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The quantification of covariance between neuronal activities (functional connectivity) requires the observation
of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself
undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as
reaction time (RT), or may co-fluctuate with the correlation betwe'en activity in other brain areas. Yet, quantify-
ing the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact
that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation
by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all
observations) and then correlating these values. Because the correlation is calculated between jackknife replica-
tions, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to
conventional correlation for simulated paired data that are defined per observation and therefore allow the
calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative
approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore
the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs,
where the only viable alternative analysis approaches are based on some formof epoch subdivision,which results
in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches,
particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can
be applied to relate fluctuations in any smooth metric that is not defined on single observations.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Brain activity exhibits a very high degree of moment-to-moment
variability. Activity fluctuations in one brain area are often correlated
to fluctuations in other areas. These inter-areal correlations themselves
most likely also undergo moment-to-moment fluctuations in strength,
and it is an intriguing question whether those fluctuations are related
to fluctuations in behavior, in the activity of other brain areas, or in
the strength of correlation between other brain areas. Consider the fol-
lowing example: Areas A and B might show beta-band coherence, and
at the same time areas B and C might show gamma-band coherence.
This might lead us to wonder if the interaction between areas A and B
is related to the interaction between B and C. Determining such a rela-
tion is highly desirable for neuroimaging applications where the
ute (ESI) for Neuroscience in
ermany.
).

. This is an open access article under
correlation between elements of large-scale networks is an issue of
great interest (Park and Friston, 2013; Turk-Browne, 2013). Yet, this is
difficult to achieve, because determining the strength of correlation al-
ready entails the observation of changes in one signal and related changes
in another signal. Thus, determining correlation requires multiple obser-
vations and therefore, the strength of correlation cannot be determined
on a single observation, i.e. it cannot be determined on a moment-by-
moment basis. So, is it impossible to relate fluctuations in the correlation
strength between two areas to fluctuations in other parameters?

Here, we present an approach that achieves this: The Jackknife Cor-
relation (JC). JC builds on the work of Stahl and Gibbons (2004), which
extended the jackknife method of Miller et al. (1998) to the case of
quantifying correlations between brain potentials and behavioral vari-
ables. They demonstrate that correlating jackknife estimates of the
lateralized readiness potential to personality metrics is superior to
single-subject based approaches. JC transfers this rationale to the case
of correlations involving covariance-based metrics, which are strictly
not defined for single observations. JC enables the correlation of these
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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metrics to other metrics, like RT (that are defined on single observa-
tions), but crucially, JC also allows the correlation of these metrics to
each other like in the above example of correlating the A–B beta-band
coherence to the B–C gamma-band coherence. Thereby, it is an impor-
tant new tool for the investigation of functional connectivity.

The jackknife technique successively leaves out each observation
once. Each time one observation is left out, this results in an all-but-
one ensemble of observations, called a jackknife replication. Thereby,
for N observations, there are N jackknife replications. Each jackknife
replication contains N-1 observations, and thereby allows quantifying
the correlation strength across those N-1 observations. These correla-
tion strengths fluctuate across the N jackknife replications. Because
each jackknife replication leaves out only one observation, the variance
across jackknife replications is small. Yet because each jackknife replica-
tion leaves out precisely one observation, the variance across jackknife
replications is a precise transform of the variance across the original ob-
servations. Because correlation is driven solely by covariance and nor-
malized for the variances of the correlated signals, the correlation
between jackknife replications is in fact identical to the correlation be-
tween the original observations. We will demonstrate this first for sim-
ulated data that are defined for each single observation. We propose
that this is an answer to the abovementioned question, namely that
the same approach can be taken for testingwhether fluctuations in cor-
relation are related to other parameters, even though it may not be pos-
sible to determine the value of either variable on amoment-by-moment
basis, as is the case for ensemblemetrics such as coherence.We support
the proposal by simulating data with an autoregressivemodel such that
the correlation was dependent on a fluctuating pre-determined control
parameter. This pre-specified relation between the control parameter
and the correlation was then successfully recovered through JC.

Alternative approaches to computing correlation upon covariance-
based metrics

Approaches to this problem can be divided into two classes. The first
seeks to determine a value for the covariance-based metric or each sin-
gle trial. The second approach estimates the ensemble metric over sub-
groups of trials formed by decomposing the total number of trials into
subensembles. Consider the following example: Supposewewish to in-
vestigate the trial-by-trial correlation between reaction time (RT) and
inter-areal gamma-band coherence. While RT is defined on each trial,
coherence is not. Coherence quantifies the consistency of phase rela-
tions across multiple trials, which renders it undefined at the level of a
single trial. The first approach would attempt to determine the coher-
ence of each single trial by subdividing each trial into multiple epochs
and computing the coherence over each of these sub-segments
(Welch, 1967; Lachaux et al., 2000). Alternatively, one could achieve
the same single-trial estimate by applying multiple data tapers over
the single epoch (Mitra and Pesaran, 1999). Yet, both methods are lim-
ited by the nature of brain dynamics in general, where periods of inter-
est are often present for only brief instances, such that single trials are
typically too short to derive multiple spectral estimators, or apply
large numbers of tapers. Another approach to estimating coherence on
a single-trial basis, which is in fact closely related to JC, is the use of
jackknife pseudovalues (Womelsdorf et al., 2006). The jackknife
pseudovalue is an estimate of the single-trial value of a statistic that is
based on the difference between 1) the statistic calculated across all tri-
als (weighted by n) and 2) the statistic calculated on all-but-one trial
(weighted by n-1). A problem with the pseudovalue approach can
arise e.g. from the following combination of facts: 1) the difference be-
tween the all-trial and the leave-one-out estimate is very small, and
2)many interestingmetrics, like coherence, carry a sample-size depen-
dent bias (Maris et al., 2007), i.e. the coherence biaswill be slightly larg-
er for the leave-one-out estimate than for the complete estimate. While
the bias from point 2) is small, also the difference from point 1) is small,
and this combination can lead to problems with the single-trial
estimate, that necessitate complicated solutions. These problems are
fully avoided by JC, because it calculates the correlation directly be-
tween the jackknife replications of the statistic without attempting to
estimate the statistic on a single trial. If one nevertheless wants to esti-
mate coherence on the single trial level, e.g. for illustration purposes,
then the pseudovalue approach might be used together with a bias-
freemetric of interaction strength, like the recently introduced pairwise
phase consistency metric, PPC (Vinck et al., 2010). To summarize,
single-trial estimation approaches all suffer from either reduced accura-
cy of the estimate, or excessive computational complexity, thus it is
most desirable toworkwith coherence estimates computed overmulti-
ple trials.

