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ABSTRACT

The fluid behavior of asphaltenes at elevated temperatures impacts on coke formation in a

number of hydrocarbon conversion processes, including visbreaking and delayed coking. In

this study, the asphaltenes from a number of sources, namely a vacuum residue, a petroleum

source rock (Kimmeridge Clay) bitumen obtained by hydrous pyrolysis, and bitumen

products from a sub-bituminous coal and pine wood obtained by thermolytic solvent

extraction using tetralin, have been characterized using high temperature 1H NMR and the

results correlated with those from small-amplitude oscillatory shear rheometry. Further for

comparison, the coke (toluene-insolubles) obtained from visbreaking the vacuum residue was

also characterized. All the asphaltenes became completely fluid by 300 °C with the hydrogen

being completely mobile with coke formation, identified as a solid phase, not occurring to a

significant extent until 450 °C. Extremely good agreement was obtained between high

temperature 1H NMR and rheometry results, which confirmed that the asphaltenes were

highly fluid from 300 °C and initial signs of resolidification being observed at temperatures

of around 450 °C. During softening, extremely good correlations between fluid hydrogen

and phase angle were obtained as the asphaltenes softened. The toluene-insolubles however

did contain some fluid material and, thus, it cannot be regarded as strictly solid coke but,

clearly, with increasing temperature, the fluid material did convert to coke. Under actual

process conditions, this fluid material could be responsible for coke adhering to reactor

surfaces.
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1. INTRODUCTION

Asphaltenes are operationally defined as toluene-soluble, n-heptane insoluble material and

are extremely heterogeneous and complex mixtures of species comprising heteroatoms (N, O,

S), relatively small condensed aromatic nuclei, aliphatic chains and naphthenic rings, as well

as metals such as V, Ni and Fe.1 They have been the topic of intense structural investigation

and to represent their complex nature, average molecular structures have been proposed, an

example for Athabasca vacuum residue by Sheremata et al.2 using a Monte Carlo

construction method is shown in Figure 1. A wide range of techniques have been used to

characterize the chemical composition of asphaltenes,3,4 including 1H and 13C nuclear

magnetic resonance (NMR), size-exclusion chromatography (SEC), mass spectrometry and

Fourier transform infrared spectroscopy (FTIR). Disassociated petroleum asphaltenes are

characterized by number average molecular masses of ca. 1500−25005 but contain fewer

heteroatoms than asphaltenes from sources, such as biomass and coal liquefaction products.

Solubility is thus covered by a combination of molecular mass, polarity and the degree of

condensation of aromatic nuclei, the latter two parameters controlling the extent of inter-

molecular association.6 The more polar asphaltenes obtained from coal and biomass

generally have lower molecular mass ranges. The H donor ability, the chemical structure and

sulfur content of the asphaltenes have been identified as factors that contribute to the

formation of coke. The H donor ability of asphaltenes is lower than their H acceptor ability,

which is considered to be responsible for the combination of radical species during thermal

conversion that leads to coke formation.7 Chiaberge et al.3 found that asphaltenes treated at

400 °C tend to aromatize to form structures that can be considered as coke precursors.

To understand their thermal and softening behavior, studies on asphaltenes have also been

carried out using thermal gravimetric analysis (TGA) and rheometry.8−10 Trejo et al.8 used
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TGA to study the weight loss of asphaltenes as a function of temperature, and found that

approximately 45 wt % of the asphaltenes mass was lost over the temperature range 300−500 

°C. A small weight loss occurred at around 370 °C which was considered to result from the

elimination of alkyl groups located in peripheral sites, and the maximum weight loss occurred

at 430 °C, with the asphaltenes converting into coke, gases, oils and resins. Above 450 °C,

condensation reactions dominated and the asphaltenes converted into coke. They also found

that slower heating rates (4 °C/min) produced more coke and less liquids and gases than

faster heating rates (16 °C/min). Regarding softening, Asprino et al.9 studied the fluid

properties of asphaltenes at 310−530 °C using an apparatus that allowed the calculation of the 

surface tension of the melted asphaltenes. The surface tension was then used to calculate the

viscosity of the liquid bridge of asphaltenes during elongation. The viscosity of the

asphaltenes decreased with temperature and it was found to be in the range of 9−18 Pa.s at 

