54 research outputs found

    Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    Get PDF
    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions

    Thermal degradation of Cross-Linked Polyisoprene and Polychloroprene

    Get PDF
    Polyisoprene and polychloroprene have been cross-linked either in solution or in solid state using free radical initiators. In the comparable experimental conditions higher cross-linking density was observed in the solid state process. Independent of the cross-linking method, polychloroprene tended to give a higher gel content and cross-link density than does polyisoprene. Infrared characterization of the cross-linked materials showed cis-trans isomerization occurred in the polyisoprene initiated by benzoyl peroxide, whereas no isomerization was found in the samples initiated by dicumyl peroxide. Polyisoprene does not cross-link by heating in a thermal analyzer, whereas polychloroprene easily undergoes cross-linking in such conditions. Infrared spectroscopy showed that in the case of polyisoprene, rearrangements occur upon heating which lead to the formation of terminal double bonds, while polychloroprene loses hydrogen chlorine which leads to a conjugated structure. There is apparently some enhancement of the thermal and thermal oxidative stability of polyisoprene because of the cross-linking. Cross-linked polychloroprene is less thermally stable than the virgin polymer. Cross-linking promotes polymers charring in the main step of weight loss in air, which leads to enhanced transitory char

    Investigation of the fluid behavior of asphaltenes and toluene insolubles by high-temperature proton nuclear magnetic resonance and rheometry and their application to visbreaking

    Get PDF
    The fluid behavior of asphaltenes at elevated temperatures impacts coke formation in a number of hydrocarbon conversion processes, including visbreaking and delayed coking. In this study, the asphaltenes from a number of sources, namely, a vacuum residue, a petroleum source rock (Kimmeridge clay) bitumen obtained by hydrous pyrolysis, and bitumen products from a sub-bituminous coal and pine wood obtained by thermolytic solvent extraction using tetralin, have been characterized using high-temperature proton nuclear magnetic resonance (1H NMR), and the results correlated with those from small-amplitude oscillatory shear rheometry. Further for comparison, the coke (toluene insolubles) obtained from visbreaking the vacuum residue was also characterized. All of the asphaltenes became completely fluid by 300 °C, with hydrogen being completely mobile with coke formation, identified as a solid phase, not occurring to a significant extent until 450 °C. Extremely good agreement was obtained between high-temperature 1H NMR and rheometry results, which confirmed that the asphaltenes were highly fluid from 300 °C, with initial signs of resolidification being observed at temperatures of around 450 °C. During softening, extremely good correlations between fluid hydrogen and phase angle were obtained as the asphaltenes softened. The toluene insolubles however did contain some fluid material; thus, it cannot be regarded as strictly solid coke, but clearly, with increasing temperature, the fluid material did convert to coke. Under actual process conditions, this fluid material could be responsible for coke adhering to reactor surfaces

    Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics

    Get PDF
    We present a systematic study on the effect of starting species, gas composition, temperature, particle size and duration of heating upon the molecular and stable isotope composition of high density (mangrove) and low density (pine) wood. In both pine and mangrove, charcoal was depleted in o13C relative to the starting wood by up to 1.6% and 0.8%, respectively. This is attributed predominantly to the progressive loss of isotopically heavier polysaccharides, and kinetic effects of aromatization during heating. However, the pattern of o13C change was dependant upon both starting species and atmosphere, with different structural changes associated with charcoal production from each wood type elucidated by Solid-State o13C Nuclear Magnetic Resonance Spectroscopy. These are particularly evident at lower temperatures, where variation in the oxygen content of the production atmosphere results in differences in the thermal degradation of cellulose and lignin. It is concluded that production of charcoal from separate species in identical conditions, or from a single sample exposed to different production variables, can result in significantly different o13C of the resulting material, relative to the initial wood. These results have implications for the use of charcoal isotope composition to infer past environmental change

    Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization

    Get PDF
    Hydrochars were obtained after hydrous pyrolysis of a pine Kraft lignin using different reaction conditions (temperature, water content and residence time) and the residues were characterized through a wide range of analytical techniques including high-temperature rheometry, solid-state 13C nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and field emission scanning electron microscopy (FE-SEM). The results indicated that an increase in reaction temperature, an increase in residence time or a decrease in water content reduces the amount of fluid material in the residue. The hydrous pyrolysis conditions studied were not able to increase the maturation of lignin, which would result in an increase in the resolidification temperature, but reduced the amount of mineral matter in the hydrochar produced. On the other hand, the hydrochars obtained from pristine lignin, torrefied lignin (300 °C, 1 h) and their 50:50 wt.%/wt.% blend at temperatures of 350 °C after 6 h using 30 ml of water had lower ash contents (45%) is excessively high compared to that of the good coking coal (10%) and the micro-strength of the biocokes (R139%) and high microporous surface areas ( > 400 m2/g) of the biocokes and high alkalinity index of the lignins (>27%) compared to those of the coke (27% and 145 m2/g) and coal (0.6%), respectively. Furthermore, the biocoke derived from the hydrous pyrolysed torrefied lignin did not agglomerate, which could not be explained by changes in the chemical properties of the material and requires further investigation

    Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials

    Get PDF
    A wide selection of thermal, chemical and optical methods have been proposed for the quantification of black carbon (BC) in environmental matrices, and the results to date differ markedly depending upon the method used. A new approach is hydropyrolysis (hypy), where pyrolysis assisted by high hydrogen pressures (150 bar) facilitates the complete reductive removal of labile organic matter, so isolating a highly stable portion of the BC continuum (defined as BChypy). Here, the potential of hypy for the isolation and quantification of BC is evaluated using the 12 reference materials from the International BC Ring Trial, comprising BC-rich samples, BC-containing environmental matrices and BC-free potentially interfering materials. By varying the hypy operating conditions, it is demonstrated that lignocellulosic, humic and other labile organic carbon material (defined as non-BChypy) is fully removed by 550 °C, with hydrogasification of the remaining BChypy not commencing until over 575 °C. The resulting plateau in sample mass and carbon loss is apparent in all of the environmental samples, facilitating BC quantification in a wide range of materials. The BChypy contents for all 12 ring trial samples fall within the range reported in the BC inter-comparison study, and systematic differences with other methods are rationalised. All methods for BC isolation, including hypy are limited by the fact that BC cannot be distinguished from extremely thermally mature organic matter; for example in high rank coals. However, the data reported here indicates that BChypy has an atomic H/C ratio of less than 0.5 and therefore comprises a chemically well-defined polyaromatic structure in terms of the average size of peri-condensed aromatic clusters of >7 rings (24 carbon atoms), that is consistent across different sample matrices. This, together with the sound underlying rationale for the reductive removal of labile organic matter, makes hypy an ideal approach for matrix independent BC quantification. The hypy results are extremely reproducible, with BChypy determinations from triplicate analyses typically within ±2% across all samples, limited mainly by the precision of the elemental analyser

    Diabetic gastroparesis: Therapeutic options

    Get PDF
    Gastroparesis is a condition characterized by delayed gastric emptying and the most common known underlying cause is diabetes mellitus. Symptoms include nausea, vomiting, abdominal fullness, and early satiety, which impact to varying degrees on the patient’s quality of life. Symptoms and deficits do not necessarily relate to each other, hence despite significant abnormalities in gastric emptying, some individuals have only minimal symptoms and, conversely, severe symptoms do not always relate to measures of gastric emptying. Prokinetic agents such as metoclopramide, domperidone, and erythromycin enhance gastric motility and have remained the mainstay of treatment for several decades, despite unwanted side effects and numerous drug interactions. Mechanical therapies such as endoscopic pyloric botulinum toxin injection, gastric electrical stimulation, and gastrostomy or jejunostomy are used in intractable diabetic gastroparesis (DG), refractory to prokinetic therapies. Mitemcinal and TZP-101 are novel investigational motilin receptor and ghrelin agonists, respectively, and show promise in the treatment of DG. The aim of this review is to provide an update on prokinetic and mechanical therapies in the treatment of DG