The second approach does just this andwe address it as sorting-and-
binning. Sorting-and-binning can only be used if one of the variables is
defined on the basis of single observations. The observations are sorted
and binned according to this (single-observation-defined) variable. For
this variable, the mean per bin is computed. For the other variable,
which is not defined on a single observation, the covariance-basedmet-
ric is calculated separately per bin, across the multiple observations
within each bin. Finally, the correlation between the two metrics is
computed across the bins. This approach can be found in a large
number of studies ranging beyond neuroscience. See Liang et al.
(2002),Hanslmayr et al. (2007),Womelsdorf et al. (2007) andvan
Elswijk et al. (2010) as examples of the technique. It's important to
note that if neither quantity over which we wish to perform the corre-
lation is defined on a single-observation basis, then this method cannot
be applied, since sorting cannot be performed. JC is not limited in this
way since neither variable need be defined for a single trial. We will
further investigate the process of sorting-and-binning to illustrate
some often overlooked statistical pitfalls of this technique while in par-
allel developing the mechanics of JC.

The sorting-and-binning approach

The sorting-and-binning approach proceeds in the following man-
ner: Suppose we have 1000 trials. We can sort these according to RT,
bin them into 20 bins of 50 trials, calculate the mean RT per bin, calcu-
late coherence per bin across the 50 trials in the bin, andfinally calculate
the correlation between RT and coherence across the 20 bins. With this
approach, the coherence per bin can be computed, because each bin
comprises 50 trials. We will demonstrate below that such a binning
strategy carries substantial statistical costs. Suppose we have only 200
trials. We do not want to bin them into 20 non-overlapping bins of 10
trials each, because 10 trials will result in poor coherence estimates.
On the other hand, non-overlapping 50-trial bins will result in only 4
bins, which is a very low n for useful correlation. Thus, wemight consid-
er overlapping our bins. If the 50-trial bins are overlapped by 40 trials,
this furnishes us with 16 bins. We will demonstrate that the combina-
tion of binning with overlap incurs further costs.

To simplify this demonstration, we begin with two correlated ran-
dom variables, of 1000 trials, that are both defined on a single-trial
basis, such as e.g. the gamma-band power of two brain areas. We use
themean as the statistical operation we apply to each bin. The variables
were generatedwith a covariance of 0.1, which leads to a Pearson corre-
lation coefficient of r(998) = 0.1, p b 0.0018. The r-value and p-value
surfaces (Fig. 1) were computed using a grid of combinations between
overlap percentages and bin sizes, which was selected so as to include
only those combinations that used all of the data with no remainder,
i.e. the final bin terminated on the final data sample. This grid is irregu-
larly spaced. For a maximum bin size of 250 trials, this resulted in 1286
bin/overlap combinations, which each resulted in a Pearson product
moment-correlation coefficient r and significance level p. To establish
statistical stability, these values were evaluated 10,000 times and aver-
aged. Correlation coefficients were converted to t-values and assessed
for significance using Student's t-distribution (Rahman, 1968). The
resulting irregular grid of r- and p-values was interpolated to an even
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Fig. 1. Parametric examination of the effect of sorting-and-binning on Pearson's product moment correlation coefficient (r), and its statistical significance. A. Parametric surface depicting the
effect on r as the bin size and degree of overlap are varied. B. Correspondingmap of the parametric change in statistical significance (p-value) for the r-values shown in A. C. Same as B, butwith
logarithmic p-value axis. D. The effect of bin size on r shown for three overlap parameters. G. The effect of overlap on r shown for bin sizes of 20 (yellow), 120 (orange) and 245 (red). E, H.
Corresponding p-values for D andG. These p-values are false and are depicted only for illustration purposes (seemain text). F, I. Same as E and H, butwith logarithmic p-value axis. The dashed
black line marks the 0.05 significance threshold in all p-value plots. The dashed orange line in H and I shows the correct (Monte-Carlo based) p-values for the middle bin size.
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grid with a spacing of 5 trials using Delaunay triangulation. All simula-
tions were performed using MATLAB (The MathWorks, Inc.).

We can now examine the various binning/overlap parameteriza-
tions (Fig. 1). For the case of zero overlap, Fig. 1 demonstrates that an in-
creasing number of trials per bin results in a correlation coefficient that
increases from the true trial-by-trial value of 0.1 to a value close to 1
(blue curve in Fig. 1A). This can be explained by examining the scatter
plots in Fig. 2(E, F, I, and J), which show that the residuals (the distance
of each point from the line of best fit) decrease as the bin size increases.
This effect is due to the averaging out of random variation in the data.
While the large r is not incorrect if considered in the context of its calcu-
lation, and it might appeal to a scientist looking for a clear effect, there
are several points that have to be considered: 1) When the r-value is
computed between the single-trial variables, then the squared r-value
gives the variance in one variable explained by the variance in the
other, i.e. r and r-squared can be used directly as metrics of an effect
size (Cohen, 1988). After binning, the (squared) r-value cannot any-
more be interpreted in this way. Readers need to take this into account
when interpreting r-values obtained with binning. 2) The resulting r-
valuewill depend on the original r-value and also on the amount of bin-
ning. When binning differs, e.g. between different studies, this renders
the r-values incomparable. 3) The amount of binning affects the p-
value. Fig. 1 reveals that the increase in the correlation coefficient ismir-
rored by an increase in the p-value,which is simply explained by the de-
crease in n (the number of bins) as the bin size increases. As a
consequence, with increasing bin size, more and more tests will fail to
reach significance. We illustrate this with the power analysis shown in
Fig. 3. The curve in Fig. 3 corresponds to the zero-overlap tests shown
by the blue curves in Figs. 1 and 2. Statistical power is the probability
of correctly identifying an experimental effect, and thus quantifies the
sensitivity of a test. To establish the statistical power as a function of
bin size we performed the following Monte-Carlo simulation (keeping
the type I error rate fixed at 0.05). We first simulated (using the
MATLAB function mvnrnd) two random variables of sample size n and
expected correlation r, and computed the observed correlation r in
that sample. This was repeated 1000 times, leading to a randomization
distribution for r. Second,we generated two randomvariables of sample
size n and correlation r of zero, and computed the correlation r0, again
1000 times, leading to a randomization distribution for r0. From this lat-
ter distribution, we determined the 95th percentile. Finally, we deter-
mined the proportion of the randomization distribution of r that
exceeded the 95th percentile of the randomization distribution of r0.
This proportionwas taken as the power for detecting a significant corre-
lation, given r and n. For a true r of 0.1, Fig. 1A shows the estimates of r
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for different overlap percentages and bin sizes. For zero overlap and a
representative subset of bin sizes, we determined the number of bins
n and the estimate of r (the latter by reading from Fig. 1A). For those
pairs of r and n, we determined the statistical power, as explained
above, 100 times and show the average statistical power across those
100 repetitions in Fig. 3.

