6 research outputs found

    Development and validation of a one-dimensional solver in a CFD platform for boiling flows in bubbly regimes

    Get PDF
    This paper presents a new one-dimensional solver for two-phase flow simulations where boiling is involved. The solver has been implemented within the OpenFOAM¼ platform. The basic formulation follows the Eulerian description of the Navier–Stokes equations. Different closure equations for one-dimensional simulations are also included, as well as a subcooled boiling model in order to perform accurate computations of the mass and heat transfer between phases. In addition to the fluid, a domain is included in order to represent the solid structure, so the solver is able to solve conjugate heat transfer problems. Two different test cases are presented in this work, first a single-phase test case in order to verify the conjugate heat transfer, and then a case based on the Bartolomej international benchmark, which consists of a vertical pipe where the fluid runs upwards while it is heated. Transient calculation were performed, and the results were compared to the TRACE system code, and to the experimental data in the corresponding case. With this calculations, the capability of this new solver to simulate one-dimensional single-phase and two-phase flows including boiling is demonstrated. This work is a first step of a final objective, which consists in allowing a 1D–3D coupling within the CFD platform, avoiding external links

    On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Get PDF
    [EN] The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in waterÂżcooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift- velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.The authors sincerely thank the Plan Nacional de I+D+i for funding the Projects MODEXFLAT ENE2013-48565-C2-1- P, ENE2013-48565-C2-2-P, and NUC-MULTPHYS ENE2012- 34585.Peña-Monferrer, C.; GĂłmez-Zarzuela, C.; Chiva, S.; MirĂł Herrero, R.; VerdĂș MartĂ­n, GJ.; Muñoz-Cobo, JL. (2018). On the One-Dimensional Modeling of Vertical Upward Bubbly Flow. Science and Technology of Nuclear Installations. 2018:1-10. https://doi.org/10.1155/2018/2153019S110201

    A CFD-DEM solver to model bubbly flow. Part I: Model development and assessment in upward vertical pipes

    Full text link
    [EN] In the computational modeling of two-phase flow, many uncertainties are usually faced in simulations and validations with experiments. This has traditionally made it difficult to provide a general method to predict the two-phase flow characteristics for any geometry and condition, even for bubbly flow regimes. Thus, we focus our research on studying in depth the bubbly flow modeling and validation from a critical point of view. The conditions are intentionally limited to scenarios where coalescence and breakup can be neglected, to concentrate on the study of bubble dynamics and its interaction with the main fluid. This study required the development of a solver for bubbly flow with higher resolution level than TFM and a new methodology to obtain the data from the simulation. Part I shows the development of a solver based on the CFD-DEM formulation. The motion of each bubble is computed individually with this solver and aspects as inhomogeneity, nonlinearity of the interfacial forces, bubble-wall interactions and turbulence effects in interfacial forces are taken into account. To develop the solver, several features that are not usually required for traditional CFD-DEM simulations but are relevant for bubbly flow in pipes, have been included. Models for the assignment of void fraction into the grid, seeding of bubbles at the inlet, pressure change influence on the bubble size and turbulence effects on both phases have been assessed and compared with experiments for an upward vertical pipe scenario. Finally, the bubble path for bubbles of different size have been investigated and the interfacial forces analyzed. (C) 2017 Elsevier Ltd. All rights reserved.The authors sincerely thank the ''Plan Nacional de I + D+ i" for funding the project MODEXFLAT ENE2013-48565-C2-1-P and ENE2013-48565-C2-2-P.Peña-Monferrer, C.; Monrós Andreu, G.; Chiva Vicent, S.; Martinez-Cuenca, R.; Muñoz-Cobo, JL. (2018). A CFD-DEM solver to model bubbly flow. Part I: Model development and assessment in upward vertical pipes. Chemical Engineering Science. 176:524-545. https://doi.org/10.1016/j.ces.2017.11.005S52454517

    A CFD-DEM solver to model bubbly flow. Part II: Critical validation in upward vertical pipes including axial evolution

    Full text link
    [EN] In the computational modeling of two-phase flow, many uncertainties are usually faced in simulations and validations with experiments. This has traditionally made it difficult to provide a general method to predict the two-phase flow characteristics for any geometry and condition, even for bubbly flow regimes. Thus, we focus our research on studying in depth the bubbly flow modeling and validation from a critical point of view. The conditions are intentionally limited to scenarios where coalescence and breakup can be neglected, to concentrate on the study of bubble dynamics and its interaction with the main fluid. This study required the development of a solver for bubbly flow with higher resolution level than TFM and a new methodology to obtain the data from the simulation. In Part II, taking profit of the detailed data provided by the CFD-DEM solver presented in Part I, we propose a novel methodology based on virtual sensor probes, to perform a rigorous validation and to investigate the experimental data. The same approximation used for processing the experimental datasets applies to simulation data, then the same assumptions are considered. In this way we can study an extended number of disperse phase variables as bubble velocity, void fraction, interfacial area concentration, mean chord length and distribution, Sauter mean diameter, bubble frequency and missing ratio, in addition to other variables as bubble size distribution or carrier phase velocity and turbulence. Several upward bubbly flow scenarios from datasets of different authors are used to validate the solver using this methodology. Finally, an axial evolution validation is performed including a discussion motivated by the comparison between experiments and the data from the virtual probes. (C) 2017 Elsevier Ltd. All rights reserved.The authors sincerely thank the "Plan Nacional de I + D+i" for funding the project MODEXFLAT ENE2013-48565-C2-1-P and ENE2013-48565-C2-2-P.Peña-Monferrer, C.; Monrós-Andreu, G.; Chiva Vicent, S.; Martinez-Cuenca, R.; Muñoz-Cobo, JL. (2018). A CFD-DEM solver to model bubbly flow. Part II: Critical validation in upward vertical pipes including axial evolution. Chemical Engineering Science. 177:537-556. https://doi.org/10.1016/j.ces.2017.11.032S53755617

    EpidemIBD: rationale and design of a large-scale epidemiological study of inflammatory bowel disease in Spain

    No full text
    corecore