226 research outputs found
Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps
Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes
Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles
Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
The authors thank Arnaud Allanic, Sylvain Ravier, Pascal Renard and Pascal Zapf for their contributions in the experiments. The authors also acknowledge the institutions that have provided financial support: the French National Institute for Geophysical Research (CNRS-INSU) within the LEFE-CHAT program through the project “Impact de la chimie des nuages sur la formation d’aérosols organiques secondaires dans l’atmosphère” and the French National Agency for Research (ANR) project CUMULUS ANR-2010-BLAN-617-01. This work was also supported by the EC within the I3 project “Integrating of European Simulation Chambers for Investigating Atmospheric Processes” (EUROCHAMP-2, contract no. 228335). The authors thank the MASSALYA instrumental platform (Aix Marseille Université, lce.univ-amu.fr) for the analysis and measurements used in this paper.This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-16-1747-201
From Regional Landslide Detection to Site-Specific Slope Deformation Monitoring and Modelling Based on Active Remote Sensors
Landslide processes can have direct and indirect consequences affecting human lives and activities. In order to improve landslide risk management procedures, this PhD thesis aims to investigate capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at regional scales, spatial risk assessment over large areas and slope instabilities monitoring and modelling at site-specific scales.
At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our approach to detect surface changes and thus map rock collapses, landslides and toe erosions affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we extracted decisive information to detect, characterize and monitor two unknown extremely slow landslides, and to quantify water level variations of an involved close dam reservoir. Finally, advanced investigations on fragmental rockfall risk assessment were conducted along roads of the Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations were assessed and rockfall hazard and risk maps could be established at the valley scale.
At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting both methods individually and originally integrated as well, we therefore delimited the rockslide borders, computed volumes and highlighted non-uniform translational displacements along a wedge failure surface. Finally, we studied specific requirements and practical issues experimented on early warning systems of some of the most studied landslides worldwide. As a result, we highlighted valuable key recommendations to design new reliable systems; in addition, we also underlined conceptual issues that must be solved to improve current procedures.
To sum up, the diversity of experimented situations brought an extensive experience that revealed the potential and limitations of both methods and highlighted as well the necessity of their complementary and integrated uses
Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns
International audienceNitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NOx , O3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity , wind speed and wind direction), black carbon concentration , total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell-shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb h−1 and 0.25 ppb h−1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO2) and the product between J (NO2) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring at ground surface and involving water content available on the ground. Published by Copernicus Publications on behalf of the European Geosciences Union. 2806 V. Michoud et al.: Study of the unknown HONO daytime sourc
Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection < 1 s−1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions
In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
International audiencePublished by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radio-carbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin , i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant , flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies
Static lung mechanics of intact and excised rhesus monkey lungs and lobes
Subdivisions of lung volume and pressure-volume (PV) curves of the lung and chest wall (CW) were measured in 12 rhesus monkeys (macacca mulatta) under pentobarbital anesthesia. In addition, volumes and PV curves were obtained on the excised lungs and lobes of 12 cynomolgus moneys (M. fasicularis). Boyle's law was used to determine functional residual capacity (FRC) in the intact animals and water displacement to determine minimal volume (MV) in the excised lungs. Total lung capacity (TLC = lung volume at a transpulmonary pressure of 30 cmH2O) was similar in vivo and in vitro (90 + 83 ml/kg) but residual volume (RV = volume at airway pressure of -50 cmH2O) and MV differed markedly (16.5 + 5.9 ml/kg). In the intact animals a very stiff CW appeared to determine RV, whereas airway closure determined MV in excised lungs. PV curves of upper and lower lobes were not different when expressed as %TLC but when expressed as milliliters of gas per gram of lung, the upper lobes contained significantly more gas per unit weight
A web-based system for statistical shape analysis in temporomandibular joint osteoarthritis
This study presents a web-system repository: Data Storage for Computation and Integration (DSCI) for Osteoarthritis of the temporomandibular joint (TMJ OA). This environment aims to maintain and allow contributions to the database from multi-clinical centers and compute novel statistics for disease classification. For this purpose, imaging datasets stored in the DSCI consisted of three-dimensional (3D) surface meshes of condyles from CBCT, clinical markers and biological markers in healthy and TMJ OA subjects. A clusterpost package was included in the web platform to be able to execute the jobs in remote computing grids. The DSCI application allowed runs of statistical packages, such as the Multivariate Functional Shape Data Analysis to compute global correlations between covariates and the morphological variability, as well as local p-values in the 3D condylar morphology. In conclusion, the DSCI allows interactive advanced statistical tools for non-statistical experts
Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation
BACKGROUND: Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca(2+)](i )signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways. METHODS: Isometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca(2+)](i )was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student's t tests for quantitative variables and χ(2 )tests for qualitative variables. Results were considered significant at P < 0.05. RESULTS: In rat airways, extracellular ATP (10(-6)–10(-3 )M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-γ-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca(2+)](i )response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca(2+), external Na(+ )and treatment with D600 decreased the ATP-induced response. The contraction induced by α-β-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways. CONCLUSION: Extracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca(2+ )influx in addition with, in IPB, P2Y receptors stimulation and Ca(2+ )release from intracellular Ca(2+ )stores. Extracellular Ca(2+ )influx occurs through L-type voltage-dependent channels activated by external Na(+ )entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation
Giving birth: Expectations of first time mothers in Switzerland at the mid point of pregnancy
Problem and background: Despite a generally affluent society, the caesarean section rate in Switzerland has steadily climbed in recent years from 22.9% in 1998 to 33.7% in 2014. Speculation by the media has prompted political questions as to the reasons. However, there is no clear evidence as to why the Swiss rate should be so high especially in comparison with neighbouring countries.
Aim: To describe the emerging expectations of giving birth of healthy primigravid women in the early second semester of pregnancy in four Swiss cantons.
Methods: Qualitative individual interviews with 58 healthy primigravid women, were audio recorded, transcribed and subjected to thematic analysis. Recruitment took place through public and private hospitals, birth centres, obstetricians and independent midwives. The main ethical issues were informed consent, autonomy, confidentiality and anonymity.
Findings: The three main themes identified were taking or avoiding decisions, experiencing a continuum of emotions and planning the care.
Discussion: Being pregnant was part of a project women had mapped out for their lives. Only three women in our sample expressed a wish for a caesarean section. One of the strongest emotions was that of fear but in contrast some participants expressed faith that their bodies would cope with the experience.
Conclusion: Bringing together the three languages and cultures produced a truly “Swiss” study showing contrasts between a matter of fact approach to pregnancy and the concept of fear. Such a contrast is worthy of further and deeper exploration by a multi-disciplinary research team
- …