As suspected based on the behavior of the p-value with increasing
bin size, the statistical power systematically decreases as the bin size
is increased from 1 trial to 250 trials. As bin size increases, the num-
ber of bins decreases, thus though the correlation coefficients
increase (Figs. 2E, F, I, and J), this increase is countered by a decrease
in the number of observations, which results in a net loss of statistical
power.

To summarize, the binning of data (even without overlap between
bins), results in an increase in the correlation coefficient due to smooth-
ing of the data, and a decrease in the statistical power of the test. Thus
this analysis indicates that the optimal approach is to not use a binning
strategy, such that statistical power ismaximized and the r and r2 values
can directly be taken as metrics of effect size.
Let's now consider the effects of overlapping the bins. It is apparent
from the r surfaces/lines in Figs. 1A, D, and G, that binning with overlap
leads to the same inflation of the correlation coefficient that occurs
without overlap. It is also clear that overlapping the bins also leads to
a marginal decrease in the r-value, but more worrisome is the massive
decrease in the p-value as overlap is increased. Following the colored
curves (red, orange, yellow) in Figs. 1B, C, H, and I, we can see that the
p-value dramatically decreases as overlap is increased. The result ap-
pears attractive, since large r-values are achieved in combination with
impressively small p-values, but these results are false, because the
data points entered into the correlation analysis are not independent
due to the bin overlap. With an increasing degree of overlap, the bins
become less independent, which effectively inflates the degrees of free-
dom (df), such that from the point of view of the test, there are far more
observations thanwere in fact there. This is basic statistics, but the issue
should be kept in mind since in more complex designs, this violation
may be more difficult to spot. If conditions demand that overlap must
be used, the statistical inflation may be corrected by applying the
following Monte Carlo approach to computing the p-value:
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1) Randomly pair the data of the unsorted random variable with the
sorted random variable, such that the first variable remains sorted.

2) Recompute r over the bins as before.
3) Repeat steps 1 and 2 hundreds to thousands of times to produce a

distribution of chance values for r.
4) Determine the p-value from the proportion of the surrogate values

that the empirical correlation coefficient exceeds.

This method should not be confused with another Monte Carlo ap-
proach used for assessing the statistical significance of the correlation
coefficient. In the context of our example, this would involve randomly
re-pairing the bins, and computing a surrogate distribution based on
these random re-pairings. This is a much faster approach since the
bins do not need to be recomputed, as they are in step 2 of the algorithm
above, but because of this, it will fall victim to the same decrease of
the p-value that is shown for the parametric case in Fig. 1. Fig. 1 (H,
I) depicts, for 120 trial bins, the deflated parametric p-values as orange
lines, and the correct non-parametric p-value as dashed orange lines.
These values reveal that when fairly assessed, the slightly increasing
p-values (Figs. 1H and I) parallel the slightly decreasing r-values
(Fig. 1G). Thus it is apparent that, when properly computed, overlap
conveys a disadvantage since the r-value is always decreased relative
to the zero overlap case, so such a procedure should only be employed
when proceeding without overlap is impossible, and great care should
be taken to establish a legitimate assessment of statistical significance.

To summarize, we were initially motivated by the example of deter-
mining the correlation between RT and interareal gamma-band coher-
ence. Since coherence is not defined for a single trial, we postulated a
sorting-and-binning approach, with or without overlap, as a potential
solution. Using simulated data, we then demonstrated the undesirable
properties of binning, with and without overlap, which are deficiencies
that extend to both variables that are defined or undefined on a single-
trial basis. Thus, the sorting-and-binning approach has brought us no
further than where we began, since we now have even more reason
to aim for quantifying correlation at the single-trial level, i.e. 1 trial per
bin, due to the following desirable properties of this approach:

1) It has the maximal statistical power over all binning strategies.
2) The correlation coefficient is most representative of the true under-

lying correlation coefficient and can directly be used as metric of
effect size.

3) It allows for the correct assessment of statistical significance using
conventional methods.
Yet, despite these desirable properties, we are still barred from
performing a single-trial correlation by the lack of definition of coher-
ence on a single trial. In the following section wewill introduce a meth-
od designed to overcome this issue: the jackknife correlation (JC).

Jackknife correlation

We will begin the explanation of JC by reviewing the fundamental
technique underlying the method: the jackknife. The jackknife tech-
nique, originally proposed by Quenouille (1949) and extended by
Tukey (1958), is a method designed to assess the standard error of an
estimator without underlying parametric assumptions (Parr, 1985).
The procedure involves computing a statistic of interest iteratively
over all the combinations of the data where one sample, or trial in our
case, has been left out of the calculation. This is known as the leave-
one-out jackknife replication (or just “jackknife replication”) of the
statistic, and is defined as follows:

Si ¼ S x1; x2;…; xi−1; xiþ1;…; xnð Þ;

where S is the statistic of interest calculated over the samples x. In terms
of our example, xi is a single trial, and S is the coherence. So practically,
this operation entails computing the coherence n times, as each of the
samples x is systematically left out. This results in n jackknife replica-
tions of S, each referred to as Si.

We propose that the jackknife rationale offers an attractive solution
for the single-trial correlation of covariance-basedmetrics. The logic for
this solution beginswith establishing the equivalence between ordinary
correlation and JC.

Following the approach of Stahl and Gibbons (2004), correlation can
be expressed as the expectation of the product of the standard scores of
two variables x and y:

rxy ¼ E zxzy
� �

;

where E is the expectation operator. We wish to establish that:

rxy ¼ rx jky jk
;

where xjk and yjk are the jackknife replications of x and y. We thus need
to determine that the following relation is true:

E zxzy
� � ¼ E zx jk zy jk

� �
:

This can be easily shown, due to the fact that the z-score of a jack-
knife replication is simply the z-score of the original value multiplied
by −1 (Stahl and Gibbons, 2004). If we make this substitution in the
above equation, thenwe can see that the equivalence between ordinary
correlation and JC must be true.