312−358 °C, whereas the viscosity increased above 400 °C due to compositional changes in 

the asphaltenes induced by thermal reactions. Thermogravimetric analysis also showed that

asphaltenes were the main contributor to coke formation during thermal cracking of

atmospheric distillation residues.10

A powerful technique that can monitor in situ the development of fluidity at temperatures

up to around 500 °C is high temperature 1H NMR, also defined as proton magnetic resonance

thermal analysis (PMRTA). There is a vast amount of published literature related to the use

of this technique combined with small-amplitude oscillatory shear (SAOS) rheometry to

study fluidity development in coals during carbonization.11−16 High temperature 1H NMR

monitors the fluid and rigid components in the sample, whereby the spectrum peak at a

particular temperature is deconvoluted into a Lorentzian distribution function and a Gaussian

distribution function. The area of the Lorentzian peak provides the fraction of fluid phase
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and its width at half-height is inversely proportional to the spin-spin relaxation time (T2L),

which is a measure of the changes in the mobility of the fluid phase. This technique can also

be used to monitor the evolution of the solid and liquid phases in the asphaltenes at high

temperatures, and hence, elucidate in situ the role of these compounds on coke formation.17,18

High temperature SAOS rheometry is a technique that measures the linear viscoelastic

properties of the sample as a function of temperature and has been used in the past in

combination with high temperature 1H NMR to elucidate the effect of carbonaceous additives

in coking blends used in the carbonization process.19,20 In this manner, the aim of this study

is to investigate the fluidity development in asphaltenes during pyrolysis through the

combined use of high temperature 1H NMR and high temperature SAOS rheometry to

provide a more detailed understanding of fluidity development with respect to softening and

then conversion to coke at temperatures above 400 °C.

Visbreaking which is an important thermal cracking process used to convert petroleum

vacuum residue into lighter distillate fuels21 is used as a conversion process to demonstrate

the applicability of the approach. There is the simultaneous formation of unwanted pyrolytic

coke, which is known to comprise condensed large ring polyaromatic hydrocarbons with low

hydrogen to carbon ratios. Coke formation results in the fouling of reactor and causes

pipeline blockages, which ultimately leads to shut down of the visbreaker unit for

maintenance.22,23 Wiehe21 postulated the process of coke formation to be a result of

polymerization and condensation reactions from light to heavy aromatic fractions in the

order: aromatics → resins → asphaltenes → coke.  Goncalves et al.10 also found that

asphaltenes produce coke when they are thermally stressed at high temperatures, whereas

Wiehe21,24 showed that asphaltenes directly convert to coke without an induction period,

although the formation of coke was inhibited by the presence of n-heptane solubles. Indeed,
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feeds with initial high resins and asphaltenes contents generally had higher tendencies to

form coke than paraffinic feeds under same operating conditions.25,26 Other authors27−29

believe that when the concentration of asphaltenes exceeds their solubility limit, the

asphaltenes create a new phase referred to as ‘coke precursor’ that separates out from the oil

phase. However, Kok and Karacan30 did not find a good correlation between coke yield and

the amount of asphaltenes in the crude oil. Here, 1H NMR and rheometry were used to

follow coke formation in-situ from vacuum residue asphaltenes to compare with the results

from laboratory visbreaking experiments. Further, the toluene-insolubles obtained from the

laboratory experiments have also been characterized by 1H NMR and comparisons drawn

with those from the hydrous pyrolysis products.

2. EXPERIMENTAL SECTION

2.1. Vacuum residue and visbreaking

A vacuum residue derived from an Urals crude oil was used in this study. The maltene

fraction was separated into aliphatics, aromatics and resins by silica/alumina column

chromatography using a 5 mL burette. This involved adsorption of the maltene (30 mg) onto

silica gel which was placed above a silica/alumina column, followed by elution with 15 mL

of n-hexane for the aliphatics, 15 mL of n-hexane/dichloromethane (60:40 volume/volume)

mixture for the aromatics and 15 mL of dichloromethane/methanol (50:50 volume/volume)

mixture for the resins. Laboratory-scale visbreaking of the vacuum residue was conducted by

heating approximately 2 g of the sample under nitrogen atmosphere at 410 °C for 60 minutes

in a stainless steel mini reactor immersed in a temperature controlled fluidized sand bath pre-

heated to 410 °C.31 The amount of distilled water added to the reactor was approximately 1

wt% of the sample mass. After pyrolysis, the reactor was removed from the sand bath and

allowed to cool to ambient temperature. Then, the reactor contents were recovered and
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refluxed overnight in toluene, followed by filtration to separate toluene insoluble (coke) from

toluene soluble (oil). The toluene-soluble oil was rotary evaporated so as to contain a

minimal amount of toluene. The asphaltenes fraction was separated from the maltene

fraction by adding 40-fold excess of n-heptane to the toluene soluble present in minimal

amount of toluene, and the mixture was stirred for 30 minutes with a magnetic stirrer. The

mixture was then transferred to centrifuge tubes and centrifuged for 5 minutes at 2500

revolutions per minute to remove the n-heptane insoluble asphaltenes from suspension before

decanting off the n-heptane solution. The process was repeated 5 times with the asphaltenes

re-dissolved in 1.0 mL of dichloromethane each time until a clear n-heptane solution was

obtained.

2.2. Other samples

Asphaltenes from Kimmeridge Clay source rock, a sub-bituminous coal (Illinois No 6) and

pine wood bitumens were used for comparison purposes. The Kimmeridge Clay source rock

bitumen was generated using hydrous pyrolysis at 310 °C for 7 hours as previously

described.32 The bitumens from the sub-bituminous coal and pine wood were obtained using

liquefied solvent extraction at 410 °C for 1 hour using tetralin as solvent. The asphaltenes

from the Kimmeridge Clay source rock, sub-bituminous coal and pine wood bitumens were

isolated by the addition of 700 mL of n-heptane to about 2.5 g of bitumen previously

dissolved in 7 mL of dichloromethane. The mixture was then stirred using a magnetic stirrer

for 30 minutes and left overnight in the fume cupboard for the n-heptane insoluble

asphaltenes suspension to precipitate out of solution. The n-heptane solution was decanted

off and the process was repeated 5 times until a clear n-heptane solution was obtained. The

isolation method used for the source rock, coal and pine wood asphaltenes was different to

that used for the vacuum residue asphaltenes due to the larger amount of sample used.
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2.3. Nuclear magnetic resonance (NMR)

A Doty 200 MHz 1H NMR probe was used in conjunction with a Bruker MSL300

instrument to determine fluidity development in the coke and asphaltenes obtained after

visbreaking and the asphaltenes from Kimmeridge Clay source rock bitumen. A flow of 25

L/min of dry nitrogen was used to transfer heat to the sample and to remove the volatiles that

escape from the ceramic sample container. Below the sample region, a flow of 60 L/min of

dry air prevented the temperature rising above 50 °C to protect the electrical components. In

addition, air was blown at 20 L/min into the region between the top bell Dewar enclosing the

sample region and the outer side of the probe to prevent the temperature exceeding 110 °C.

The sample temperature was monitored using a thermocouple in direct contact with the

sample container.  The solid echo pulse sequence (90°−τ−90°) was used to acquire the data.  

A pulse length of 3.50 μs was maintained throughout the test.  Approximately 140−150 mg of 

sample (<53 μm) was packed lightly into a boron nitride container, and 100 scans were

accumulated using a recycle delay of 0.3 seconds. The asphaltenes derived from the vacuum

residue, Kimmeridge Clay source rock bitumen, sub-bituminous coal and pine wood were

analyzed using a slow heating rate (3 °C/min) from 50 °C to 410 °C. The cokes derived from

these samples with the exception of the source rock bitumen were also analyzed using the

same conditions. The spectra were acquired at increments of 25 °C and were deconvoluted

into Gaussian and Lorentzian distribution functions. The area of the Lorentzian peak

multiplied by 100 and divided by the total area of the NMR signal represents the

concentration of fluid H in the sample and the width of the Lorentzian peak at half-height is

inversely proportional to the mobility of the fluid phase (T2L). In addition, the asphaltenes

and coke from the vacuum residue were heated from room temperature to 410 °C at

approximately 70 °C/min and then held at that temperature for 20 minutes. The spectra were
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acquired at intervals of 1 minute and were deconvoluted into Gaussian and Lorentzian

distribution functions. As an example, Figure 2 shows the deconvoluted 1H NMR spectra of

the composite toluene insoluble coke sample from visbreaking acquired at 410 °C after 0, 10

and 20 minutes. These spectra show that the liquid component (Lorentzian peak) reduces

with time and the solid component increases (Gaussian peak). This deconvolution procedure

has previously been used to monitor the softening, maximum fluidity and resolidification

stages of coal during carbonization.13

2.4. Small-amplitude oscillatory shear (SAOS) rheometry

Rheological measurements were performed in a Rheometrics RDA-III high-torque

controlled-strain rheometer. A TA AR-2000 rheometer with smooth parallel plates was also

used to characterize the asphaltenes from coal and wood and to validate the results obtained

with the RDA-III rheometer. The TA rheometer is best suited for measuring the viscosity of

asphaltenes since it possesses a lower torque measuring range (0.05–200 μN.m) than that for

the Rheometrics instrument (100–107 μN.m). For this purpose, identical sample preparation

and analysis conditions were employed in both instruments. The asphaltenes (1.0 g) from the

vacuum residue, source rock bitumen, sub-bituminous coal and pine wood were compacted

under 5 tons of pressure in a 25 mm die to form disks with thickness of approximately 2.6

mm. The test involved placing the sample disk between two 25 mm parallel plates which had

serrated surfaces to reduce slippage. The sample was heated from room temperature to 500

°C at a rate of 3 °C/min. The furnace surrounding the sample was purged with a constant

flow of nitrogen to transfer heat to the sample and remove volatiles. The sample temperature

was monitored using a thermocouple inside the furnace. A continuous sinusoidal varying

strain with amplitude of 0.1% and frequency of 1 Hz (6.28 rad/s) was applied to the sample

from the bottom plate throughout the heating period. The stress response on the top plate was
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measured to obtain the complex viscosity (η*) and phase angle (δ) as a function of

temperature. The complex viscosity decreases as the material becomes more liquid-like in

character whereas the phase angle varies between 0° for an ideal elastic or rigid material and

90° for an ideal viscous or fluid material.33

3. RESULTS AND DISCUSSION

3.1. High temperature 1H NMR of asphaltenes

The high temperature 1H NMR results for the asphaltenes when heated from 50 °C to 410

°C at 3 °C/min are presented in Figure 3. All the asphaltenes soften with temperature and

become completely fluid by 300 °C, although differences are evident in their softening

behavior. Further heating of the asphaltenes to 410 °C failed to produce any measurable

quantity of coke, as indicated by the absence of any measurable amount of rigid H. The high

fluidity in the asphaltenes (100%) was accompanied by high mobility or relatively low

viscosity as indicated by the relatively long T2Lvalues of ~200 μs. Kopsch34 reported that the

glass transition temperatures of asphaltenes derived from vacuum residues were around 294

°C, which matches the temperature for the minimum in mobility within experimental error for

the vacuum residue investigated here. However, this may be a coincidence as the glass

transition temperature may vary depending on the measuring technique, the heating rate used

and the sample pre-treatment.35

The differences in the concentration and mobility of the fluid phase for the different

asphaltenes are probably related to differences in their chemical/physical characteristics.

Regarding the asphaltenes from Kimmeridge Clay source rock bitumen, there is a gradual

increase in the amount of fluid material from room temperature up to 250 °C, and the

asphaltenes are completely fluid from 250 °C up to the final temperature (410 °C). The
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mobility of the fluid phase as measured by T2L is fairly constant up to 100 °C, and then starts

to increase from 50 μs to approximately 190 μs at 300 °C. Compared to the vacuum residue,

the asphaltenes from the source rock bitumen become completely fluid at a lower temperature

(250 cf. 275 °C) with the increase in fluidity with temperature being more gradual.