    Hydrodeoxygenation Of Oils From Cellulose In Single And Two-stage Hydropyrolysis

    No full text
    To investigate the removal of oxygen (hydrodeoxygenation) during the hydropyrolysis of cellulose, single and two-stage experiments on pure cellulose have been carried out using hydrogen pressures up to 10 MPa and temperatures over the range 300-520°C. Carbon, oxygen and aromaticity balances have been determined from the product yields and compositions. For the two-stage tests, the primary oils were passed through a bed of commercial Ni/Mo γ-alumina-supported catalyst (Criterion 424, presulphided) at 400°C. Raising the hydrogen pressure from atmospheric to 10 MPa increased the carbon conversion by 10 mole % which was roughly equally divided between the oil and hydrocarbon gases. The oxygen content of the primary oil was reduced by over 10% to below 20% w/w. The addition of a dispersed iron sulphide catalyst further increased the oil yield at 10 MPa and reduces the oxygen content of the oil by a further 10%. The effect of hydrogen pressure on oil yields was most pronounced at low flow rates where it is beneficial in helping to overcome diffusional resistances. Unlike the dispersed iron sulphide in the first stage, the use of the Ni-Mo catalyst in the second stage reduced both the oxygen content and aromaticity of the oils.91-4 SPEC. ISS.950953Antal, J.R., Biomass pyrolysis: A review of the literature. Part 1-carbohydrate pyrolysis (1983) Adv. in Solar Energy, 2, pp. 61-111. , Ed. Boer, K.W. and Duffie, J.ABolton, C., Snape, C.E., Stephens, H.P., Hydrocracking of hydropyrolysis tar with hydrous titanium oxide catalysis (1989) Fuel, 68 (2), pp. 161-167Churin, E., Maggi, R., Grange, P., Delmon, B., Characterisation and upgrading of a bio-oil produced by pyrolysis of biomass (1988) Research in Thermochemical Biomass Conversion, pp. 896-909. , Ed. Bridgewater, A.V. and Kuester, J.LDiebold, J., Phillips, S., Tyndall, D., Scahill, J., Feik, C., Czeernik, S., Catalytic upgrading of biocrude oil vapors to produce hydrocarbons for oil refining applications (1994) Prep. Am. Chem. Soc. Div. Fuel Chem., 39 (4), pp. 1043-1047Gergel, F., Citiroglu, M., Snape, C.E., Putun, E., Ekinci, E., Beneficial effects of hydrogen pressure in the pyrolysis of biomass: A study of Euphorbia rigida (1993) Fuel Process. Technol., 36, pp. 299-305Mastral, A.M., Mayoral, M.C., Izquierdo, M.T., Rubio, B., Role of iron in dry hydroconversion (1995) Energy & Fuels, 9 (5), pp. 953-959Snape, C.E., Lafferty, C.J., Eglinton, G., Robinson, N., Collier, R., The potential of hydropyrolysis as a route for coal liquefation (1994) Int. J. En. Res., 18, pp. 233-242Sofer, S.S., Zaborsky, O.R., (1981) Biomass Energy Convesion Processes for Energy and Fuels, , Elsevier Applied Science, LondonSoltes, J.E., Hydrocarbons from lignocellulosic residues (1983) J. Appl. Polm. Sci: Appl. Polm. Symp.., 37, pp. 775-78

    Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

    No full text
    To establish the scope for applying gas chromatography-isotope ratio mass spectrometry (δ13C GC-IRMS) to molecular recognition problems in coal utilisation, 13C/12C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (-23 to -25‰) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2-3‰. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonisation, are still heavier (by 2-3‰) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank
    corecore