E zxzy
� � ¼ E −zx−zy

� �

Therefore,

E zxzy
� �

≡ E zx jk zy jk

� �
:

The above relation offers a unique avenue for dealingwith the corre-
lation of covariance-based quantities since even though they cannot be
adequately defined for single trials; covariance-based quantities are de-
fined over jackknife replications. Thus the single-trial correlation of
covariance-based quantities may be determined as the correlation of
their jackknife replications. To illustrate this more intuitively, we may
compare a leave-m-out jackknife strategy to the sorting-and-binning
approach.When sorted data is binned, the statistical operation S is per-
formed on the m samples that compose the n bins. The correlation is
then performed on these n results. For the leave-m-out jackknife, the
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correlation is performed on the n results of the function S applied to the
data remaining after each bin ofm trials has been left out once. The sym-
metry of thesemethods is apparent in Figs. 2A–D, where leave-m-out JC
has been applied to the numerical data used to investigate the conse-
quences of sorting-and-binning, i.e. data forwhich single-trial estimates
are available. Figs. 2A–D show the comparison of correlations based on
binning without overlap (Figs. 2A and C), and leave-m-out JC (Figs. 2B
and D). What is immediately obvious from the topmost panels is that
the correlation functions are mirror symmetric. Comparison of the left-
most point of the binned correlation (Figs. 2A and C), corresponding to a
bin size of 1; with the rightmost point of the leave-m-out JC (Figs. 2B
and D), which corresponds to the leave-one-out JC, reveals precisely
the same r-values and p-values. Thus, as dictated by the mathematical
proof, conventional correlation is equivalent to JC.

JC has a particular strength that should be noted. Since the method
does not require the sorting of any variables, neither variable involved
in the correlation needs to be defined on a single-trial basis. This
means that the method may be used to assess the correlation between
two variables that are both not defined on the level of a single trial.

Note that the JC entails an inversion and compression of the sample
distributions by the jackknife method. This can be seen by comparing
the binned versus the leave-m-out jackknife scatter plots in Figs. 2E–L.
The leave-m-out jackknife scatter plots are up/down and left/right mir-
ror reversals of the scatter plots that result from binning. Furthermore,
the JC scatter plots contain smaller values, because they essentially rep-
resent only the small changes in the function Fwhen a single trial out of
1000 trials is left out. Both the compression and the double inversion are
irrelevant for correlation analysis. The compression is compensated by
the fact that the correlation coefficient normalizes the covariance by
the product of the variances of each of the two variables. The inversion
is irrelevant, because it occurs in both variables, and correlation is in-
variant to the sequence of the paired variables. Yet, if instead of linear
correlationmetrics, non-linearfits are to be performed, or non-linear ef-
fects are qualitatively assessed visually from the data, onemust be care-
ful to provide the correct interpretation. To illustrate this point, Fig. 4
shows the effect of the JC for two example variables with a non-linear
relation. This makes the inversion very apparent and the potential for
misinterpretation quite obvious.

It must also be noted that the jackknife technique in general, and
thereby also the JC, should only be used in combination with statistics
whose underlying distributions are smooth (Miller, 1974; Efron, 1979;
Parr, 1985). An example of a statistic that is not smooth is the median.
The jackknife replications of themedian of a distribution are themiddle
two values of the distribution. These two values do not capture the var-
iance contained in the full distribution, which we attempt to capture
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with the jackknife method. Most functional connectivity metrics, such
as coherence, are based on an averaging operation over the trial dimen-
sion, and thus should be suitable for use with the JC.

Numerical investigation of JC and application to simulated data:
methods

Wehave demonstrated in Fig. 2 that, for parameters that are defined
on a single trial, the JC is identical to the conventional single-trial corre-
lation. Ideally, we would want to show that the same holds for metrics
of interactions like coherence. Yet, this is problematic since the coher-
ence is not defined for single spectral estimates, and therefore, the JC
for coherence cannot be compared against a ground-truth estimate.
While we cannot estimate coherence for single spectral estimates, we
may generate simulated data epochs with a coherence that is propor-
tional to a coupling parameter c using a generative model (Brovelli,
2012). If we further vary c across multiple instantiations of this genera-
tive model, we can expect that c will be correlated with the single-trial
coherence. We employ such a setup to test whether trial-by-trial corre-
lation generated in this way can be recovered by the JC technique.

We constructed the following autoregressive (AR) model to gener-
ate appropriate data to test the JC technique in a system exhibiting
inter-areal coherence and unidirectional GC:

xt ¼ 0:95xt−1−0:8xt−2 þ εx;t
yt ¼ 0:8yt−1−0:5yt−2 þ cxt−1 þ εy;t ;

where xt and yt represent time series from two brain areas. xt is a func-
tion of its own values at one and two time steps in the past, i.e. xt − 1 and
xt − 2, weighted by some chosen coefficients (0.95 and −0.8), plus εx,t,
i.e. an noise term (also called the innovation). The situation is similar
for yt, except that it is a function not only of its own past values plus
the noise term, but also of yt − 1, weighted by c. This model is a bivariate
(two signals) autoregressive (the signals depend on their own past)
model of order two (they depend on two time steps into the past), i.e.
it is an AR(2) model. We chose an AR(2) model specifically, because it
is the model of minimal complexity that generates synthetic data with
band limited power, coherence, and GC spectra. The crucial aspect of
the model is that it exhibits unidirectional coupling and thereby coher-
ence that is determined by the parameter c. This will allow us to vary c
from trial to trial and thereby generate fluctuations in coherence that
are perfectly rank-correlated with the fluctuations in c. While c might
translate into the coherence magnitude in a non-linear way, it does
translate in a monotonic and smooth way and this guarantees that the
expected rank correlation has a value of one. Fifty time-series pairs
were generated for the bivariate AR(2) process with each time-series
modulated by a unique coupling parameter value c chosen randomly
from a uniform distribution between 0 and 0.1. Each time series was
25,600 samples long at a sampling rate of 500 Hz, resulting in
51.2 second segments. AR models cannot only generate simulated
time series, but they can also be fit to experimental or to simulated
data in order to quantify the spectral properties, like power, coherence
or GC. For all parametric analyses of the generated data, AR modeling
was performed using software developed by Steven Bressler and
Mingzhou Ding. The model parameters were determined using a
vectorized implementation of the algorithmofMorf et al. (1978), gener-
ously provided by Anil Seth and Lionel Barnett (Barnett and Seth, 2014).
Bivariate AR(2) models were fit to the synthetic time-series pairs using
portions of the data truncated to varying lengths (see Fig. 6). In the case
of conventional single-trial correlation,models were fit to the data from
each trial pair, while in the case of JC, models were fit using all trials
minus one for all leave-one-out possibilities. Coherence and Granger
causality spectra (Granger, 1969; Geweke, 1982) were derived from
the fitted AR(2) models, and the max of the spectrum was selected.
For these max values we then determined their correlation with the
coupling coefficient c. This procedure was repeated 1000 times with
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the mean taken over the resulting ensemble of Spearman's rho correla-
tion coefficients to achieve sufficiently smooth estimates. All p-values
were determined parametrically.

Spectral estimates were also obtained using non-parametric analy-
sis. All non-parametric spectral connectivity analyses were performed
using Fieldtrip (Oostenveld, et al., 2011). Spectral estimates were
computed via a Fourier transform using the multi-taper method
(Mitra and Pesaran, 1999; Thomson, 1982) with a spectral smoothing
of +/−10 Hz. We compared the JC approach to a non-JC approach
based on epoch subdivision of single trials. In the subdivision-based ap-
proach, for data windows less than 400 ms in length, the cross-spectral
density (CSD) was computed as the mean of the estimates deriving
from the multiple data tapers. For trial lengths longer than 400 ms,
400 ms windows with 300 ms overlap were employed. In these cases,
the CSD was computed as the mean over tapers and windows. For the
JC-based approach, the CSD was determined via jackknifing, which en-
tails taking the mean CSD resulting from all trials minus one, for each
window, for all leave-one-out combinations. Coherence spectra were
derived from the power and CSD, while GC spectra were determined
using non-parametric spectral factorization, which is a method of
obtaining GC from non-parametric spectral estimates such as the Fouri-
er or wavelet transform (Dhamala et al., 2008a,b; Wilson, 1972). This
procedure was performed for each 400 ms window and following
Welch'smethod (1967) the coherence andGC spectra for each jackknife
replicationwere determined as the average over thewindows. The peak
value of the coherence andGC spectrawas determined, and themean of
the frequency band of +/−30 Hz around this peak was used for subse-
quent JC and conventional single-trial correlations. As for the parametric
case, this procedure was repeated 1000 times to achieve smooth esti-
mates of Spearman's rho and parametrically determined p-values.

Numerical investigation of JC and application to simulated data:
results

We fit an AR(2) model to the first 10 s of the simulated data to
inspect the spectral properties of the simulated data (Fig. 5). The use
of a long 10-second segment allows us to capture the parameters of
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themodel almost perfectly, and clearly see the effects ofmodulating pa-
rameter c. It is apparent that in all spectra, where there is spectral ener-
gy, that there is a peak between 70 and 90 Hz, corresponding to the
gamma band, as specified by the model parameters. It is also apparent
that the single-trial power of xt (Fig. 5A) is not modulated by c, which
is evident since the progression of color from the smallest to largest
peak does not follow the color scheme corresponding to parameter c,
whereas the power of yt (Fig. 5B), though lower in overall value,
shows modulation by c based on the color progression. This is due to
the unidirectional flow of power from xt to yt that is modulated by c.
The coherence shown in Fig. 5C shows clear modulation by c, and the
GC (Figs. 5D and E) shows unidirectional coupling also modulated by
c. We determined the JC between c and coherence or GC influence and
confirmed that it approaches a value of one for long epoch lengths
(Fig. 6A for coherence, B for GC influence). These JCs are shown in
blue for spectral estimates derived from fitting AR models, and in gold
for spectral estimates derived non-parametrically. For shorter epoch
lengths, the JC decays. Short epochs realize the properties of the gener-
ative model only in an imperfect way. Thus, the decay in JC correlation
away from the value of one is not necessarily due to an imperfect esti-
mation of the underlying correlation, but it is likely due to the fact
that the correlation between, on the one hand c, and on the other
hand the short-epoch coherence is actually low. In order to substantiate
this claim,we turn again to a case inwhichwe can quantify themetric of
interest on data epochs of arbitrary length. We generated 50 Gaussian
random signalswith zeromean and unit variance.We then added a ran-
dom offset o to each of these signals, drawn from a uniform randomdis-
tribution between zero and one. We then correlated the o to the means
calculated over data epochs of variable length (randomly subsampled
from the full-length signal). The result is shown in Fig. 7. As the data
epochs get shorter, the correlation between the epochs' means and
the values of r falls off in a way that is very similar to the drop-off in cor-
relation seen in Fig. 6. This effect is solely due to error between the sub-
sample means and the original offsets (which are equal to the full-
length data means). Thus, this is not due to an error in estimating the
mean, but rather it is due to the failure of the shorter data segment to
express the expected mean of the process. With this in mind, we can
go back to Fig. 6. With the imperfect expression of the model parame-
ters in short epochs explaining an overall drop-off, we can turn to the
differences between different approaches to estimating the correlation
between short epochs across single trials. In Figs. 6A and B, we see
that indeed as the trial length decreases, so does the correlation coeffi-
cient. The critical test for JC is to determine if, for a given epoch length,
themethod is providing superior estimates of the correlation coefficient
in comparison to conventional approaches to this problem.We compare
the JC against conventional single-trial correlations, which attempt to
estimate the Fourier transform from single, short data epochs using ei-
ther overlapping data windows (Fig. 6, green lines) or single-trial
AR(2)models (Fig. 6, red lines). We see in Figs. 6A and B that at the lon-
gest epoch length, the correlation coefficient based on either conven-
tional single-trial metrics approached one, like the JC correlations.
Critically, as the epoch length decreased, the JC estimates of the correla-
tion coefficients remained above the correlation coefficients based on
single trial parametric estimates (Fig. 6, red lines) and non-parametric
estimates (Fig. 6, green lines). This is even more evident if we plot the
percentage difference between the estimator with the largest correla-
tion coefficient at each trial length and each of the different metrics, as
shown in Figs. 6C and D, where we see similar performance between
the JC on parametrically and non-parametrically derived estimators
when the trial length exceeds 300ms. The small superiority of paramet-
ric JC versus non-parametric JC, particularly for shortwindow lengths, is
likely due to two effects: 1) data windowing effects in the non-
parametric approach, which are exacerbated at short epoch lengths
and 2) the fact that the data had been generated with a parametric
model and therefore might be fitted particularly well with a parametric
model. As will be shown in the following section, both metrics show
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similar performance on empirical data, with the non-parametric esti-
mator showing moderately increased performance. Panels E and F of
Fig. 6 display the corresponding p-values to demonstrate the average
epoch length necessary before a significant result is obtained. This il-
lustrates that the JC discovers a significant effect with shorter data
epochs, which is of great advantage in neuroimaging analysis. An-
other effect of note is the poor performance of the single-trial non-
parametric window-based method on short epochs. Based on these
simulations and the empirical analyses that will be shown below, it
is advisable that this method be avoided for short data epochs in
favor of JC.

In conclusion, these numerical examples demonstrate the supe-
rior performance of JC in recovering simulated correlations com-
pared to conventional single trial estimates. In the following
section, we will investigate whether this holds for experimental
data.
Application to neurophysiological data: methods

Electrophysiological recordings and experimental paradigm

We compared the JC with single-trial approaches for both paramet-
ric and non-parametric spectral estimators applied to neurophysiologi-
cal data to evaluate the performance of JC. All experimental procedures
were approved by the ethics committee of the Radboud University
Nijmegen (Nijmegen, The Netherlands). For details of the experimental
methods and recording techniques see Bosman et al. (2012), except that
stimuli were positioned in opposite hemifields with only one stimulus
co-activating recording sites in areas V1 and V4.

Two rhesus monkeys (Macaca mulatta) were trained to perform a
covert visual spatial attention task. We show data in this paper from
monkey K. Two grating stimuli were presented, one in the lower right
visual hemifield, and one in the upper left visual hemifield. The gratings
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were isoluminant and iso-eccentric drifting sinusoidal gratings with a
diameter of 3° visual angle, a spatial frequency of 0.66 cycles/degree,
drift velocity of 1.2°/s, with a resulting temporal frequency of 0.8 -
cycles/s and 100% contrast. The two gratings had orientations that
were always 90° away from each other and, when they were moving,
inconsistent with the interpretation of a chevron pattern seen through
two apertures. For a given session, two orientations were chosen, and
on a given trial, the orientation shown contralateral to the ECoG grid
was chosen from those two orientations pseudorandomly. The stimuli
were presented on a CRT monitor with a 120 Hz refresh rate non-
interlaced. For each trial, one stimulus was randomly tinted yellow,
and the other blue. Local field potentials (LFP) were recorded from the
left hemisphere with a subdural electrocorticographic (ECoG) grid
consisting of 252 electrodes (1 mm diameter), spaced 2–3 mm apart.
Signals from immediately neighboring electrodeswere subtracted to re-
move the common recording reference, because otherwise the common
reference leads to artifactual coherence/GC influence. We refer to the
bipolar derivative resulting from the subtraction of two neighboring
electrodes as a “site”. For coherence andGC influence analysis,we inves-
tigated interactions between primary visual cortex (V1) and extrastriate
visual cortex (V4). The assignment of electrodes to brain areas was
based on macaque brain atlases. The current analysis examined 29
sites recorded from area V1 and 17 sites recorded from area V4,
resulting in 493 V1–V4 site pairs.

The covert spatial attention task consisted of three successive
epochs. 1) The prestimulus period where the monkey had achieved fix-
ation. 2) The pre-cue period where the stimulus gratings had appeared
and themonkeywaited for a color cue, and 3) the cue period, where the
fixation point changed color to indicate to which stimulus the monkey
should attend, and respond to (the target).While the stimuli were pres-
ent, either the target or distractor could change shape at any time. The
monkey was rewarded for responses to a change of the shape of target
stimulus.

For the examples presented in this paper, trials were selected from
data segments that spanned at least 2 s from cue onset prior to any stim-
ulus change. The first 0.4 s of this segmentwere discarded to avoid tran-
sients generated by the cue change, leaving 1.6 s for analysis.
Correlations were then assessed for 8 different pairs of data windows
of varying length from 0.1–0.8 s. Each pair consisted of an early and
late segment such that the early windows always terminated one sam-
ple prior to 1.2 s, whereas the later windows always commenced at
1.2 s. 352 trials were selected from 9 sessions. Trials were included
where attention was directed to either visual hemifield, i.e. data were
pooled across attention conditions.
Spectral estimation

The spectral properties of the data were determined both paramet-
rically via AR modeling, and non-parametrically via Fourier analysis so
the performance of JC could be compared for both techniques. Paramet-
ric spectral estimates were computed in the following way. Data was
resampled to 250Hz. The coherence, and Granger Causal (GC) influence
in the “bottom-up” direction (V1 to V4) were then obtained by fitting
bivariate autoregressive (AR) models with model order 9, computed
for each V1–V4 pair of sites. The model order was determined via the
minimaof the Bayesian Information Criterion (BIC) andAkaike Informa-
tion Criterion (AIC), between model orders 1 and 25. When the model
was used for more than one data epoch, e.g. for JC on all-but-one trial,
the fit was simultaneously to the ensemble of epochs (Ding et al.,
2000), where a separate model was constructed for each leave-one-
out jackknife replication. For the non-parametric JC analyses, Fourier
transforms were computed using the multi-taper method (Mitra and
Pesaran, 1999; Thomson, 1982) on de-meaned data segments with
+/−10Hz smoothing. For the JC approach, all thedata segments (8 var-
iable lengths from0.1–0.8 s)were zero-padded to 1 s, resulting in a con-
sistent 1 Hz spectral grid, with the CSD for each jackknife replication
derived as the mean CSD over trials after one trial had been left out.
Spectral coherence was computed for each jackknife replication, while
GC was determined via non-parametric spectral factorization of each
replication. Identical to theparametricmethod, coherencewas analyzed
between V1 and V4 channels and the “bottom-up” direction was ana-
lyzed from V1 to V4 for the GC. The single-trial approach followed that
of Brovelli (2012), where a 250 ms window (zero-padded to 1 s), was
moved at 5 ms steps throughout each single trial, to construct multiple
estimates of the CSD, where coherence and GC were determined from
the average of these CSD estimates. To ensure that at least ten CSD esti-
mates were averaged before computing coherence or GC, only trials
with lengths of at least 300 ms were analyzed.

A standardized peak frequencywas employed for all analyses where
activitywas assessed at a single spectralmaximum. To establish this, co-
herence and GC were estimated over the entire 1.6 s of data. This was
done for both parametric and non-parametric implementations. A
Hann taper was used for the non-parametric estimation, otherwise all
the spectral estimation parameters were identical to those outlined
above. The peak GC and coherence were found to lie in the gamma
band at 74 Hz for the parametrically derived estimates and 75 Hz for
the non-parametric technique, whichwere subsequently used through-
out, for the parametric and non-parametric analyses, respectively.

Statistical analysis

We determined the correlation between coherence (or GC influ-
ence) from two neighboring within-trial epochs, across trials, for each
frequency–frequency combination. Correlations were computed either
between conventional single-trial estimates or using the JC. This was
done for all frequency–frequency combinations between 51 and
100 Hz. For the assessment of statistical significance of correlations, a
Monte Carlo approach was employed andwas identical for both the co-
herence and GC, and parametric and non-parametric cases. The test sta-
tistic used was the mean Spearman's rho computed over the jackknife
replications from the early and late epochs for all the possible V1–V4
pairs. To construct the surrogate distribution, the JC between the early
and late epochs was determined after the jackknife replications had
been randomly paired, i.e. the trial order of the early epoch was ran-
domized with respect to the late. Note that the random trial reordering
was identical for each V1–V4 site pair. This was repeated 1000 times to
form a null distribution ofmean Spearman's rho values,which functions
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to disrupt the empirical relationship between the early and late epoch
single trial pairs, so that their empirical degree of correlation can be
comparedwith the distribution of correlation coefficients that occurred
due to chance. When we computed JC on eight neighboring windows
ranging from 0.1 to 0.8 s, this procedure was repeated for each of the
eight epoch lengths, resulting in eight null distributions. When testing
for cross-frequency interactions, the issue of multiple comparisons
needed to be addressed. To correct for the multiple comparisons over
the 50 × 50 frequency combinations, the largest absolute value of the
correlation across all frequency–frequency combinations was selected
for each of the 1000permutations, resulting in a distribution ofmaximal
test statistics (Nichols and Holmes, 2002). Empirical test statistic values
were considered significant at p = 0.05, two-tailed, if their absolute
value was larger than the 975th percentile of the distribution. Where
p-values smaller than 0.05 are shown for visualization purposes, the
tail of the distribution above the 975th value was extrapolated with a
Generalized Pareto distribution function, an appropriate distribution
for modeling the extreme values of a distribution.

A parametric approach was used to assess the statistical significance
of a representative single channel pair over the eight neighboring
epochs. Here we wished to show the precise p-value that corresponded
with each rho-value, whichwas not feasible using a non-parametric ap-
proach since the p-values are sufficiently small that a Monte Carlo
method is not computationally tractable to estimate these values. We
used the standard approach, where the rho-value and number of trials
are used to derive a t-statistic, which in combination with the corre-
sponding degrees of freedom yields the p-value from Student's
t-distribution (Rahman, 1968).
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Application to neurophysiological data: results

Bosman et al. (2012) have established that areas V1 and V4 show
robust gamma band coherence and bottom-up GC during sustained
attention. It is well known that the correlation between neighboring
time-points in a trial dissipates as the temporal distance between
them increases (autocorrelation). We capitalize on this property to
compare JC with single-trial methods for both parametric and non-
parametric spectral estimators of the strength of V1–V4 gamma coher-
ence and bottom-up GC influence. The logic is that neighboring
windows should show correlated coherence and GC, which we can as-
sess using JC. To achieve this, we calculated the correlation between
the magnitude of gamma band coherence (and bottom-up GC influ-
ence) from two neighboringwithin-trial analysis windows, across trials.
Fig. 8 shows the same characteristic pattern that resulted from the nu-
merical simulations (Fig. 7), where the correlation coefficients increase
as the data window is increased in length. Asmentioned above, the two
data windows were neighboring within a given trial, and one might
therefore be concerned that longer windows included data temporally
more adjacent, and therefore more correlated. To counter this potential
effect, the windows were designed such that the end point of the first
window coincided with the starting point of the second window,
which results in longer windows possessing data that are temporally
more distant. In agreement with the simulations, the JC curves for the
average over all V1–V4 site pairs (Figs. 8A and B, parametric: blue
lines, non-parametric gold lines) show a considerable improvement
over conventional single trial approaches (Figs. 8A and B, parametric:
red line, non-parametric: green lines). Fig. 9 shows an example V1–V4
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pair of sites employing the same plotting conventions a Fig. 6. As in the
group average, the JC correlation curves (Figs. 9A and B) show amarked
increase over the conventional single-trial approaches. Figs. 9E and F re-
veal that JC ismuchmore sensitive for revealing correlations.While con-
ventional correlation approaches do not reach significance, JC is
significant forwindow lengths of 200ms and beyond, for both coherence
and GC influence. These results demonstrate that for biologically/behav-
iorally interesting window lengths, the JC method substantially outper-
forms conventional approaches. It is also apparent that the parametric
and non-parametric JC approaches provide similar results. Parametric JC
was slightly superior for coherence on the shortest windows. Non-
parametric JC was slightly superior for coherence at all other window
lengths and considerably superior for GC at all window lengths (Fig. 8D).

For the shortest data window of 100 ms, we now apply the JC ap-
proach for all frequency–frequency combinations. Fig. 10 reveals
significant correlation of the coherence for a range of frequencies
surrounding the gamma band peak, both when determined non-
parametrically (Fig. 10A) and parametrically (Fig. 10C). The precise
spectral extent of the peaks is due to the specific choices of the para-
metric and non-parametric spectral estimation, i.e. the model order
and the number of data tapers. The JCs of GC (Fig. 10B for non-
parametric JC and D for parametric JC) show similar results.
Fig. 10E shows a small significant region for parametrically deter-
mined single-trial coherence, while Fig. 10F shows no significant
cross-frequency correlation for single-trial parametric estimates of
GC, consistent with the numerical simulations (Fig. 6) and single-
frequency analyses (Figs. 8 and 9).

Taken together, the empirical results demonstrate that over all
window lengths tested, JC substantially outperforms conventional
single-trial methods.



frequency (H
z)

Granger CausailityCoherence

0.6

0.7

0.8

0.6

0.7

0.8

m
ea

n 
rh

o

p−
va

lu
e

0.6

0.8

0.6

0.8

frequency (Hz)

m
ea

n 
rh

o

0

p−
va

lu
e

0    
0.005
0.01 

0
0.005
0.01

m
ea

n 
rh

o

p−
va

lu
e

0    
0.005
0.01 

0
0.005
0.01

m
ea

n 
rh

o

p−
va

lu
e

60
70

80
90

100
0   
0.05
0.1 

frequency (H
z)

60 70 80 90 100
0
0.05
0.1

m
ea

n 
rh

o

p−
va

lu
e

0   
0.05
0.1 

0
0.05
0.1

m
ea

n 
rh

o

p−
va

lu
e

60
70

80
90

100

60 70 80 90 100

60
70

80
90

100
frequency (H

z)

60 70 80 90 100

60
70

80
90

100

60 70 80 90 100

60
70

80
90

100

60 70 80 90 100

60
70

80
90

100

60 70 80 90 100
frequency (Hz)

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

5e-2

5e-5

5e-5

5e-2

0

5e-5

5e-2

5e-5

5e-2

0

5e-5

5e-2

5e-5

5e-2

0

5e-5

5e-2

5e-5

5e-2

0

5e-5

5e-2

5e-5
5e-2

0

5e-4

5e-2

5e-2

5e-3

5e-4

5e-3

5e-4

5e-4

B

C D

E F

A

Fig. 10. Average correlation between two 100 ms neighboring windows over all V1–V4 pairs. A, B. Mean JC for coherence (A) and GC (B) computed from non-parametric estimates. C, D.
Mean JC for coherence (C) and GC (D) computed from parametric spectral estimates. E, F. Conventional correlation computed from parametric single-trial estimates. For each panel (A–F),
the central plot depicts themean correlation over channel pairs for each frequency–frequency combination,with different shadings reflecting p-values of 0.01, 0.001, 0.0001, and 0.00001.
Contour lines correspondwith shading transitions, with the gray-scale value corresponding to the p-value, wherewhite indicates the lowest p-value and black the largest. Spectral plots to
the left of the frequency–frequencymap correspond to the average spectrum over V1–V4 pairs of the earlier time window, while spectral plots below themap correspond to the average
spectrumof the later timewindow. Colorbars indicate themean correlation over pairs and the corresponding p-values, with shading and gray-scale lines following the same convention as
the shaded areas and contour lines of the frequency–frequency maps.

68 C.G. Richter et al. / NeuroImage 114 (2015) 57–70
Discussion

To summarize, we presented jackknife correlation (JC) that allows
the relation of moment-by-moment fluctuations in correlation strength
to other parameters, even though either correlation metric may not be
defined on a moment-by-moment basis, i.e. on the basis of a single
observation. We started out by investigating an approach that has
been commonly used in the case of assessing correlation between a
single-trial defined variable and an undefined variable, namely the
sorting-and-binning approach. In this case, the single-observation-
defined variable allows the sorting-and-binning, which in turn allows
the calculation of the single-observation-undefined metric over the
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multiple observations in each bin. The sorting-and-binning approach is
often used with overlapping bins in order to copewith limited numbers
of observations. We demonstrated that the sorting-and-binning ap-
proach leads to correlation coefficients that depend on the choice of
bin size and bin overlap and therefore can only be interpreted with
these parameters in mind, which makes them difficult to compare
across studies. Furthermore, we found that statistical powerwas actual-
ly maximal when correlations were determined across single observa-
tions, rather than across binned data. Since sorting-and-binning may
be considered a form of factorial design, where bin is considered a fac-
tor, our numerical results support the arguments presented by Stahl
and Gibbons (2004), that the correlative framework is indeed the
more powerful approach. Moreover, when overlapping bins are used,
a failure to control for the lack of independence between bins can lead
to erroneous p-values with a dramatic overestimation of statistical sig-
nificance. These difficulties and insights motivated the introduction of
JC, which was shown to optimally address the above concerns.

The JC not only provides a quantitative improvement of estimation
properties in comparison to the sorting-and-binning approach, but
most critically, it allows for the extension of correlation to cases where
neither variable is defined on the level of a single trial. While the
sorting-and-binning approach always requires that one of the correlat-
ed variables be defined for single observations, the JC does not require
this and therefore allows determination of the correlation between
two single-observation-undefined metrics. This allows, for example,
the investigation of whether the functional connectivity between
brain areas A and B depends on the functional connectivity between
brain areas C and D.

In the same vein, we note that the scope of the JC reaches beyond re-
latingfluctuations in correlation strength. The JC can facilitate the inves-
tigation of relations for any metric that is defined only across multiple
observations (or observation epochs) and that is a smooth function of
the observations (i.e. leaving out one of many observations results in a
correspondingly small change). For example, the variance is a smooth
function that is defined only across multiple observations. The JC pro-
vides a straightforward approach to relating e.g. fluctuations in neuro-
nal response variance to stimulus or task parameters, or even relating
fluctuations in neuronal response variances between different brain
areas. Additionally, use of the JC is not limited to electrophysiological
data, but is equally applicable to all time-series analyses, such as that
used in fMRI or in fields outside of neuroscience.

Here, we were particularly interested in frequency-resolved, i.e.
spectral, analyses. The estimation of any spectral estimator, in order to
define frequency, requiresmultiple observations to form an observation
epoch of finite length. The epoch length in turn defines the frequency
resolution of the spectral estimator. Spectrally resolvedmetrics of corre-
lation, like coherence, when estimated at the maximal spectral resolu-
tion allowed by a given epoch length, are strictly not defined on the
basis of a single observation epoch. This can in principle be overcome
by either cutting individual epochs into multiple shorter epochs, by ap-
plying multiple orthogonal taper windows, or by fitting a parametric
model with its typically relatively low order. Yet, all those approaches
reduce the spectral degrees of freedom in some form, either by essen-
tially downsampling the spectral resolution (in the case of cutting
into segments), by rendering neighboring spectral estimates non-
independent through spectral boxcar smoothing (multi-tapering), or
by a reduction of the full spectral complexity of the data to a small num-
ber of model parameters (parametric model). Furthermore, short
epochs cannot be subdivided in many sub-epochs, and metrics that re-
quiremany epochs for a proper estimationwill remain poorly estimated
on the basis of few sub-epochs.We compared these approaches directly
to the JC method. This demonstrated the superior performance of JC on
data generated from a simulated system of coupled brain areas. This
analysis was repeated on empirical data recorded from the macaque
monkey, where again JC showed an enhanced ability to recover corre-
lated trial-by-trial fluctuations in inter-areal connectivity metrics.
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