Furthermore, the apparent mobility of the fluid phase for the asphaltenes from the source rock

bitumen reaches a maximum at higher temperatures (300 °C cf. 225 °C) and it is slightly

lower (T2L of 190 μs cf. 210 μs) than in the case for the asphaltenes from the vacuum residue.

However, other factors, particularly difference in free radical concentration could account for

these relatively small differences in T2L.

The trends for the percentage of fluid H as a function of temperature for the asphaltenes

from the sub-bituminous coal and pine wood extracts are fairly similar to those from the

asphaltenes derived from the vacuum residue and Kimmeridge Clay source rock bitumen.

The mobility of the fluid phase in the asphaltenes derived from pine wood presents a similar

trend to those of the asphaltenes from the vacuum residue and Kimmeridge Clay source rock

bitumen. However, the fluid component of the asphaltenes obtained from the sub-bituminous

coal shows an abnormal decrease in mobility at intermediate temperatures (150−200 °C).  

These results suggest that the initial material that softens is highly mobile but this is followed

by generation of extremely viscous fluid material as the temperature increases. Eventually,

the mobility increases with further softening and achieves similar mobility values (T2L180

μs) to the other samples once complete softening has occurred.

3.2. High temperature rheometry of asphaltenes

The tests were carried out in the Rheometrics RDA-III rheometer using the same heating

rate of 3 °C/min as in the 1H NMR tests in order to compare the results from both techniques.
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It is important to mention that the definition of a fluid from a rheological standpoint differs

from the concept of a fluid defined by NMR. A rheological fluid is defined here as a system

composed of gas and liquid phases that undergo thermally-induced physical and chemical

transformations and affect the viscoelastic properties of the whole sample mas. For instance,

an increase in the amount and/or mobility of the rheological fluid material during softening

will cause a decrease in complex viscosity or increase in phase angle. On the other hand, the

fluid material defined by NMR only considers the hydrogenated mobile entities at the

molecular level, i.e. fluid H. Despite these differences, an increase in the percentage of fluid

H in coal during carbonization has been found to be associated with a decrease in complex

viscosity (or increase in phase angle) and viceversa.12

The viscoelastic properties of the asphaltenes obtained from the vacuum residue,

Kimmeridge Clay source rock bitumen, the sub-bituminous coal and pine wood are presented

in Figure 4. As expected, the results show that the phase angle (δ) increases when the

complex viscosity (η*) decreases. The scattering of the data over the temperature range of

200−450 °C results from the limitations of the rheometer, which cannot analyze materials 

that develop complex viscosity values below 1000 Pa.s and asphaltenes can reach complex

viscosity values of around 10 Pa.s at these temperatures.9 However, differences are evident

in the temperatures at which the various asphaltenes soften and resolidify, which reflect their

different chemical compositions. The asphaltenes from the source rock bitumen develop

similar viscoelastic behavior to those from the vacuum residue although they soften at lower

temperatures (180 °C cf. 230 °C). Qualitatively, the fact that asphaltenes from the source

rock bitumen soften at lower temperatures than those from the vacuum residue corroborates

the results obtained through high temperature 1H NMR (Figure 3). The resolidification of the

asphaltenes due to condensation reactions starts at around 450 °C, which is comparable to the
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resolidification temperature of the asphaltenes from the vacuum residue. The asphaltenes

from the coal and pine wood develop minima in complex viscosity that fall below 1000 Pa.s

indicating that the asphaltenes from these carbonaceous materials also develop high fluidity.

However, the asphaltenes from coal soften at lower temperatures (170 °C) than the other

asphaltenes (200 °C) whereas the asphaltenes from pine wood seem to be less fluid (i.e.

higher viscosity) than the other asphaltenes in the temperature range 250−450 °C.   

Figure 5 shows that there is linear relationship between the phase angle and the percentage

of fluid H during softening of the asphaltenes derived from the vacuum residue, Kimmeridge

Clay source rock bitumen and pine wood. The asphaltenes from the sub-bituminous coal are

not included in this plot since the softening process in the rheometer occurs too rapidly to

obtain representative data. This correlation indicates that the viscoelastic behavior during

softening is controlled by the amount of fluid H in the asphaltenes. The gradient values for

the asphaltenes from source rock bitumen and pine wood are fairly similar (1.2−1.5) despite 

the expected higher content of oxygenated structures in pine wood asphaltenes as a result of

the higher oxygen content in the parent material.

The asphaltenes from the sub-bituminous coal and pine wood were also analyzed in a TA

AR-2000 rheometer with smooth parallel plates to validate the results obtained in the

Rheometrics RDA-III instrument. Figure 6 proves that these asphaltenes are also highly fluid

and confirms that the scattered data presented in Figure 4 are due to the limitations of the

instrument when analyzing materials that develop complex viscosity values <1000 Pa.s. The

viscoelastic behavior of the sub-bituminous coal asphaltenes is fairly similar in both

rheometers. However, the different viscoelastic behavior observed with the asphaltenes from

pine wood could be due to changes in the chemical structure during storage and/or due to the
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use of different types of parallel plates (i.e. with smooth and serrated surfaces). The

minimum complex viscosity of the asphaltenes from pine wood determined using the TA

rheometer is 40 Pa.s, which is comparable to the viscosity values reported by Asprino et al.9

for Athabasca vacuum residue (10 Pa.s).

3.3. Asphaltenes from vacuum residue visbreaking

The compositions of the vacuum residue before and after visbreaking of the vacuum

residue at 410 °C for 60 minutes are listed in Table 1. The asphaltenes content increased

considerably (19%) during visbreaking, largely at the expense of the maltenes and resins.

Simultaneously, there was an increase in toluene-insolubles (coke) from 0.1 to 2.4% w/w.

The aliphatics content did not change during visbreaking (21 wt%). The fact that the

aromatics and resins fractions are responsible for the increase in toluene-insolubles and

asphaltenes is in agreement with the mechanism of coke formation proposed by Wiehe.21

Figure 7 shows the changes in percentage of fluid H and mobility of the fluid phase as a

function of time at 410 °C for the asphaltenes derived from visbreaking the vacuum residue.

The asphaltenes remain completely fluid after 20 minutes, although the mobility decreases

with time, which could be related to the formation of higher molecular mass species by

condensation reactions, the mobility is still appreciable (T2L of 120 μs). This finding is

consistent with induction period of over 30 minutes being required at 410 °C for the onset of

coke formation31 for this particular vacuum residue. Asphaltenes do aromatize when

thermally treated at 400 °C for 3 hours,3 and thus, agree with the results from Schabron et

al.23 who found that coke yield is greatly affected by changes in residence time when treating

petroleum residue. For example, in contrast to the results here (Figure 7), asphaltenes from
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other vacuum residues have previously been found to form coke immediately at a high rate

without any induction period.24

3.4. Toluene-insolubles from vacuum residue visbreaking

The high temperature 1H NMR results for the toluene insolubles when heated from 50 °C to

410 °C at 3 °C/min are presented in Figure 8. Coke softens between 100 °C and 200 °C, but

higher temperatures do not increase significantly the amount of fluid material in the sample

(40%). Furthermore, the mobility of the fluid phase in the cokes obtained from the vacuum

residue and pine wood does not change throughout the temperature range studied. However,

the mobility of the fluid phase in the toluene-insolubles from the sub-bituminous coal

increases sharply from 50 μs to more than 150 μs at 200 °C and remains at those levels up to

300 °C, but the amount of fluid H is negligible (<5%).

Figure 9 shows the changes in percentage of fluid H and mobility of the fluid phase as a

function of time at 410 °C for the toluene-insolubles coke from visbreaking the vacuum

residue. Initially, the coke generated 44% mobile hydrogen with modest mobility (T2L of 66

μs). Afterwards, there is a gradual reduction of the fluid phase with time and this decrease in

fluidity is considered to be a transformation phase from a highly viscous and sticky fluid

(corresponding to sponge coke) to a more solid component (shot coke). Therefore, it is likely

that the initial coke formed in visbreaking with a high proportion of viscous fluid material

could be responsible for its ability to case fouling by adhering to metal surfaces.

4. CONCLUSIONS

Consistent agreement was obtained for the non-isothermal studies on the asphaltenes

between high temperature 1H NMR and rheometry, which confirmed that the asphaltenes
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were highly fluid from 300 °C. This produced extremely good correlations between fluid

hydrogen and phase angle as the asphaltenes softened. Signs of resolidification were

observed at temperatures of around 450 °C and indicate that the conversion of asphaltenes

into toluene-insoluble coke is minimal over a wide temperature range (150 °C). This

behavior has also been observed in asphaltenes from the Kimmeridge Clay source rock

bitumen, and the tetralin extracts of the sub-bituminous coal and pine wood, suggesting that

these findings will apply to asphaltenes from many other hydrocarbon sources.

High temperature 1H NMR tests on the toluene insolubles coke showed that at 410 °C they

contain a significant amount of fluid hydrogen (43%). This fluid H originates from a highly

viscous liquid, and thus, the toluene insoluble material is not a completely solid coke as

referred to by many investigators. The subsequent decrease in fluidity with time is

considered to be a transformation of a highly viscous and sticky fluid or sponge coke to a

more solid component or shot coke in the case of visbreaking.
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Table 1. Composition of the vacuum residue feed before and after visbreaking at 410 °C for

60 minutes.

Coke

(wt %)

Asphaltenes

(wt %)

Maltene

(wt %)

Aliphatics

(wt %)

Aromatics

(wt %)

Resins

(wt %)

Initial feed 0.1 6.5 93.4 20.0 30.6 36.8

After visbreaking 2.4 25.6 72.0 22.2 15.2 20.0
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Figure 1. Possible asphaltenes structure for Athabasca vacuum residue proposed by

Sheremata et al.2
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Figure 2. 1H NMR spectra of the toluene-insolubles (coke) obtained from visbreaking the

vacuum residue after 0 minutes (top), 10 minutes (middle) and 20 minutes (bottom) at 410

°C.
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Figure 3. Percentage of fluid H and the T2L of the fluid hydrogen as a function of

temperature using a heating rate of 3 °C/min for the asphaltenes obtained from visbreaking

the vacuum residue (top, left), the Kimmeridge Clay source rock (top, right), subbituminous

coal (bottom, left) and pine wood (bottom, right) bitumens.
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Figure 4. Complex viscosity (η*) and phase angle (δ) as a function of temperature using a

heating rate of 3 °C/min for the asphaltenes obtained from the vacuum residue (top, left), the

Kimmeridge Clay source rock (top, right), subbituminous coal (bottom, left) and pine wood

(bottom, right) bitumens.
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Figure 5. Correlation between phase angle (δ) and percentage of fluid H during softening of

the asphaltenes obtained from visbreaking the vacuum residue (top), the Kimmeridge Clay

source rock bitumen (middle) and the pine wood tetralin extract (bottom).
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Figure 6. Complex viscosity (η*) as a function of temperature for the asphaltenes obtained

from the tetralin extracts of the subbituminous coal (left) and pine wood (right) using the

RDA-III rheometer (black symbol) and the TA AR-2000 rheometer (grey symbol).

Figure 7. Percentage of fluid H and the T2L of the fluid hydrogen as a function of time at 410

°C for the asphaltenes obtained from visbreaking the vacuum residue.



29

Figure 8. Percentage fluid H and the T2L of the mobile phase as a function of temperature

with a heating rate of 3 °C/min for the toluene-insolubles obtained from visbreaking the

vacuum residue (top) and bitumen extracts from the subbituminous coal (middle) and pine

wood (bottom).
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Figure 9. Percentage of fluid H and the T2L of the fluid hydrogen as a function of time at 410

°C for the toluene-insolubles obtained from visbreaking the vacuum residue.


