from kinematical endpoints to include a gluino at the head of a five-sparticle decay chain. This represents a non-trivial extension of the corresponding method for the squark decay chain. We calculate the endpoints of the new distributions and assess their applicability by examining the theoretical distributions for a variety of mass scenarios. The precision with which the gluino mass can be determined by this method is investigated for the mSUGRA point SPS 1a. Finally we estimate the improvement obtained from adding a Linear Collider measurement of the LSP mass.Comment: 40 pages; extended discussion of error

    Measurement of SUSY masses via cascade decays for SPS 1a

    Get PDF
    If R-parity conserving supersymmetry exists below the TeV-scale, new particles will be produced and decay in cascades at the LHC. The lightest supersymmetric particle will escape the detectors, thereby complicating the full reconstruction of the decay chains. In this paper we expand on existing methods for determining the masses of the particles in the cascade from endpoints of kinematical distributions. We perform scans in the mSUGRA parameter space to delimit the region where this method is applicable. From the examination of theoretical distributions for a wide selection of mass scenarios it is found that caution must be exerted when equating the theoretical endpoints with the experimentally obtainable ones. We provide analytic formulae for the masses in terms of the endpoints most readily available. Complications due to the composite nature of the endpoint expressions are discussed in relation to the detailed analysis of two points on the SPS 1a line. Finally we demonstrate how a Linear Collider measurement can improve dramatically on the precision of the masses obtained

    Parental childhood growth and offspring birthweight : Pooled analyses from four birth cohorts in low and middle income countries

    Get PDF
    Funding Information Bill and Melinda Gates Foundation. Grant Number: OPP1020058 Wellcome Trust 089257/Z/09/Z Contract grant sponsor: the National Heart, Lung and Blood Institute at National Institutes of Health. Grant Number: HHSN 268200900028C to the Center of Excellence – INCAP/ Guatemala; and Grand Challenges Canada (Grant number: 0072‐03 to the Grantee, The Trustees of the University of Pennsylvania)Peer reviewedPublisher PD

    Patterns of Growth in Childhood in Relation to Adult Schooling Attainment and Intelligence Quotient in 6 Birth Cohorts in Low- and Middle-Income Countries: Evidence from the Consortium of Health-Oriented Research in Transitioning Societies (COHORTS)

    Get PDF
    BACKGROUND: Growth faltering has been associated with poor intellectual performance. The relative strengths of associations between growth in early and in later childhood remain underexplored. OBJECTIVES: We examined the association between growth in childhood and adult human capital in 5 low- and middle-income countries (LMICs). METHODS: We analyzed data from 9503 participants in 6 prospective birth cohorts from 5 LMICs (Brazil, Guatemala, India, the Philippines, and South Africa). We used linear and quasi-Poisson regression models to assess the associations between measures of height and relative weight at 4 age intervals [birth, age ∼2 y, midchildhood (MC), adulthood] and 2 dimensions of adult human capital [schooling attainment and Intelligence Quotient (IQ)]. RESULTS: Meta-analysis of site- and sex-specific estimates showed statistically significant associations between size at birth and height at ∼2 y and the 2 outcomes (P < 0.001). Weight and length at birth and linear growth from birth to ∼2 y of age (1 z-score difference) were positively associated with schooling attainment (β: 0.13; 95% CI: 0.08, 0.19, β: 0.17; 95% CI: 0.07, 0.32, and β: 0.25, 95% CI: 0.10, 0.40, respectively) and adult IQ (β: 0.74, 95% CI: 0.35, 1.14, β: 0.73, 95% CI: 0.35, 1.10, and β: 1.52, 95% CI: 0.96, 2.08, respectively). Linear growth from age 2 y to MC and from MC to adulthood was not associated with higher school attainment or IQ. Change in relative weight in early childhood, MC, and adulthood was not associated with either outcome. CONCLUSIONS: Linear growth in the first 1000 d is a predictor of schooling attainment and IQ in adulthood in LMICs. Linear growth in later periods was not associated with either of these outcomes. Changes in relative weight across the life course were not associated with schooling and IQ in adulthood

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore